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Abstract

We consider a high-dimensional mean estimation problem over a binary hidden
Markov model, which illuminates the interplay between memory in data, sample
size, dimension, and signal strength in statistical inference. In this model, an
estimator observes n samples of a d-dimensional parameter vector θ∗ ∈ Rd,
multiplied by a random sign Si (1 ≤ i ≤ n), and corrupted by isotropic standard
Gaussian noise. The sequence of signs {Si}i∈[n] ∈ {−1, 1}n is drawn from a
stationary homogeneous Markov chain with flip probability δ ∈ [0, 1/2]. As δ
varies, this model smoothly interpolates two well-studied models: the Gaussian
Location Model for which δ = 0 and the Gaussian Mixture Model for which δ =
1/2. Assuming that the estimator knows δ, we establish a nearly minimax optimal
(up to logarithmic factors) estimation error rate, as a function of ∥θ∗∥, δ, d, n. We
then provide an upper bound to the case of estimating δ, assuming a (possibly
inaccurate) knowledge of θ∗. The bound is proved to be tight when θ∗ is an
accurately known constant. These results are then combined to an algorithm which
estimates θ∗ with δ unknown a priori, and theoretical guarantees on its error are
stated.

1 Introduction

Memory between data samples is ubiquitous in practical applications, as data collected from networks
or sampled time series inevitably inherit spatial or temporal statistical dependencies. Numerous
examples arise in imaging, meteorology, health care, finance, social science, and so on [Glaeser et al.,
1996, Bertrand et al., 2000, Sacerdote, 2001, Duflo and Saez, 2003, Christakis and Fowler, 2013]. In
principle, prior knowledge of the existence of such memory can be used to improve the performance
of statistical estimators compared to the performance obtained in memoryless models. Development
and analysis of statistical inference algorithms for models with memory has been extensively explored
from the algorithmic perspective, and computationally efficient algorithms such as Baum-Welch and
message-passing were developed [Ephraim and Merhav, 2002, van Handel, 2008, MacKay, 2003,
Wainwright and Jordan, 2008]. It was also extensively studied from the theoretical perspective in
the classical, fixed-dimensional and asymptotic regime, e.g., Györfi et al. [2002, Chapter 27 and
references therein]. However, much less is understood about the high dimensional, non-asymptotic
regime, which is of paramount importance in modern applications, and the focus of current extensive
research [Vershynin, 2018, Wainwright, 2019]. As we exemplify in this paper, the error in such
estimation problems depends in an intricate way on the interplay between the number of samples, the
dimension of the vector parameters to be estimated, the noise level (signal-to-noise ratio), and the
level of memory between the samples.

An ever popular and fundamental model is the Gaussian mixture model, in which memory exists
between samples whenever the latent variables determining the component of each sample are
dependent. Numerous recent papers, e.g., Balakrishnan et al. [2017], Xu et al. [2016], Klusowski
and Brinda [2016], Jin et al. [2016], Dwivedi et al. [2020b], Dwivedi et al. [2018], Dwivedi et al.
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[2020a], Zhao et al. [2018], Yan et al. [2017], Weinberger and Bresler [2022] have focused on high-
dimensional memoryless models, and analyzed computationally efficient estimation algorithms, most
notably the expectation maximization (EM) algorithm. Specifically, the seminal Balakrishnan et al.
[2017] has provided theoretical guarantees for EM in memoryless models, though without proving
minimax optimality, which was subsequently established in Wu and Zhou [2019]. As a notable
exception, Yang et al. [2015] has generalized the analysis of Balakrishnan et al. [2017] to a hidden
Markov model (HMM) that has memory, yet again, without determining how the minimax error
rate depends on the number of samples, dimension, noise level, and the amount of memory. In this
paper, we address the question of precise characterization of the minimax error rate in terms of these
parameters, in the context of a high-dimensional Gaussian HMM. We next turn to formally define
this model and the estimation problem, describe known results, and then present our contributions.
Our obtained results illuminate the opportunities and challenges associated with optimal inference in
high dimensional models with memory.

1.1 Problem formulation

Let Sn
0 := (S0, S1, . . . , Sn) be the following homogeneous binary symmetric Markov chain, Si ∈

{−1, 1}, P[S0 = 1] = 1/2 and

Si =

{
Si−1, w.p. 1− δ

−Si−1, w.p. δ
(1)

for i ∈ [n] := {1, . . . , n}, and where δ ∈ [0, 1] is the flip probability of the binary Markov chain. We
also denote ρ := 1− 2δ ∈ [−1, 1] which is the correlation between adjacent samples ρ = E[SiSi+1].
At each time point i ∈ [n], a sample of a d-dimensional Gaussian mixture model is observed

Xi = Siθ∗ + Zi, (2)

where Zi ∼ N(0, Id) is an i.i.d. sequence, independent of Sn
0 , and where θ∗ ∈ Rd, d ≥ 1. At its two

extremes, this model degenerates to one of two fundamental models, which are well studied. When
δ = 0, the memory length is infinite, and the sign S0 = S1 · · · = · · · = Sn is fixed. Thus, up to this
sign ambiguity, the model (2) is the standard Gaussian location model (GLM), which is essentially a
memoryless model (and exactly so if S0 is known). When δ = 1

2 , the signs Sn
0 are i.i.d. and have

no memory at all. The model (2) is then a Gaussian mixture model (GMM) with two symmetric
components, which is also a memoryless model. In all other cases, 0 < δ < 1

2 (or 1
2 < δ < 1), the

model is a simple version of a HMM.

The inference problem we consider in this paper is the estimation of θ∗ ∈ Rd, under the loss function

loss(θ̂, θ∗) := min{∥θ̂ − θ∗∥, ∥θ̂ + θ∗∥}, (3)

that is, the Euclidean distance error under a possible sign ambiguity.1 An intermediate goal (or
an additional problem) is to estimate δ, under the regular absolute error loss function |δ̂ − δ|. The
fundamental limits of this estimation problem will be gauged by the local minimax rate, which is the
maximal decrease rate of the loss possible for any estimator, given n samples, at dimension d ≥ 2,
for signal strength ∥θ∗∥= t, and under flip probability δ. Specifically, for d ≥ 2 it is defined as

M(n, d, δ, t) := inf
θ̂(Xn

1 )
sup

∥θ∗∥=t

E
[
loss(θ∗, θ̂(X

n
1 ))
]
. (4)

For general d ≥ 1, the global minimax rate is defined with the condition ∥θ∗∥= t replaced by
∥θ∗∥≤ t (this condition trivializes the estimator for d = 1).

1.2 Known minimax estimation errors rates for GLM and GMM

Before delving into models with memory (0 < δ < 1/2), we review known results on the minimax
rates in memoryless high dimensional Gaussian models – the GLM (δ = 0) and the GMM (δ = 1/2).
We refer the reader to note that the minimax error rate in these models may undergo two possible
phase transitions – one as t increases, and the other one as d increases. We also remark that the
regime of interest is that of low-separation (t ≲ 1), in which accurately detecting the components is
impossible, yet parameter estimation with vanishing loss is possible.

1Similar bounds can be derived for the squared loss by trivial extensions.
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At the first extreme, the local minimax rate for the GLM (δ = 0) is the usual parametric error rate

MGLM(n, d, t) := M(n, d, 0, t) ≍

t, t ≤
√

d
n√

d
n , t ≥

√
d
n

. (5)

This is achieved by the trivial estimator θ̂ = 0 if t ≤
√

d
n and the simple empirical average estimator

θ̂ = 1
n

∑n
i=1Xi if t ≥

√
d
n (see [Wu, 2017, Sec. III-9]). The rate Θ(

√
d
n ) is then the global minimax

rate, i.e., the largest error over t = ∥θ∗∥> 0. This model does not have a phase transition with
dimension. At the other extreme, the GMM model (δ = 1

2 ) undergoes a phase transition at the
dimension d = n. At low dimension, d ≤ n, the minimax rate was neatly shown in [Wu and Zhou,
2019, Appendix B] to be

MGMM(n, d, t) ≡ M

(
n, d,

1

2
, t

)
≍


t, t ≤

(
d
n

)1/4
1
t

√
d
n ,

(
d
n

)1/4 ≤ t ≤ 1√
d
n , t > 1

, (6)

whereas at high dimension d ≥ n, it is as for the Gaussian location model in (5), i.e., MGMM(n, d, t) =
MGLM(n, d, t). Hence, at this high dimensional regime, the loss does not vanishes by increasing the
signal strength t, or by increasing the number of samples n. The loss in (6) is achieved by the trivial
estimator θ̂ = 0 if t ≤

(
d
n

)1/4
and by an estimator given by a properly scaled and shifted principal

component of the empirical covariance matrix of Xn
1 := (X1, X2, . . . , Xn), if t ≥

(
d
n

)1/4
. For the

GMM at low dimension, d ≤ n, the global minimax rate is ( dn )
1/4, which is worse than the minimax

rate of the Gaussian location model
√

d
n .

Therefore, the GMM has worse estimation performance compared to the GLM from three aspects:
First, at low dimension, d ≤ n, it has a larger global minimax rate ( dn )

1/4 compared to the parametric

error rate of the GLM,
√

d
n ; Second, at low dimension, d ≤ n, parametric error rate is achieved only

for constant separation t ≥ 1; Third, the transition to the high dimension regime occurs at d = n.

As is intuitively appealing from a “data-processing” reasoning, a Markov model with flip probability
δ′ should allow for lower estimation error of θ∗ compared to a Markov model with δ > δ′. Indeed,
and as a specific simple example, any Markov model with δ < 1

2 can be easily transformed to a GMM
model by randomizing the signs of each of the samples by an independent Rademacher variable. Thus
we may deduce, e.g., that since at high dimension (d ≥ n) the GLM and the GMM have the same
minimax rates, the minimax rates for d ≥ n are in fact as in (5) for any δ ∈ [0, 1]. We thus henceforth
exclusively focus on the regime d ≤ n. As we show, it is generally true that the improvement in
estimation error when δ is reduced is less profound as the dimension increases.

1.3 Contributions

We first consider the case in which δ is known to the estimator of θ∗. For this case, we analyze the
loss of an estimator that is based on a computation of the principal component of a properly chosen
empirical covariance matrix. We show (Theorem 1) that, at low dimension, d ≤ δn, it achieves a
local minimax rate of

M(n, d, δ, t) ≲


t, t ≤

(
δd
n

)1/4
1
t

√
δd
n ,

(
δd
n

)1/4 ≤ t ≤
√
δ√

d
n , t ≥

√
δ

, (7)

and at high dimension, d ≥ δn, it is as for the Gaussian location model in (5). The rate of this
estimator is then further shown to be asymptotically optimal (up to a logarithmic factor) via a minimax
lower bound (Theorem 2). Evidently, the loss in (7) smoothly interpolates the rates of the GLM in (5)
and the GMM in (6). Moreover, it is evident that the loss is improved with the decrease of δ from
all three aspects previously mentioned. First, at low dimension, d ≤ δn, the global minimax rate is

3



(
δd
n

)1/4
(obtained by equating the first and second cases in (7)). Hence, reducing the flip probability

from δ = Θ(1) to δ = d
n smoothly reduces the global minimax rate from the parametric error rate

Θ(
√

d
n ) of the GLM to the Θ(

(
d
n

)1/4
) of the GMM. Second, at low dimension, d ≤ δn, the minimal

signal strength required to obtain parametric error rate is t = Θ(
√
δ) (obtained from the third case

in (7)). This, again, improves by decreasing δ, and matches the extremes t = Θ(
√

d
n ) of GLM and

t = Θ(1) of GMM. Third, the transition to the high dimension regime occurs at d = δn, which is
again better with lower δ, and matches the transition point of the GMM given by d = n. This lower
transition point allows us to achieve the error rate of the GLM for any signal strength, even in a

regime in which the loss O(
√

d
n ) vanishes with n→ ∞ (unlike for GMM, δ = 1

2 ); specifically, this
occurs whenever d ≥ δn yet d = o(n). Beyond the formal proof, Appendix A provides a heuristic
justification for why the minimax error is naturally expected to scale as in (7).

Second, as a step towards the removal of the assumption that δ is known to the estimator, we consider
the complementary problem of estimating δ whenever an estimate θ♯ of θ∗ is available (which can be
either exact θ♯ = θ∗, or inaccurate θ♯ ̸= θ∗). We propose a simple estimator for δ, and analyze its
error in case of a mismatch (Theorem 4). We then specify this result to the matched case θ♯ = θ∗ and

show that in the non-trivial regime (∥θ∗∥≲ 1) its error rate is Õ( 1
∥θ∗∥2

√
1
n ). We then proceed to show

an impossibility lower bound of Ω(
√

1
n ) (Proposition 6) for this error rate. The precise dependence

of the estimation error rate of δ on ∥θ∗∥ is therefore not precisely determined, and we discuss the
challenges in settling this matter.

Third, we consider the case in which the estimator of θ∗ has no prior knowledge of δ. We propose
a three-step algorithm for this case (Algorithm 1). First, a (possibly) gross estimate θ̂(A)of θ∗ is
computed based on third of the samples, assuming the worst case of δ = 1

2 . Then, an estimate
δ̂(B) of δ is computed using another third of the samples, assuming the estimate θ̂(A). Finally, a
refined estimate θ̂(C) of θ∗ is obtained by (essentially) assuming that δ is δ̂(B). At each of the steps
above, the algorithm may stop and decide to return its current estimate when it determines that no
further improvement is possible by moving on to the next steps. We analyze the loss of this algorithm
(Theorem 7), and show that this algorithm is capable of partially achieving the gains associated with
the case of known δ.

Our technique of partitioning the samples to blocks according to the dependence structure of the
Markov chain renders the possibility of understanding the minimax rate of more general models, such
as mixtures with multiple components [Doss et al., 2020] and memory, Ising models [Daskalakis
et al., 2019], Boltzmann machines [Bresler et al., 2019], Markov random fields, etc. Our findings in
the mean estimation setting also stand in contrast to the data wastage phenomenon observed in the
linear regression setting in the prior work Bresler et al. [2020].

1.4 Additional related work

Both the GLM [Johnstone, 2002, Tsybakov, 2008] and GMM [Lindsay, 1995, McLachlan et al.,
2019] are classic models which were well-explored from numerous perspectives. In the last few years,
there is a surge of interest in the non-asymptotic performance analysis of computationally efficient
estimation algorithms for this estimation task. For example, Moitra and Valiant [2010], Kalai et al.
[2010], Anandkumar et al. [2014], Hardt and Price [2015], Wu and Yang [2020] have analyzed method-
of-moments-based algorithms, and various other papers considered the EM algorithm [Balakrishnan
et al., 2017, Xu et al., 2016, Jin et al., 2016, Klusowski and Brinda, 2016, Weinberger and Bresler,
2022, Dwivedi et al., 2020b,a, 2018, Zhao et al., 2018, Yan et al., 2017]. Specifically, the local
minimax rate for GMM in (6) was determined in [Wu and Zhou, 2019] as a benchmark for the
operation of the EM algorithm.

The model (2) is a simple instance of a HMM [Ephraim and Merhav, 2002, van Handel, 2008] in
high dimensions. Parameter estimation in such models is practically performed via the Baum-Welch
algorithm [Baum et al., 1970], which is a computationally efficient version of EM for HMMs. To
the best of our knowledge, there were hardly any attempts to characterize the minimax rates in such
models, with the exception of [Aiylam, 2018] and [Yang et al., 2015], previously mentioned. In
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[Aiylam, 2018], a local version of the Baum-Welch algorithm was proposed, and vanishing error of
the convergence of the estimate to the true parameter was established for both a population version
as well as a finite-sample version. In [Yang et al., 2015], general bounds on the performance of
Baum-Welch algorithm were specified to the Gaussian model with Markov signs (2) considered here.
It was shown that the Baum-Welch algorithm achieves a parametric error rate, and converges in a
finite number of iterations [Yang et al., 2015, Corollary 2]. However, the qualifying condition for the
estimation error bound of [Yang et al., 2015] is that t = ∥θ∗∥≳ log 1

1−(1−2δ)2 , that is, a non-trivial
separation when δ is constant, which further blows up as δ ↓ 0. By contrast, in this paper, our goal
is to characterize the estimation error in the regime of δ and t = ∥θ∗∥ in which the minimax rate is
affected by these parameters, and this requires analyzing vanishing δ and t.

More broadly, there is a growing interest in advancing the quantitative understanding of the
performance of statistical learning and inference with dependent data. Bresler et al. [2020] studied
linear regression with Markovian covariates and characterized the minimax error rate in terms of
the mixing time of the Markov chain. A stochastic gradient descent-style algorithm adapted to the
Markov setting was shown to be minimax optimal. Statistical estimation problems including linear
and logistic regression with more general network dependencies among response variables were
studied by Daskalakis et al. [2019] and Kandiros et al. [2021]. Learnability and generalization bounds
were derived by Dagan et al. [2019] for dependent data satisfying the so-called Dobrushin’s condition.

1.5 Notation conventions

For a vector v ∈ Rd, ∥v∥ is the Euclidean norm. For a positivedefinite matrix A, λmax(A) and
vmax(A) are the maximal eigenvalue and the associated eigenvector (of unit norm) of A. Unless
otherwise stated, the constants involved in Bachmann-Landau notation are numerical, and do not
depend on the parameters (n, d, δ, t). It holds that a ≳ b (resp. a ≲ b) if there exists a constant c > 0
(resp. C > 0) such that a ≥ cb (resp. a ≤ Cb). If a ≲ b and a ≳ b. then a ≍ b. Integer constraints
(ceiling and floor) on large quantities that do not affect the results are omitted for brevity. For a real
numbers a, b the shorthand notation a ∨ b := max{a, b}, a ∧ b := min{a, b} and (a)+ := a ∨ 0 is
used. A sequence of objects X1, · · · , Xn is denoted by Xn

1 . Expectation, variance and probability
are denoted by E,V and P, respectively. Equality in distribution of random variables X and Y is
denoted by X d

= Y . All logarithms log are to the base e.

2 Mean estimation for a known flip probability

In this section, we consider the problem of estimating θ∗ whenever δ is exactly known to the estimator.
In that case, it may be assumed w.l.o.g. that δ ∈ [0, 12 ], as otherwise one may negate each of the even
samples to obtain an equivalent model with δ replaced with 1− δ. Hence also ρ ∈ [0, 1]. We next
describe an estimator for this task, state a bound on its performance, and then show that it matches
(up to a logarithmic factor) an impossibility lower bound.

The estimator operationally interpolates and therefore simultaneously generalizes the empirical
average estimator (30) and the (properly scaled) principal component estimator (32) analyzed in [Wu
and Zhou, 2019, Appendix B]. It degenerates to the latter estimators if δ ↓ 0 or δ ↑ 1

2 . Specifically,
the estimator partitions the sample into blocks of equal length k each (which will later be set to
k = 1

8δ , according to the mixing time of the Markov chain Sn
0 ). Let ℓ denote the number of blocks

respectively, so that kℓ = n. Let Ii = {(i− 1)k + 1, (i− 1)k + 2, · · · , ik} denote the indices of the
ith block. Further, let {Ri}i∈[ℓ] be an i.i.d. Rademacher sequence (Ri ∼ Uniform{−1, 1}), and let

Xi := Ri ·
1

k

∑
j∈Ii

Xj = Siθ∗ + Zi (8)

denote the average of the samples in the ith block (randomized with a sign Ri), where

Si := Ri ·
1

k

∑
j∈Ii

Sj (9)

is the gain (average of the signs) of the ith block, and

Zi := Ri ·
1

k

∑
j∈Ii

Zj ∼ N

(
0,

1

k
· Id
)

(10)
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is the average noise of the ith block. Due to the sign randomization, it holds that {Si}i∈[ℓ] is an i.i.d.
sequence. Since {Zi}i∈[ℓ] is also an i.i.d. sequence, then so is {Xi}i∈[ℓ]. For notational simplicity
we will omit the block index i of a generic block. For block length k, we denote by

ξk := E[S2
] = E


1

k

k∑
j=1

Sj

2
 (11)

the second moment of the gain S. Note that ξk ∈ [ 1k , 1] for any δ ∈ [0, 12 ], and, in particular, it
is always positive. For a sequence of samples Xn

1 = (X1, . . . , Xn), we define by Σ̂n,k(X
n
1 ) the

empirical covariance matrix of the averaged samples over blocks {Xi}i∈[ℓ], that is

Σ̂n,k(X
n
1 ) :=

1

ℓ

ℓ∑
i=1

XiX
⊤
i , (12)

whose population average is Σn,k(θ∗), where

Σn,k(θ∗) := E[XX
⊤
] = ξkθ∗θ

⊤
∗ +

1

k
Id. (13)

We note that θ is the principal component of Σn,k(θ), that is, λmax(Σn,k(θ)) = ξk∥θ∥2+ 1
k and the

corresponding eigenvector is vmax(Σn,k(θ)) = θ. We thus consider the following estimator for θ∗,
from a sequence Xn

1 , and with a block length of k

θ̂cov(X
n
1 ; k) :=

√
1

ξk

(
λmax(Σ̂n,k(Xn

1 ))−
1

k

)
+

· vmax

(
Σ̂n,k(X

n
1 )
)
. (14)

The estimator is thus constructed from two types of averages: First, a coherent average of the samples
at each block, to obtain ℓ block-samples Xi with gain Si and noise variance reduced by a factor of
k. Second, an incoherent average of the “square” of the ℓ block-samples XiX

⊤
i , which resolves

the remaining sign ambiguity between blocks. This balance two extreme cases: If δ = 0, then this
reduces the problem to the GLM (with a sign ambiguity) and k = n is an optimal choice. If δ = 1

2 ,
then this reduces the problem to the GMM, in which coherent averaging is non-beneficial and k = 1
is rate optimal. Generally, the optimal choice of the block length k is proportional to the mixing time
of the Markov chain Θ( 1δ ). This choice assures that the random gain S is ±1 with a (constant) high
probability. In fact, an elementary, yet crucial, part of the analysis establishes that the random gain S̄
has constant variance for this choice of block length (see Lemma 9 in Appendix B.1). On the other
hand, if k = Ω(1δ ), then the random gain S will not be ±1 (or not even bounded away from zero)
with high probability, and such choice is never efficient. Specifically, we consider the estimator in
(14) with k = 1

8δ . The above estimation procedure is depicted in Figure 2 in Appendix B.1.

Let us denote

β(n, d, δ) :=

√
d

n
∨
(
δd

n

)1/4

, (15)

which will actually be the global minimax rate.

Theorem 1. Assume that δ ≥ 1
n and d ≤ n, and set θ̂ ≡ θ̂cov(X

n
1 ; k) with k = 1

8δ . Then, there exist
numerical constants c0, c1, c2 > 0 such that for every θ∗ ∈ Rd

E
[
loss(θ̂, θ∗)

]
≤ c0 ·

{
β(n, d, δ), ∥θ∗∥≤ β(n, d, δ)√

d
n + 1

∥θ∗∥

√
δd
n + 1

∥θ∗∥ · d
n , β(n, d, δ) ≤ ∥θ∗∥

(16)

and
loss(θ̂, θ∗) ≤ c1 · log(n) · E

[
loss(θ̂, θ∗)

]
(17)

with probability larger than 1− c2
n .
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Theorem 1 is proved in Appendix B.1. Evidently, Theorem 1 implies that the upper bound on
the minimax rate stated in (7) above holds in low dimension, d ≤ δn, whereas M(n, d, δ, t) ≍
MGLM(n, d, t) holds in high dimension d ≥ δn.2 We remark that the condition δ ≥ 1

n is mild as
otherwise the model (2) is essentially equivalent to GLM. See Remark 8 in Appendix B.1. Numerical
validation of the performance of the estimator θ̂cov(X

n
1 ; k) is shown in Appendix F.

We next consider an impossibility result. As we have seen, at high dimension, d ≥ δn, the minimax
error rates achieved are the same as for the Gaussian location model, and thus clearly cannot be
improved. We thus next focus on the low dimensional regime d ≤ δn.

Theorem 2. Assume that 2 ≤ d ≤ δn and n ≥ 128
d . Then the local minimax rate is bounded as

M(n, d, δ, t) ≳
1√

log(n)
·


t, t ≤

(
δd
n

)1/4
1
t

√
δd
n ,

(
δd
n

)1/4 ≤ t ≤
√
δ√

d
n , t ≥

√
δ

. (18)

Hence, the minimax rates achieved by the estimator in Theorem 1 are nearly asymptotically optimal,
up to a

√
log(n) factor. The full proof of Theorem 2 together with a summary of the main ideas used

in the proof is presented in Appendix B.2.
Remark 3 (Relaxation of the noise distribution assumption). For the sake of clarity of exposition, we
have assumed in Theorems 1 and 2 that the noise samples {Zi}ni=1 are i.i.d. isotropic Gaussians. There
are two straightforward relaxations of this assumption. First, our minimax upper bound (Theorem 1)
can be proved to any subGaussian noise distribution, simply because all the concentration bounds
for Gaussian random variables used in the proof admit subGaussian analogues. The impossibility
result (converse, Theorem 2) trivially holds for subGaussian noise since Gaussians are special case
of subGaussians. Second, the isotropic assumption can be relaxed to anisotropic noise with known
covariance Σ by simple standardization: If Zi ∼ N(0d,Σ) are i.i.d. for some known Σ ≻ 0, then the
estimator will multiply the samples by Σ−1/2 and reduce the problem back to the isotropic setting.
After applying the estimator we propose for the isotropic case, the estimator will obtain its final
estimate by multiplying its isotropic estimate by Σ1/2. The loss of the estimator will then be gauged
by the Mahalanobis distance, parameterized by Σ. We refer the reader to Appendix G for a discussion
on more challenging directions in which the isotropic Gaussian assumption can be relaxed.

3 Flip probability estimation for a given estimator of θ∗

In this section, we consider the problem of estimating δ whenever θ∗ is approximately known to be
θ♯. We propose a simple estimator, and then discuss the importance of the accuracy of θ∗. We then
derive an impossibility result for the matched case, θ♯ = θ∗.

First note that an estimator for δ can be easily obtained from an estimator for ρ, with essentially the
same error rate, via δ̂ = 1

2 (1 − ρ̂). Thus we focus on estimating ρ. Assume for simplicity that n
is even. Observing that E[X⊤

2iX2i+1] = ρ∥θ∗∥2, we propose the following natural estimator for ρ,
which replaces the population average with empirical average:

ρ̂corr(X
n
1 ; θ♯) =

1

∥θ♯∥2
· 2
n

n/2∑
i=1

X⊤
2iX2i−1. (19)

That is, the estimator is based on evaluating the correlation of each of two adjacent samples X2i and
X2i−1. We first state a general bound on the estimation error of this estimator. We then consider the
case in which θ∗ is known, and show how the estimation error is improved in this case.

2When ∥θ∗∥≤ β(n, d, δ), the estimator θ̂cov(X
n
1 ; k) in Theorem 1 only achieves a rate β(n, d, δ) which

is larger than the promised rate ∥θ∗∥ in (7). However, since the estimator is assumed to know t (but not the
direction of θ∗; a common formulation in high-dimensional statistics), then it can output the zero vector. It then
incurs loss ∥θ∥∗ for any θ∗ ∈ Rd, matching the promised rate when ∥θ∗∥≤ β(n, d, δ). To summarize, for any
value of t, the minimax rate is achieved by the minimum rate of θ̂cov(X

n
1 ; k) and θ̂0(X

n
1 ) ≡ 0.
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Theorem 4. Assume that d ≤ n. Let θ∗ ∈ Rd and let θ♯ be an estimate of θ∗. Set ρ̂ ≡ ρ̂corr(X
n
1 ; θ♯)

and δ̂ = 1
2 (1− ρ̂). Then, it holds with probability 1− 8

n that∣∣∣δ̂ − δ
∣∣∣ = 1

2
|ρ̂− ρ| ≤

∣∣∥θ∗∥2−∥θ♯∥2
∣∣

∥θ♯∥2
+ 16 log(n)

[√
δ

n
+

1

∥θ♯∥

√
1

n
+

1

∥θ♯∥2

√
d

n

]
. (20)

The proof of Theorem 4 appears in Appendix C.1. Note that Theorem 4 states a high-probability
bound, suitable to its usage later on in Section 4. A bound on the expectation of the error can be
obtained by the standard method of integrating tails.

The effect of knowledge of θ∗ If θ∗ is known up to a sign, i.e., θ♯ = ±θ∗, then for the purpose of ρ
(or equivalently δ) estimation, the model (2) can be reduced to a one-dimensional model by rotational
invariance of isotropic Gaussian (See additional details in Appendix C.2). It then immediately follows
from Theorem 4 that:
Corollary 5. Assume that d ≤ n, ∥θ∗∥≤ 1 and θ♯ = ±θ∗. Let Un

1 be defined in as Ui :=

∥θ∗∥·Si +Wi where Wi ∼ N(0, 1) i.i.d., ρ̂ ≡ ρ̂corr(U
n
1 ; θ♯) and δ̂ = 1

2 (1 − ρ̂). Then it holds with
probability 1− 8

n that ∣∣∣δ̂ − δ
∣∣∣ = 1

2
|ρ̂− ρ| ≤ 18 log(n)

∥θ∗∥2

√
1

n
. (21)

Numerical validation of the performance of the estimator δ̂corr(X
n
1 ; θ♯) =

1
2 (1− ρ̂corr(X

n
1 ; θ♯)) in the

mismatched (Theorem 4) and matched (Corollary 5) cases is provided in Appendix F.

We next consider an impossibility lower bound.
Proposition 6. Suppose that θ♯ = θ∗ and ∥θ∗∥≤ 1√

2
. Then

inf
δ̂(Un

1 )
sup

δ∈[0,1]

E[|δ − δ̂(Un
1 )|] ≥

1

32
√
n
, (22)

where the infimum is over any estimator δ̂(Un
1 ) based on the model Ui = ∥θ∗∥Si +Wi where each

Wi is i.i.d. N(0, 1).

The proof of Proposition 6 is presented in Appendix C.2. According to Corollary 5 and Proposition
6, in estimating δ with a known θ∗, though the dependence Θ( 1√

n
) of the minimax error rate on

the sample size is shown to be nearly optimal, it is unclear what the optimal dependence on the
signal strength should be. This is left as an interesting open question and we discuss the challenges
associated with this problem in Appendix C.2.

4 Mean estimation under an unknown flip probability

As we have seen, if an estimator for θ∗ knows the value of δ, and if both δ ≤ 1
2 and d ≤ δn hold,

then the estimator can achieve improved error rates over the GMM case (δ = 1
2 ). In this section, we

assume that both θ∗ and δ are unknown, and so the estimator is required to estimate δ in order to use
this knowledge for an estimator of θ∗. We propose an estimation procedure of three steps based on
sample splitting of 3n samples. We mention at the outset that the regime in which improvement is
possible will be for low signal strength ∥θ∗∥≲ 1 (low separation between the components), and up
to a dimension which depends on δ. Of course the estimation procedure does not know (θ∗, δ) in
advance, and so it is required to identify if (θ∗, δ) are in this regime during its operation.

We now begin with an overview of the steps of the estimation algorithm. At Step A, the algorithm
estimates θ∗ based on Xn

1 assuming a Gaussian mixture model (δ = 1
2 ) to obtain an estimate θ̂(A).

Then, based on ∥θ̂(A)∥, the algorithm decides whether improvement is potentially possible had δ
was known. There are two cases. The first case is that ∥θ̂(A)∥ is too low, and then its estimate is not
sufficiently accurate to be used in the next steps. Essentially, this happens when the norm is below
the global minimax rate ( dn )

1/4, and the estimation error of the norm on the same scale as the norm
of ∥θ∗∥. A trivial estimator of θ̂ = 0 is then optimal in terms of error rates. It can be already noted

8



at this step that while the global minimax rate for the known δ case is ( δdn )1/4, here the algorithm
already stops and estimates θ̂ = 0 even if just ∥θ∗∥≲ ( dn )

1/4, leading to larger global minimax rate.
The second case is that ∥θ∗∥ is larger than a constant. In this case, the estimation based on a GMM

already achieves the optimal parametric O(
√

d
n ) error rate of the Gaussian location model, and so no

further estimation steps are necessary. Otherwise, an improvement in the estimation is possible. The
algorithm proceeds to Step B, and usesX2n

n+1 to obtain an estimate δ̂(B) of δ based on the mismatched
θ♯ ≡ θ̂(A). Then, based on the estimate δ̂(B) the algorithm decides whether the accuracy of δ̂(B) is
sufficient to be used in an refined estimation of θ∗. If the accuracy of δ̂(B) is not good enough, then
the algorithm outputs the estimate from Step A, that is θ̂(A). Otherwise, it proceeds to Step C, in
which θ∗ is re-estimated using X3n

2n+1, based on a mismatched choice of k, that is k ≍ 1
δ̂(B)

instead

of k = 1
8δ . Intuitively, the estimated value δ̂(B) should be larger than δ so the resulting block size

k ≍ 1
δ̂(B)

will be such that the gain in the block is still close to 1 with high probability. On the other

hand, it is desired that δ̂(B) will be on the same scale as δ so that the estimation rate (304) (see also
(7)) – which now essentially holds with δ̂(B) instead of δ – would be as small as possible. Thus, if the
algorithm has assured in Step B that δ̂(B) ≍ δ, then at Step C it will achieve the error rate indicated
in (304).

Algorithm 1 Mean estimation for unknown δ

1: input: Parameters λθ, λδ > 0 (from (304) (305) (307)), 3n data samples X3n
1 from the model

(2)
2: step A: Estimate θ∗ assuming a Gaussian mixture model:

θ̂(A) ≡ θ̂cov(X
n
1 ; k = 1) (23)

3: if ∥θ̂(A)∥≤ 2λθ · log(n) · ( dn )
1/4 then

4: return θ̂ = 0 ▷ No further improvement can be guaranteed
5: else if ∥θ̂(A)∥≥ 1

2 then
6: return θ̂ = θ̂(A) ▷ No further improvement is possible
7: end if
8: step B: Estimate δ assuming a mismatched mean value θ̂(A):

δ̂(B) = δ̂corr(X
2n
n+1; θ̂

(A)) (24)

9: if δ̂(B) ≤ 64λδλθ
log(n)

∥θ̂(A)∥2

√
d
n then

10: return θ̂ = θ̂(A) ▷ No further improvement can be guaranteed
11: end if
12: step C: Estimate θ∗ assuming a mismatched flip probability δ̂(B):

θ̂(C) = θ̂cov

(
X3n

2n+1; k =
1

16δ̂(B)

)
(25)

13: return θ̂ = θ̂(C).

The formal description of the estimation algorithm is provided in Algorithm 1. We remark that
refining the estimation of δ can be easily incorporated as a fourth step of this algorithm, but we do
not present this in order to keep the statement of the result simple. The error of the estimator output
by Algorithm 1 is as follows:

Theorem 7. There exist constants c1, c2 ≥ 0 and λθ, λδ ≥ 1 such that if d ≤ n
4λ2

θ log2(n)∧16
then the

output θ̂ of Algorithm 1 satisfies for any θ∗ ∈ Rd, with probability 1−O( 1n ):
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If d ≤ 1
64λ2

δλ
2
θ log2(n)

δ4n then

loss(θ̂, θ∗) ≤ c1 log n·



∥θ∗∥, ∥θ∗∥≤ λθ log(n)
(
d
n

)1/4
1

∥θ∗∥

√
d
n , λθ log(n)

(
d
n

)1/4 ≤ ∥θ∗∥≤
√

8λδλθ log(n)
(

d
δ2n

)1/4
1

∥θ∗∥

√
δd
n ,

√
8λδλθ log(n)

(
d

δ2n

)1/4 ≤ ∥θ∗∥≤
√
δ√

d
n , ∥θ∗∥≥

√
δ

; (26)

If d ≥ 1
64λ2

δλ
2
θ log2(n)

δ4n then

loss(θ̂, θ∗) ≤ c2 log n ·


∥θ∗∥, ∥θ∗∥≤ λθ log(n)

(
d
n

)1/4
1

∥θ∗∥

√
d
n , λθ log(n)

(
d
n

)1/4 ≤ ∥θ∗∥≤
√

8λδλθ log(n)
(

d
δ2n

)1/4√
d
n , ∥θ∗∥≥

√
8λδλθ log(n)

(
d

δ2n

)1/4 . (27)

Theorem 7 implies that up to logarithmic factors, the error rates of the known δ case are recovered
for low enough dimension d ≲ δ4n and ∥θ∗∥≳

(
d

δ2n

)1/4
. The analysis of Algorithm 1 appears in

Appendix D. Numerical validation of the performance of Algorithm 1 can be found in Appendix F.

The impact of unknown δ on the estimation error of θ∗ Comparing Theorems 2 (known δ) and 7
(unknown δ) reveals the deterioration in the estimation of θ∗ due to the lack of knowledge of δ from
the three aspects mentioned in Section 1.3 (ignoring logarithmic factors): First, the global minimax
rate is O( dn )

1/4 as for the GMM, instead of the rate O( δdn )1/4 for the Markov model case with known

δ. Second, at the regime ( dn )
1/4 ≲ ∥θ∗∥≲ ( d

δ2n )
1/4 the error rate is O( 1

∥θ∗∥

√
d
n ) instead of the lower

O( 1
∥θ∗∥

√
δd
n ). Third, the algorithm is only effective when the dimension is as low as d ≲ δ4n. For

higher dimensions, the rates of the GMM are achieved, which can be achieved even without the
knowledge of δ.

5 Conclusion and future work

In this paper, we have considered an elementary, yet fundamental, high-dimensional model with
memory. We have obtained a sharp bound on the minimax rate of estimation in case the underlying
statistical dependency (flip probability) is known, and proposed a three-step estimation algorithm
when it is unknown. This has revealed the gains possible in estimation rates due to the memory
between the samples, and smoothly interpolated between the extreme cases of GLM and GMM. An
interesting open problem is to either characterize the optimality of the algorithm or improving in the
unknown δ case, which requires understanding optimal estimation of the flip probability.

Naturally, as the model considered in this paper is basic, there is an ample of possibilities to generalize
this model. These include, a larger number of components in the mixture, statistical dependency with
a more complicated graphical structure between the data samples, existence of nuisance parameters
such as the noise variance, sharp finite-sample/finite-iteration analysis of specific practical algorithms
such as Baum-Welch, location-scale model with anisotropic noise, heavy-tailed noise, and so on.
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