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Abstract

Deep neural networks (DNNs) defy the classical bias-variance trade-off: adding
parameters to a DNN that interpolates its training data will typically improve
its generalization performance. Explaining the mechanism behind this “benign
overfitting” in deep networks remains an outstanding challenge. Here, we study
the last hidden layer representations of various state-of-the-art convolutional neural
networks and find that if the last hidden representation is wide enough, its neurons
tend to split into groups that carry identical information and differ from each other
only by statistically independent noise. The number of such groups increases
linearly with the width of the layer, but only if the width is above a critical value.
We show that redundant neurons appear only when the training is regularized and
the training error is zero.

1 Introduction

Deep neural networks (DNN) have enough parameters to achieve zero training error, even with
random labels [1, 2]. In defiance of the classical bias-variance trade-off, the performance of these
interpolating classifiers improves as the number of parameters increases well beyond the number
of training samples [3–6]. Despite recent progress in describing the implicit bias of stochastic
gradient descent towards “good” minima [7–12], and the detailed analysis of solvable models of
learning [13–21], the mechanisms underlying this “benign overfitting” [22] in deep neural networks
remain unclear, especially since their loss landscape contains “bad” local minima and SGD can reach
them [23].

In this paper, we describe a phenomenon in wide DNNs that could be a possible mechanism for
benign overfitting when the networks are trained with regularization. We illustrate this mechanism
in Fig. 1 for a family of increasingly wide DenseNet40s [24] trained on CIFAR10 [25] following
common practice, in particular using weight decay (see Sec. 2.1). For simplicity, we refer to the
width W of the last hidden representation as the width of the network. The blue line in Fig. 1-b
shows that the average classification error (error) approaches the performance of a large ensemble
of networks (error∞) [21] as we increase the network width W . In agreement with [26], we find
that the performance of these DenseNets improves continuously with width. For widths greater than
350, the networks are wide enough to reach zero training error (see Appendix, Sec. B, Fig S2-c) and,
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Figure 1: The redundancy of representations in wide neural networks. a: We analyze the final
representations of deep neural networks (DNN), namely the activities of the last hidden layer of
neurons (light blue) We focus on the performance and the statistical properties of randomly chosen
subsets of wc neurons which we call “chunks”. In the chunked network shown here, wc = 5 out
of 9 neurons are kept and used to predict the output. b: As we increase the size of the chunk wc

that we keep in a state-of-the-art DNN, here a DenseNet40, the test error of the chunk (orange line)
becomes similar to the test error of a full network of width W = wc (blue line). In this regime, which
is reached when wc is larger than a threshold w∗

c (shaded area) the error approaches its asymptotic
value error∞ as a power-law w

−1/2
c (dashed line). error∞ is the error of an ensemble average of 20

networks of the widest size. c: Illustration of three final representations for networks of increasing
width. In small networks, an additional neuron fits new features of the data (red neuron). As the
network width goes beyond a critical width W ∗, additional neurons instead copy features already
learned from data, instead of over-fitting to features that are not relevant to the task. This mechanism
is suggested by the w

−1/2
c decay of the chunk error, and by the statistical analysis, we present in this

paper.

interestingly, their test error decays approximately as W−1/2. Our goal is to understand how the error
of the network can keep decaying beyond the interpolation threshold, and why it decays as W−1/2.

We make our key observation by performing the following experiment: we randomly select a number
wc of neurons from the last hidden layer of the widest DenseNet40 and remove all the other neurons
from that layer as well as their connections (Fig. 1-a). We then evaluate the performance of this
chunk of wc neurons, without retraining the network. The orange profile of Fig. 1-b shows the test
error of chunks of varying sizes. There are two regimes: for small chunks, the error decays faster
than w

−1/2
c , while beyond a critical chunk size w∗

c (shaded area), the error of a chunk of wc neurons is
roughly the same as the one of a full network with wc neurons. Furthermore, the error of the chunks
decays with the same power-law w

−1/2
c beyond this critical chunk size.

The decay rate of −1/2 suggests that in this regime chunks of wc neurons can be thought of as statist-
ically independent estimators of the same features of the data, differing only by small, uncorrelated
noise. In other words, beyond the critical width w∗

c , the final hidden representation of an input in
a trained, wide DNN becomes highly redundant. This motivates a possible mechanism for benign
overfitting, schematically portrayed in Fig. 1-c: as the network becomes wider, additional neurons
are first used to learn new features of the data. Beyond the critical width w∗

c , additional neurons in
the final layer don’t fit new features in the data, and hence over-fit; instead, they make a copy, or a
clone, of a feature that is already part of the final representation. The last layer thus splits into more
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and more clones as the network grows wider as we illustrate at the bottom of Fig. 1. The accuracy of
these wide networks then improves with their width because the network implicitly averages over an
increasing number of clones in its representations to make its prediction.

This paper provides a quantitative analysis of this phenomenon on various data sets and architectures.
Our main findings can be summarized as follows:

1. A chunk of wc random neurons of the last hidden representation of a wide neural network
predicts the output with an error that decays as w−1/2

c if the layer is wide enough and wc is
large enough. In this regime, we call the chunk a “clone”;

2. Clones fit the training set with zero error and can be linearly mapped one to another, or to
the full representation, with an error that can be described as uncorrelated random noise.

3. Clones appear if the model is trained with weight decay and the training set is fitted with zero
error. If training is stopped too early or if the training is performed without regularization,
1. and 2. do not take place, even if the last representation is very wide.

2 Methods

2.1 Neural network architectures

We report experimental results obtained with several architectures (fully connected networks, Wide-
ResNet-28, DenseNet40, ResNet50) and data sets (CIFAR10/100 [25], ImageNet [27]). We train all
the networks using SGD with momentum and, importantly, weight decay. The amount of weight
decay is found with a small grid search, while the other relevant hyperparameters are set following
standard practice. We give detailed information on our training setups in Sec. A of the Appendix. All
our experiments are run on Volta V100 GPUs. In the following paragraphs, we describe how we vary
the width W of the models.

Fully-connected networks on MNIST. We train a fully-connected network to classify the parity
of the MNIST digits [28] (pMNIST) following the protocol of Geiger et al. [21]. MNIST digits
are projected on the first ten principal components, which are then used as inputs of a five-layer
fully-connected network (FC5). The four hidden representations have the same width W and the
output is a real number whose sign is the predictor of the parity of the input digit.

Wide-ResNet-28 and DenseNet40 on CIFAR10/100. We train CIFAR10 and CIFAR100 on family
of Wide-ResNet-28 [26] (WR28). The number W of the last hidden neurons in a WR28-n is 64 · n,
obtained after average pooling the last 64 · n channels of the network. In our experiments, we also
analyze two narrow versions of the standard WR28-1 which are not typically used in the literature.
We name them WR28-0.25 and WR28-0.5 since they have 1/4 and 1/2 of the number of channels
of WR28-1. Our implementation of DenseNet40 follows the DenseNet40-BC variant [24]. We vary
the number of input channels c in {16, 32, 64, 128, 256}, which is twice the growth rates k of the
networks [24]. The number W of the last hidden features of this architecture is 5.5 · c.

ResNet50 on ImageNet. We modify the ResNet50 architecture [29] by multiplying by a constant
factor c ∈ {0.25, 0.5, 1, 2, 4} the number of channels of all the layers after the input stem. When
c = 2 our networks differ from the standard Wide-ResNet50-2 [26] since we double the channels
of all the layers and not just those of the bottleneck of the ResNet blocks. As a consequence in our
implementation, the number of features after the last pooling layer is W = 2048 · c while in [26] W
is fixed to 2048.

2.2 Analytical methods

Reconstructing the wide representation from a smaller chunk. To determine how well a subset
of w neurons can reconstruct the full representation of size W we search for the W ×w linear map A,
able to minimize the squared difference (x(W ) − x̂(W ))

2
between the W activations of the full layer

representation, x(W ), and the activations predicted from the chunk of size w, x̂(W ):

x̂(W ) = Ax(w). (1)
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This least-squares problem is solved with ridge regression [30] with regularization set to 10−8, and
we use the R2 coefficient of the fit to measure the predictive power of a given chunk size. The R2

value is computed as an average of the single-activations R2 values corresponding to the W output
coordinates of the fit, weighted by the variance of each coordinate. We further compute the W ×W
covariance matrix Cij of the residuals of this fit, and from Cij we obtain the correlation matrix as:

ρij =
Cij√

CiiCjj + 10−8
, (2)

with a small regularization in the denominator to avoid instabilities when the standard deviation of
the residuals falls below machine precision. To quantify how much the errors of the fit are correlated,
we average the absolute values of the non-diagonal entries of the correlation matrix ρij . For short, we
refer to this quantity as a ‘mean correlation’.

Reproducibility. We provide code to reproduce our experiments and our analysis online at https:
//github.com/diegodoimo/redundant_representation.

3 Results

Figure 2: Scaling of the test error with
width for various DNN. The average
test error of neural networks with vari-
ous architectures approaches the test er-
ror of an ensemble of such networks
as the network width increases. The
network size shown here is the width
of the final representation. For large
width, we find a power-law behavior
error − error∞ ∝ W−1/2 across data
sets and architectures. Full experimental
details in Sec. 2.1

The test error of chunks of wc neurons of the final
representation asymptotically scales as w

−1/2
c . The

mechanism we propose is inspired by the following exper-
iment: we compute the test accuracy of models obtained
by selecting a random subset of wc neurons from the final
hidden representation of a wide neural network. We select
wc neurons at random and we compute the test accuracy of
a network in which we set to zero the activation of all the
other w − wc neurons of the final layer. Importantly, we
do not fine-tune the weights after selecting the wc neurons:
all the remaining parameters of the previous layers are
left unchanged and only the the activations of the "killed"
neurons of the last hidden representation are not used to
compute the logits. We take 500 random samples of neur-
ons for each chunk width wc. We consider three different
data sets: pMNIST trained on a fully connected network,
CIFAR10 and CIFAR100 trained on convolutional net-
works. The width W of the network is 512 for pMNIST
and CIFAR10, and W = 1024 for CIFAR100 (see Sec.
2.1). In all these cases, W is large enough to be firmly
in the regime where the accuracy of the networks scales
(approximately) as W−1/2 (see Fig. 2).

In Fig. 3 we plot the test error of the "chunked models" as
a function of wc (orange lines). The behavior is similar in
all three networks: the test error decays as w

−1/2
c for chunks that are larger than a critical value w∗

c ,
which depends on the data set and architecture used. This decay follows the same law observed for
full networks of the same width (Fig. 2). This implies that a model obtained by selecting a random
chunk of wc > w∗

c neurons from a wide final representation behaves similarly to a full network of
width W = wc. Furthermore, a decay with rate −1/2 suggests that the final representation of the wide
networks can be thought of as a collection of statistically independent estimates of a finite set of data
features relevant for classification. Adding neurons to the chunk hence reduces their prediction error
in the same way an additional measurement reduces the measurement uncertainty, leading to the −1/2
decay.

At wc smaller than w∗
c instead, the test error of the chunked models decays faster than w

−1/2
c in all the

cases we considered, including the DenseNet architecture trained on CIFAR10 shown in Fig. 1-b. In
this regime, adding neurons to the final representation improves the quality of the model significantly
quicker than it would in independently trained models of the same width (see Fig. 1-c for a pictorial
representation of this process). We call chunks of neurons of size wc ≥ w∗

c clones. In the following,
we characterize more precisely the properties of the clones.
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Figure 3: Scaling of the test error of chunks of neurons extracted from the final hidden
representation of wide NNs. We plot how the test error of chunked networks approaches error∞,
the error of an ensemble of 20 networks of the widest size (e.g. W = 1024 for CIFAR100), as the
chunk size wc increases. Chunks are formed by selecting a number of wc neurons at random from
the final hidden representation of the widest networks: a FC5 on pMNIST (width W = 512), and
Wide-ResNet-28 for CIFAR10 (W = 512) and CIFAR100 (W = 1024). The shaded regions indicate
regions where the error of the chunks with wc neurons decays as w−1/2

c .

Clones interpolate the training data. A trained deep network often represents the salient features
of the data set well enough to achieve (close to) zero classification error on the training data. In the
top panels of Fig. 4, we show that wide networks can interpolate their training set also using just a
subset of wc > w∗

c random neurons: the dark orange profiles show that when the size of a chunk is
greater than w∗

c ∼ 50 for pMNIST, 100 for CIFAR10 and 200 for CIFAR100, the predictive accuracy
on the training set remains almost 100%. The minimal size of a clone w∗

c can be identified with
the minimal number of neurons required to interpolate the training set. Beyond w∗

c , the neurons of
the final representation become redundant since the training error remains (close to) zero even after
removing neurons from it. The number of distinct clones in a network of width W is n = W/w∗

c .
If distinct clones provide independent measures of the same salient features of the data, the test
error decays approximately as n−1/2 or equivalently W−1/2. In the following, we will indeed see that
distinct clones differ from each other by uncorrelated random noise.

Clones reconstruct the full representation almost perfectly. From a geometrical perspective, the
important features of the final representation correspond to directions in which the data landscape
shows large variations [31]. A clone is a chunk that is wide enough to encode almost exactly these
directions (since its training error is almost zero), but using much fewer neurons than the full final
representation. We analyze this aspect by performing a linear reconstruction of the W activations of
the last hidden representation of the widest network starting from a random subset of wc activations
using ridge regression with a small regularization penalty according to Eq. (1). The blue profiles in
Fig. 4-(d,e,f), show the R2 coefficient of fit as a function of the chunk size wc for pMNIST (left),
CIFAR10 (center), CIFAR100 (right). When wc is very small, say below 6 for pMNIST, 20 for
CIFAR10 and 60 for CIFAR100, the R2 coefficient grows almost linearly with wc

3. In this regime,
adding a randomly chosen activation from the full representation to the chunk increases substantially
R2. When wc becomes larger R2 reaches almost one. This transition happens when wc is still
much smaller than W and corresponds approximately to the regime in which the test error starts
scaling with the inverse square root of wc (see Fig. 3). The almost perfect reconstruction of the
original data landscape with few neurons is a consequence of the low intrinsic dimension (ID) of
the representation [32]. The ID of the widest representations gives a lower bound on the number of
coordinates required to describe the data manifold, and hence on the neurons that a chunk needs in
order to have the same classification accuracy as the whole representation. The ID of the last hidden
representation is 2 in pMNIST, 12 in CIFAR10, 14 in CIFAR100, numbers which are much lower
than w∗

c , the width at which a chunk can be considered a clone.

Clones differ from each other by uncorrelated random noise. When wc > w∗
c the small residual

difference between the chunked representation and the full representation can be approximately

3The linear trend can not be clearly seen in Fig. 4 as we plot the x-axis with a logarithmic scale.
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Figure 4: The three signatures of representation redundancy. (i) The training errors of the full
networks (blue) and of the chunks taken from the widest network (orange) approach zero beyond a
critical width/chunk size, resp. (panels a-c). (ii) The final representation of the widest network can be
reconstructed from a chunk using linear regression (1) with an explained variance R2 close to 1 (blue
lines in panels d-f). (iii) The residuals of the linear map can be modeled as independent noise: we
show this by plotting the mean correlation of these residuals (green line, panels d-f), averaged over
100 reconstructions starting from different chunks. A low correlation at high R2 indicates that the
chunk contains the information of the full representation with some statistically independent noise.
Experimental setup: FC5 on pMNIST, Wide ResNet-28 on CIFAR10/100. Full details in Methods
section 2.1

described as statistically independent random noise. The green profiles of the bottom panels of Fig. 4
show the mean correlation of the residuals of the linear fit (see Sec. 2.2). Below w∗

c , the residuals
are not only large but also significantly correlated, since they are related to relevant features of the
data that are not covered by the neurons of the chunk. As the chunk width increases above w∗

c , the
correlation between residuals drops basically to zero. Therefore, in networks wider than w∗

c any
two chunks of equal size wc > w∗

c can be effectively considered as equivalent copies, or clones, of
the same representation (that of the full layer), differing only by a small and non-correlated noise,
consistently with the scaling law of the error shown in Fig. 3.

The dynamics of training. In the previous paragraphs, we set forth evidence in support of the
hypothesis that large chunks of the final representation of wide DNNs behave approximately like an
ensemble of independent measures of the full feature space. This allowed us to interpret the decay of
the test error of the full networks with the network width observed empirically in Fig. 2. The three
conditions that a chunked model satisfies in the regime in which its test error decays as w

−1/2
c are

represented in Fig. 4: (i) the training error of the chunked model is close to zero; (ii) the chunked
model can be used to reconstruct the full final representation with an R2 ∼ 1 and (iii) the residuals
of this reconstruction can be modeled as independent random noise. These three conditions are all
observed at the end of the training. We now analyze the training dynamics. We will see that for the
clones to arise, models not only need to be wide enough but also, crucially, they need to be trained to
maximize their performance.

Clones are formed in two stages, which occur at different times during training. The first phase
begins as soon as training starts: the network gradually adjusts the chunk representations in order to
produce independent copies of the data manifold. This can be clearly observed in Fig. 5-a, which
depicts the mean correlation between the residuals of the linear fit from the chunked to the full final
representations of the network, the same quantity that we analyze in Fig. 4-(d-e-f, green profiles),
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Figure 5: The onset of clones during training. a: As in Fig. 4, we show the mean correlation of
the residuals of the linear reconstruction of the final representation from chunks, but this time as a
function of training epochs. A small correlation indicates that the reconstruction error in going from
chunks to final representation can be modeled as independent noise. Data obtained from the same
WR28-8 trained on CIFAR10 as in Fig. 4. b: Training error during training for chunks of different
sizes. After the network has reached zero training error at ∼ 160 epochs, continuing to train improves
the training accuracy of the chunks. c: Test and training error during training for the full network.
Between epochs 160 and 180, the clones of the full network progressively achieve zero training error.
In the same epochs, one observes a small improvement in the test error.

but now as a function of the training epoch. Both Figs. 4 and 5 analyze the WR28-8 on CIFAR10.
As training proceeds, the correlations between residuals diminish gradually until epoch 160 and
become particularly low for chunks greater than 64. After epoch 160 further training does not bring
any sizeable reduction in their correlation. At epoch 160 the full network also achieves zero error
on the training set, as shown in Fig. 5-b (brown) and Fig. 5-c (blue). This event marks the end of
the first phase and the beginning of the second phase where the training error of the clones keeps
decreasing while the full representation (blue) has already reached zero training error. For example,
chunks of size 64 at epoch 150 have training errors comparable to the test error (dashed line of the
middle panel). In the subsequent ∼ 20 epochs the training error of clones of size 128 and 256 reaches
exactly zero, and the training error of chunks of size 64 reaches a plateau.

Importantly, both phases improve the generalization properties of the network. This can be seen in
Fig. 5-c, which reports the training and test error of the network, with the two phases highlighted. The
figure shows that both phases lead to a reduction in the test error, although the first phase leads by far
to the greatest reduction, consistent with the fact that the greatest improvements in accuracy typically
arise during the first epochs of training. The formation of clones can be considered finished around
epoch 180 when all the clones have reached almost zero error on the training set. After epoch 180 we
also observe that the test error stops improving. In the Appendix (Sec. B) we report the same analysis
done on CIFAR100 (see Fig. S1) and CIFAR10 trained on a DenseNet40 (see Fig. S2-(d-e-f)).

Clones appear only in regularized networks. So far in this work, we have shown only examples
of regularized networks and data sets in which representations are redundant. However, if the network
is not regularized, some of the signatures described above don’t appear even if the width of the final
representation is much larger than W ∗ (the minimum interpolating width). Figure 6 shows the case of
the Wide-ResNet28-8 analyzed in Fig. 5 trained on exactly the same data set (CIFAR10) but without
weight decay. As shown in Fig.6-a in the network trained without regularization (blue line) the error
does not scale as w−1/2

c . This, as we have seen, indicates that the last hidden representation cannot
be split in clones equivalent to the full layer. Indeed, the mean correlation of the residuals of the
linear map of the chunks to the full representation remains approximately constant during training
(Fig. 6-b), and is always much higher than what we observed for the same architecture and data set
when training is performed with weight decay. We performed a similar analysis on the DenseNet40
(see Fig. S3), observing an analogous trend.

Clones appear only if a network interpolates the training set: the case of ImageNet. We saw
that a chunk of neurons can be considered a clone if it fully captures the relevant features of the
data, achieving almost zero training error (see Fig. 4). This condition is not satisfied for most of the
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Figure 6: A network trained without weight decay on CIFAR10. a: the test error of chunks
of a Wide-ResNet28-8 trained without weight decay (blue) and with weight decay (orange, taken
from Figure 3-b). b: Mean correlation between residuals of the linear reconstruction of the full
representation from chunks of different sizes for two networks: one trained without weight decay
(thick lines), and one using weight decay (thin lines, same data as in Fig. 5-a).

networks trained on ImageNet [16], therefore we do not expect to see redundant representations in
this important case. We verified this hypothesis by training a family of ResNet50s where we multiply
all the channels of the layers after the input stem by a constant factor c ∈ {0.25, 0.5, 1, 2, 4}. In this
manner the widest final representation we consider consists of 8192 neurons, which is four times
wider than both the standard ResNet50 [29] and its wider version [26] (see Sec. 2.1). We trained
all the networks following the standard protocols and achieved test errors comparable to or slightly
lower than those reported in the literature (see Appendix, Sec. A). We find that even in the case of the
largest ResNet50, the top-1 error on the training set is ∼ 8% (see Fig. 7-a) and the network does not
achieve interpolation, as discussed also in [16].

In this setting, none of the elements associated with the development of independent clones can be
observed. The scaling of the test error of the chunks is steeper than w

−1/2
c (see Fig. 7-b) suggesting

that chunks remain significantly correlated to each other. Figure 7-c shows that the mean correlation
of the residuals does not decrease during training, as it happens for the networks we trained on
CIFAR10 and CIFAR100. We conclude that in a ResNet50, a representation with 8192 neurons is
too narrow to encode all the relevant features redundantly on ImageNet, and a chunk as large as
4096 activations is not able to reconstruct all the relevant variations of the data as it does in the cases
analyzed in Sec. 3.

Figure 7: ResNet50 trained on ImageNet a: ImageNet training error as a function of the ResNet50
width. b: Decay of the test error as a function of the network width (blue) and for chunks of the
widest ResNet50 (orange) to the error of an ensemble of ResNet50-4. The ensemble consists of four
networks. c: Mean correlation (see Sec. 2.2) of the residuals of the linear map of a chunk of the last
hidden representation to the full representation. The network analyzed is ResNet50-4.
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4 Discussion

This work is an attempt to explain the paradoxical observation that over-parameterization boosts
the performance of DNNs. This “paradox” is not a peculiarity of DNNs: if one trains a prediction
model with n parameters using the same training set, but starting from independent initial weights
and receiving samples in an independent way, one can obtain, say, m models which, in suitable
conditions, provide predictions of the same quantity with independent noise due to initialization,
SGD schedule, etc. If one estimates the target quantity by an ensemble average, the statistical error
will (ideally) scale with m−1/2, and therefore with N−1/2, where N = nm is the total number of
parameters of the combined model. This will happen even if N is much larger than the number of
data.

What is less trivial is that a DNN can accomplish this scaling within a single model, in which all
the parameters are optimized collectively via the minimization of a single loss function. Our work
describes a possible mechanism at the basis of this phenomenon in the special case of neural networks
in which the last layer is very wide and the model is regularized. We observe that if the layer is wide
enough, random subsets of its neurons can be viewed as approximately independent representations
of the same data manifold (or clones). This implies a scaling of the error with the width of the layer
as W−1/2, which is qualitatively consistent with our observations.

The impact of network architecture. The capability of a network to produce statistically inde-
pendent clones is a genuine effect of the over-parametrization of the whole network as we find that
redundancies appear even if the last layer width is kept constant and the width of all intermediate
layers is increased (see Appendix, Sec. B, Fig. S4-a, ). At the same time, we also verified that
if the network is too narrow to interpolate the training set, increasing the width of only the final
representation is not sufficient to make the last layer redundant. We give an example of this effect in
Fig. S4-b, where we show that the test error of a WR28-1 on CIFAR10 does not decrease if only the
width of the final representation is increased, while the rest of the architecture is kept at a constant
width.

The impact of training. The mechanism we described is robust to different training objectives
since we trained the convolutional networks with cross-entropy loss and the fully connected networks
with hinge loss. However, even for wide enough architectures, clones appear only if the training is
continued until the training error reaches zero. In our examples, by stopping the training too early,
for example when the training error is similar to the test error, the chunks of the last representation
would not become entirely independent from one another, and therefore they could not be considered
clones.

Neural scaling laws. Capturing the asymptotic performance of neural networks via scaling laws is
an active research area. Hestness et al. [33] gave an experimental analysis of scaling laws w.r.t. the
training data set size in a variety of domains. Rosenfeld et al. and Kaplan et al. [34, 35] experimentally
explored the scaling of the generalization error of deep networks with the number of parameters/data
points across architectures and application domains for supervised learning, while Henighan et al.[36]
identified empirical scaling laws in generative models. Bahri et al. [37] showed the existence of
four scaling regimes and described them theoretically in the NTK or lazy regime [38–40], where the
network weights stay close to their initial values throughout training. None of these works propose a
mechanism that would explain these scalings with properties of the representation. Geiger et al. found
that the generalization error can be related to the fluctuations of the output induced by initialization
and showed that it scales as W−1 in networks trained without weight decay both in the NTK [21]
and in the mean field [41] regimes. We instead consider the feature learning regime and train our
networks with weight decay which is unavoidable to obtain models with state-of-the-art performance.
This might explain the difference in the scaling law that we observe empirically. Previous theoretical
work did not study the impact of weight decay on scaling laws, so we hope that our results can spark
further studies on the role of this essential regularizer.

Relation to theoretical results in the mean-field regime. Our empirical results also agree with
recent theoretical results that were obtained for two-layer neural networks [42–47]. These works
characterize the optimal solutions of two-layer networks trained on synthetic data sets with some
controlled features. In the limit of infinite training data, these optimal solutions correspond to
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networks where neurons in the hidden layer duplicate the key features of the data. These “denoising
solutions” or “distributional fixed points” were found for networks with wide hidden layers [42–45]
and wide input dimension [46, 47]. Another point of connection with the theoretical literature is the
concept of dropout stability. A network is said to be ϵ-dropout stable if its training loss changes by
less than ϵ when half the neurons are removed at random from each of its layers [48]. Dropout stability
has been rigorously linked to several phenomena in neural networks, such as the connectedness of
the minima of their training landscape [49, 50].

Bias-variance trade-off and implicit ensembling The success of various deep learning archi-
tectures and techniques has been linked to some form of ensembling. The successful dropout
regularisation technique [51, 52] samples from an exponential number of “thinned” networks during
training to prevent co-adaptation of hidden units. While this can be seen as a form of (implicit)
ensembling, here we observe that co-adaptation of hidden units in the form of clones occurs without
dropout, and is crucial for their improving performance with width. Recent theoretical work on
random features showed that ensembling and over-parameterization are two sides of the same coin
and that both mitigate the increase in the variance of the network that classically leads to worse
performance with over-parameterization due to the bias-variance trade-off [18–20]. The plots of bias
and variance in Fig. S5 for the architectures trained on the CIFAR10 and CIFAR100 data sets show
that the clone size in these cases is slightly above the peak of the variance and almost coincides with
the interpolation width of the full networks of the same size.

Impact for applications. The framework introduced in this work allows verifying if a neural network
is sufficiently expressive to encode multiple statistically independent representations of the same
ground truth, which, we believe, is a fair proxy of model quality and robustness. In particular, we find
that reaching interpolation on the training set is not necessarily detrimental for generalization, and is
instead a necessary condition for developing redundancies which, in turn, reduces the test error.
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