
Multivariate Time-Series Forecasting with Temporal
Polynomial Graph Neural Networks

Yijing Liu1, Qinxian Liu1, Jian-Wei Zhang1
Haozhe Feng1, Zhongwei Wang1, Zihan Zhou1, Wei Chen1∗
1 State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China

{3150105531,22021050,zjw.cs,fenghz,wzw09,12121109,chenvis}@zju.edu.cn

Abstract

Modeling multivariate time series (MTS) is critical in modern intelligent systems.
The accurate forecast of MTS data is still challenging due to the complicated latent
variable correlation. Recent works apply the Graph Neural Networks (GNNs) to the
task, with the basic idea of representing the correlation as a static graph. However,
predicting with a static graph causes significant bias because the correlation is
time-varying in the real-world MTS data. Besides, there is no gap analysis between
the actual correlation and the learned one in their works to validate the effectiveness.
This paper proposes a temporal polynomial graph neural network (TPGNN) for
accurate MTS forecasting, which represents the dynamic variable correlation as a
temporal matrix polynomial in two steps. First, we capture the overall correlation
with a static matrix basis. Then, we use a set of time-varying coefficients and the
matrix basis to construct a matrix polynomial for each time step. The constructed
result empirically captures the precise dynamic correlation of six synthetic MTS
datasets generated by a non-repeating random walk model. Moreover, the the-
oretical analysis shows that TPGNN can achieve perfect approximation under a
commutative condition. We conduct extensive experiments on two traffic datasets
with prior structure and four benchmark datasets. The results indicate that TPGNN
achieves the state-of-the-art on both short-term and long-term MTS forecastings. 1

1 Introduction

The wide deployment of sensors in modern societies records tremendous time-series data, which
boosts the application of energy dispatch, traffic control, etc. Commonly, there are numerous
distributed sensors in a monitoring system, e.g., the temperature control system of a computing center.
Univariate time-series data recorded by these sensors formulate the multivariate time-series (MTS)
data. Forecasting over MTS data has been widely studied [4, 21, 41] in recent years, as it provides
essential information for strategy formulation and resource schedule [30, 52].

One basic premise of modeling the MTS data is that the variables interact with each other, which is
fulfilled in most cases. Therefore, capturing the variable correlation is essential for MTS forecasting.
Previous deep-learning-based works like FC-LSTM [36] and TPA-LSTM [34] model the correlation
with an implicit recurrent process, which is inefficient in prediction and hard to optimize. The
development of graph neural networks (GNNs) [17] brings an innovative way to capture the variable
dependence. Recent works [12, 25, 44] regard the MTS data as a series of graph signals and process
them with GNNs, where the nodes are variables and the edge weight quantifies the dependence.
Although GNNs-based methods achieve promising efficiency and accuracy in MTS forecasting,

∗Corresponding author.
1Code is available at https://github.com/zyplanet/TPGNN.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/zyplanet/TPGNN

(a) Morning correlation (b) Noon correlation (c) Evening correlation

(d) Ground truth and prediction error along the timeline

Figure 1: The sensor correlation and model prediction error in 24 hours. In (a)-(c), we apply the
Pearson correlation coefficient to derive the sensor correlation of different periods, the results show
time-varying patterns. We present the prediction error of three static-graph-based models in (d), the
errors have steep increases between two periods, we mark them with red rectangles.

there are two notable challenges to the current approaches. 1) The MTS data have no prior variable
dependence, which is required for determining the edge weight in graph construction. The existent
methods compute the weight according to the physical distance among sensors [23, 35, 44] or utilize
parameter matrices to learn the weight from MTS data [27, 41, 42]. As a result, the edge weights
are constant in their methods. However, according to the observations from the real-world dataset,
the variable dependence changes with time. Therefore, using static-weight graphs in prediction
causes significant bias. Figure 1 illustrates the first challenge with a traffic dataset (PEMS-D7).
It demonstrates that the correlation has distinct patterns in different periods. Besides, three static-
graph-based methods [41, 42, 44] show error increases between two consecutive periods, which is
caused by dependence variation. 2) Many researchers point out a gap between the actual variable
dependence and the constructed correlation [25, 42, 49], i.e., the edge weight does not accurately
describe the variable correlation. Although they propose various methods to bridge the gap, there is
no theoretical/empirical analysis of the gap. Therefore, the method’s effectiveness is still unknown.

To address the above two challenges, we propose Temporal Polynomial Graph Neural Network
(TPGNN), a novel GNNs-based forecasting model for MTS data. TPGNN has an encoder-decoder
structure, we encode historical MTS data with a novel GNN module and make predictions by decoding
the encoded results auto-regressively. The core of TPGNN is a temporal polynomial graph (TPG)
module that learns the dynamic variable dependence end-to-end. The main idea is to represent the
correlation as a time-varying matrix polynomial. Firstly, we define an adjacency matrix basis A
to capture the overall dependence for each variable pair. Then, we use a matrix polynomial of A
to represent the correlation of each time step, where the coefficients are determined by time. To
generate coefficients for MTS data of arbitrary length, we propose to use a set of cyclic timestamp
embedding to index the time step. As a result, TPGNN captures the dynamic correlation with a
temporal matrix polynomial, which solves the first challenge effectively. For the second challenge,
we analyze the approximation error of the TPG module and provide a theoretical bound on the error.
Furthermore, we evaluate the existent dependence learning methods on six synthetic MTS datasets
with ground-truth variable dependence. The main contributions of the work are as follows:

• We propose a novel dependence learning module to capture MTS data’s dynamic correlation,
which represents the variable dependence as a temporal matrix polynomial. The resultant
model achieves state-of-the-art forecasting performance on 5 of 6 benchmark datasets with
significant improvements.

• We investigate the dependence approximation gap on six synthetic datasets with different
levels of dependence complexity. On average, the proposed TPGNN outperforms the best
baseline by 23.41% on the approximation error. A theoretical result further demonstrates
the dependence learning ability of TPGNN.

2

2 Related Works

MTS Forecasting There are two main categories of methods for MTS forecasting: implicit-
dependence approaches and structural-dependence approaches. One representative method of the
first category is LSTNet [20], it captures the variable dependence with convolution over variables.
The structural-dependence approaches represent the variable correlation as explicit graphs and pre-
dict with GNNs. Graph Wavenet [42] (GWN) attempts to learn the variable correlation with static
node representations and captures the temporal pattern with convolution neural networks (CNNs).
MTGNN [41] follows the idea of GWN to learn variable correlation statically and proposes a new
graph convolution module for MTS forecasting. Although works like GMAN [50], SLC [49], and
StemGNN [4] model a dynamic correlation among variables with self-attention, the learned graph is
sensitive to the input, causing a significant forecasting variance. Our construction is based on a set of
time-variant coefficients, the result is independent of the input and robust in forecasting. Some works
that focus on learning time-varying graph structure [26, 33, 45]. However, these graph structures are
not captured from the forecast task directly. They thus cause bias and increase the computation cost.
There are some transformer-based works [43, 46, 48], but their methods do not thoroughly discuss the
dynamic-dependence issues.

GNNs and Polynomial Graph Filters (PGFs) GNNs are based on the message-passing mechanism.
One representative work is GraphSAGE [14], which learns a sample-aggregation function to generate
the node embedding. Michael et al. [6] generalize the convolutional neural networks (CNNs) to the
graph structure. Many filters of GNNs belong to PGFs, and Gama et al. [11] discussed the connections.
In order to incorporate the node feature of high-order neighbors, many works introduce PGFs to their
methods. APPNP [18] and SGC [40] adopt fixed-weight PGFs and use hyperparameters to define
the coefficients. However, the constructed fixed-weight PGFs are biased because the coefficients
are task-irrelevant. GPR-GNN [5] constructs a PGF from the graph dataset, where the coefficients
are learnable. Besides, there are also some PGFs-based methods for MTS data learning [13, 15, 16].
Although these works are competitive in capturing graph structure, they fail in learning the dynamic
correlation, we illustrate the point in Section 5.4. Moreover, the missing/noisy/incomplete adjacency
matrix causes difficulties in applying these methods. Our approach introduces a self-adaptive graph
to the PGFs construction, which improves the dependence capturing ability and the model versatility.

3 The Framework of TPGNN

Figure 2: Overview of the proposed TPGNN. (1) The TPG module generates a set of coefficients
according to the time steps. (2) We define a matrix polynomial with the coefficients to capture the
dependence. (3) TPGNN has an encoder-decoder structure and predicts in an auto-regressive manner.

In this section, we first define the MTS forecasting task in the context of graph signal processing. We
then introduce the TPG module and illustrate the inference pipeline of our framework.

3

3.1 Problem Defintion

At time step t, the MTS data is a signal set G(t) = {V, E(t),X(t),W(t)}. The node set V (|V| = N)
contains N variables of MTS data, E(t) is the edge set, X(t) ∈ RN×1 records the signal of N
variables, and W(t) ∈ RN×N is a weighted adjacency matrix. If variables i and j are dependent,
then an edge connects the two nodes, and entry W

(t)
ij indicates their correlation. Otherwise, W

(t)
ij

equals to zero. Given T observations of the signal sets, our problem is to find a function F that can
forecast the variable state of the subsequent T ′ signals:

(G(t),G(t+1), . . . ,G(t+T−1)) F−→ X(t+T),X(t+T+1), . . . ,X(t+T+T ′−1). (1)

The setting regards the graph structure as a latent feature of MTS data, and the forecast target is the
same as the standard setting. Prevailing works [25, 41, 42] regard W(t) as a time-invariant matrix,
while in our work, W(t) changes with the time.

3.2 Represent the Correlation as a Temporal Matrix Polynomial

To capture E and Wt for MTS data, we construct a series of matrix polynomials that share a matrix
basis. The TPG module controls the influence of each polynomial term temporally with a set of
adaptive coefficients. As a result, we can approximate a wide range of dynamic graph structures.

Counstructing the adjacency matrix basis. We firstly define an initial adjacency matrix A ∈
RN×N following the self-adaptive graph proposed by Wu et al. [42]. They learn variable embeddings
E ∈ RN×c (c is the embedding dimension) from MTS data and define the variable dependence with
embedding similarity. Besides, they further remove weak connections with ReLU(·) and normalize
the result with SoftMax(·).

A = SoftMax(ReLU(EET)) (2)

For MTS data that have a prior structure, e.g., the physical distance among sensors, we denote the
corresponding adjacency matrix as W ∈ RN×N . To incorporate W into the encoding process, we
first calculate its symmetric normalized Laplacian [17] L = D−

1
2 (I + W)D−

1
2 (I is the identity

matrix and D is the degree matrix), then combine the two results to define the initial adjacency matrix:

A = SoftMax(ReLU(EET)) + L (3)

Generating the temporal polynomial coefficients. At time step t, we represent the variable depen-
dence as a K-order matrix polynomial of A:

W(t) = ΣKk=0a
(t)
k Ak (4)

Due to the polynomial coefficients being time-variant, W(t) shows dynamic behavior. However,
learning coefficients for every time step is impractical because the sequence length grows infinitely.
Fortunately, the periodicity property is common in MTS data [8, 29]. Therefore, we propose to
use a set of cyclic timestamp embeddings to index the time step. Firstly, we define Tp timestamp
embeddings (e

(1)
ts , . . . , e

(Tp)
ts) ∈ RDe , where Tp is the cycle and De is the embedding dimension.

Following a cyclic order, we then assign the (t%Tp)-th embedding to time step t, where % is the
remainder operator. Finally, we generate the coefficients for time step t by the e

(t%Tp)
ts . As shown

in Figure 2 (1), Given T historical graph signals start from time step t, we calculate the coefficients
a ∈ RK+1 for each graph signal with a coefficient matrix Wc ∈ RDe×(K+1).

(a(t), . . . ,a(t+T−1)) = (e
(t%Tp)
ts , . . . , e

(t+T−1%Tp)
ts)Wc (5)

According to Equation 4, each a(t) defines a K-order matrix polynomial of A, representing variable
dependence of time step t. Instead of predicting with T different matrix polynomials, we use
an average result to improve the prediction efficiency and robustness. Due to the linearity of the
polynomial, the average polynomial is equivalent to the polynomial with average coefficients. We
calculate the final coefficients ā with another parameter matrix Wa ∈ RT×1 (average matrix).

ā = (ā0, ā1, . . . , āK) = (a(t), . . . ,a(t+T−1))Wa (6)

4

In Figure 2 (2), we illusrate the TPG module’s propagation process with ā. Let X ∈ RN×De denote
the matrix signal embedding, Wk ∈ RDe×De , k = 0, . . . ,K denote the model parameter matrices,
|| · ||F denote the Frobenius norm of matrix, we derive the hidden feature Z(t) ∈ RN×De as follows:

Z(t) = ΣKk=0ākA
kX(t) Wk

||Wk||F
(7)

TPG module follows the diffusion graph convolution layer [23] to introduce (K + 1) parameter
matrices for enhancing representation diversity. Besides, we decouple the parameter matrix norm and
coefficient by normalizing Wk with a factor of 1

||Wk||F , since Wk with a large norm increases the
k-th term’s contribution. As a result, ā completely controls the contribution of each term.

3.3 Inference Pipeline

In Figure 2 (3), TPGNN has an encoder-decoder structure. First, we derive the historical data
embedding with a linear transformation, then feed the results into the encoder. The encoder generates
data encoding Z(t:t+T−1) ∈ RT×N×De for time step t to t + T − 1 with the TPG module and
temporal attention layer. The temporal attention layer follows the design of Transformer [37], which
uses self-attention to capture intra-series patterns for each variable. Finally, the decoder forecasts with
the data encoding and temporal attention layer. For the first prediction of time step t+ T , the decoder
queries the data encoding with a learnable beginning of sentence (BOS) token EBOS ∈ RN×De . The
query result represents the first prediction, denoted as E

(t+T)
X ∈ RN×De . We use a prediction matrix

Wpred ∈ RDe×1 to get the forecasting result X̃(t+T) ∈ RN×1.

E
(t+T)
X = Decoder(EBOS,Z

(t:t+T−1)),

X̃(t+T) =E
(t+T)
X Wpred,

(8)

After generating the subsequent k query results (E
(t+T)
X , . . . ,E

(t+T+k−1)
X), the decoder derives the

(k + 1)-th result E
(t+T+k)
X by querying Z(t:t+T−1) with the latest Lmax query results. The forecast

basically follows an auto-regressive (AR) mechanism, where Lmax is the maximum query length.

E
(t+T+k)
X = Decoder((E

(t+T+k−Lmax)
X , . . . ,E

(t+T+k−1)
X),Z),

X̃(t+T+k) =E
(t+T+k)
X Wpred.

(9)

The above process continues until getting the subsequent T ′ forecasts, such AR mechanism helps
TPGNN to capture long-term intra-series dependence with informative context.

4 Theoretical Properties of TPGNN

To explore the dependence learning capability of TPGNN, we focus on analyzing the theoretical gap
between the optimal graph structure and the TPG module’s approximation in this section.

TPGNN is able to achieve perfect approximation. Unlike the real function, the approximation of
graph structure largely depends on the topology property of the target graph, where the lower bound
of the approximation error is nonzero in many cases. However, TPGNN mitigates the gap for a wide
range of dynamic graph structures with a small group of parameters, which leads to a robust and
accurate forecasting result. The approximation capability of TPGNN is concluded as the following
result, we show the detailed statement and proofs in Appendix A.9 due to the space limitation.

Theorem 1. Let G(1), . . . ,G(T) ∈ RN×N be the symmetric normalized Laplacian of the optimal
graph structure for time step 1 to T , A ∈ RN×N is the initial adjacency matrix of TPGNN. We
model these Laplacians with Equation 4, and the corresponding approximation error e(1:T) =
1
T ΣTt=1||W(t) −G(t)||2F , where the || · ||F is the Frobenius norm of the matrix. Suppose all the
matrices are symmetric (undirected graph), GiGj = GjGi,∀i, j, A has N different singular values,
and the polynomial’s order is large enough. Then we have the following estimation for e(1:T).

(1− λmax)Et||G(t)||2F ≤ e(1:T) ≤ (1− λmin)Et||G(t)||2F , (10)

5

where Et||G(t)||2F = 1
T ΣTt=1||G(t)||2F is the average norm of the Laplacians, λmin, λmax ∈ [0, 1]

are the minimum and maximum eigenvalues of a constant matrix. If A is commutative with G(t),
then λmax = λmin = 1, i.e., we achieve a uniform perfect approximation. Although the zero error
depends on the commutative condition, A is learnable with Equation 2, which relaxes the restriction.
Moreover, TPGNN empirically achieves the best approximation compared with other methods.

5 Experiments

Table 1: Dataset statistics.
Datasets # Samples # Nodes Sample Rate Input Length Output Length
Traffic 17,544 862 1 hour 168 1

Solar-Energy 52,560 137 10 minutes 168 1
Electricity 26304 321 1 hour 168 1

Exchange-Rate 7,588 8 1 day 168 1
PEMS-D7 12672 228 5 minutes 12 12
PEMS-Bay 52116 325 5 minutes 12 12

5.1 Experimental Setup

We validate the performance of TPGNN on two tasks: single-step and multi-step MTS forecasting. In
Table 1, we present the statistics of six benchmark datasets. The first four benchmark datasets [2, 19]
aim to predict a single future step; the last two datasets [23,44] record a distance matrix among sensors,
where the goal is to forecast multiple future steps. More details about the datasets are given in the
AppendixA.3. For single-step prediction, the baselines are VAR-MLP [47], GP [31], RNN-GRU [41],
LSTNet [20], TPA-LSTM [34], and MTGNN [41]. MTGNN firstly introduces GNNs to general
MTS data and achieves state-of-the-art (SOTA) performance; other baselines are representative

Table 2: We forecast 3, 6, 12, and 24 horizons for the first four real-world datasets, and models
with high CORR and low RSE are preferred. TPGNN outperforms other models on three of the first
four datasets. For the remaining two datasets, we predict the next 15, 30, and 60 minutes based on
one-hour observation, and the three metrics represent the prediction error. The results show that
TPGNN achieves state-of-the-art performance on both short-term and long-term predictions.

Dataset Solar-Energy Traffi Electricity Exchange-Rate
Horizon Horizon Horizon Horizon

Methods Metric 3 6 12 24 3 6 12 24 3 6 12 24 3 6 12 24
VARMLP RSE 0.1922 0.2679 0.4244 0.6841 0.5582 0.6579 0.6023 0.6146 0.1392 0.1620 0.1557 0.1274 0.0265 0.0394 0.0407 0.0578
VARMLP CORR 0.9829 0.9655 0.9058 0.7149 0.8245 0.7695 0.7929 0.7891 0.8708 0.8389 0.8192 0.8679 0.8609 0.8725 0.8280 0.7675

GP RSE 0.2259 0.3286 0.5200 0.7973 0.6082 0.6772 0.6406 0.5995 0.1500 0.1907 0.1621 0.1273 0.0239 0.0272 0.0394 0.0580
GP CORR 0.9751 0.9448 0.8518 0.5971 0.7831 0.7406 0.7671 0.7909 0.8670 0.8334 0.8394 0.8818 0.8713 0.8193 0.8484 0.8278

RNN-GRU RSE 0.1932 0.2628 0.4163 0.4852 0.5358 0.5522 0.5562 0.5633 0.1102 0.1144 0.1183 0.1295 0.0192 0.0264 0.0408 0.0626
RNN-GRU CORR 0.9823 0.9675 0.9150 0.8823 0.8511 0.8405 0.8345 0.8300 0.8597 0.8623 0.8472 0.8651 0.9786 0.9712 0.9513 0.9223

LSTNet RSE 0.1843 0.2559 0.3254 0.4643 0.4777 0.4893 0.4950 0.4973 0.0864 0.0931 0.1007 0.1007 0.0226 0.0280 0.0356 0.0449
LSTNet CORR 0.9843 0.9690 0.9467 0.8870 0.8721 0.8690 0.8614 0.8588 0.9283 0.9135 0.9077 0.9119 0.9735 0.9658 0.9511 0.9354

TPA-LSTM RSE 0.1803 0.2347 0.3234 0.4389 0.4487 0.4658 0.4641 0.4765 0.0823 0.0916 0.0964 0.1006 0.0174 0.0241 0.0341 0.0444
TPA-LSTM CORR 0.9850 0.9742 0.9487 0.9081 0.8812 0.8717 0.8717 0.8629 0.9439 0.9337 0.9250 0.9133 0.9790 0.9709 0.9564 0.9381

MTGNN RSE 0.1778 0.2348 0.3109 0.4270 0.4162 0.4754 0.4461 0.4535 0.0745 0.0878 0.0916 0.0953 0.0194 0.0259 0.0349 0.0456
MTGNN CORR 0.9852 0.9726 0.9509 0.9031 0.8963 0.8667 0.8794 0.8810 0.9474 0.9316 0.9278 0.9234 0.9786 0.9708 0.9551 0.9372
TPGNN RSE 0.1850 0.2412 0.3059 0.3498 0.3989 0.4715 0.4476 0.4696 0.0627 0.0685 0.0699 0.0936 0.0174 0.0250 0.0350 0.0458
TPGNN CORR 0.9840 0.9716 0.9529 0.9710 0.9232 0.8945 0.9028 0.8858 0.9417 0.9362 0.9285 0.9293 0.9792 0.9687 0.9509 0.9306

Model
PEMS-BAY (Horizon 3/6/12) PEMS-D7 (Horizon 3/6/12)

MAE MAPE(%) RMSE MAE MAPE(%) RMSE

ARIMA 1.62/2.33/3.38 3.50/5.40/8.30 3.30/4.76/6.50 5.55/5.86/6.27 12.92/13.94/15.20 9.00/9.13/9.38
FC-LSTM 2.05/2.20/2.37 4.80/5.20/5.70 4.19/4.55/4.96 3.57/3.92/4.16 8.60/9.55/10.10 6.20/7.03/7.51
STGCN 1.39/1.84/2.42 3.00/4.22/5.58 2.92/4.12/5.33 2.25/3.03/4.02 5.26/7.33/9.85 4.04/5.70/7.64
DCRNN 1.38/1.74/2.07 2.90/3.90/4.90 2.95/3.97/4.74 2.25/2.98/3.83 5.30/7.39/9.85 4.04/5.58/7.19

StemGNN 1.52/1.94/2.45 3.38/4.58/6.03 3.06/4.07/5.04 2.94/3.66/4.66 7.63/9.66/12.58 5.05/6.35/8.00
Graph WaveNet 1.30/1.63/1.95 2.73/3.67/4.63 2.74/3.70/4.52 2.18/2.95/3.88 5.02/7.22/10.03 4.18/5.82/7.61

Informer 2.30/2.40/2.55 5.02/5.32/5.73 4.21/4.49/4.85 3.64/3.77/4.09 8.66/9.07/9.87 6.02/6.34/6.85
MTGNN 1.32/1.65/1.94 2.77/3.69/4.53 2.79/3.74/4.49 2.17/2.89/4.02 5.03/6.93/9.93 4.01/5.84/8.78
TPGNN 1.26/1.65/2.05 2.56/3.47/4.40 2.64/3.65/4.58 2.12/2.72/3.22 5.00/6.73/8.22 4.05/5.45/6.56

6

non-GNNs-based methods. For multi-step prediction, the baselines are ARIMA [23],FC-LSTM [36],
DCRNN [22], STGCN [44], StemGNN [4], Graph WaveNet, Informer [51], and MTGNN; all the
baselines are GNN-based except ARIMA, FC-LSTM and Informer. These GNNs-based baselines
are representative methods for MTS data with a prior structure. Besides, the Informer is a novel
Transformer-based model that achieves SOTA performance on long-term forecasting. We list the
paramter scale of each model in Appendix A.4 to show our method is light-weight. We use five
evaluation metrics [41]: Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE),
Root Mean Squared Error (RMSE), Root Relative Squared Error (RRSE), and Empirical Correlation
Coefficient (CORR). For CORR, higher values are better. For the other metrics, lower values are better.
We tune the hyperparameters on the validation dataset, the results are presented in the Appendix A.7.
We divide the dataset into three parts for training, validation, and testing with a ratio of 7:1:2. More
details about the baselines, metrics, and experiment settings are in Appendix A.4A.5A.6.

5.2 Main Results

Table 2 summarizes the experimental results of TPGNN. Generally, TPGNN achieves the state-
of-the-art on most of the datasets. Our framework has an on-par performance for the single-step
forecasting task with the SOTA methods like MTGNN and TPA-LSTM. Moreover, TPGNN makes a
significant improvement on Traffic and Electricity datasets. On the Solar-Energy, TPGNN lowers
RSE by 1.61%, 18.08% and increases CORR by 1.47%, 6.93% over the horizons of 12, 24. Our
method improves the CORR by 2.21% on average over the four horizons of the Traffic. Moreover,
we lower the RSE by 15.82% on average over the four horizons of Electricity. Our method fails to
achieve SOTA performance on the exchange-rate data. We think the main reason is the small sample
size, which causes difficulties in capturing the dynamic variable dependence. The second row of
Table 2 concludes the results of the multi-step forecasting task, which demonstrates that TPGNN
achieves SOTA performance on the two datasets with prior structure. On the PEMS-BAY, TPGNN
lowers the MAPE by 5.47% on average over the three horizons. Besides, The RMSE is reduced by
4.30%, 2.41% over the horizons of 3 and 6. TPGNN reduces the MAE/MAPE by 8.04%/6.61% on
average over the three horizons on the PEMS-D7 dataset. The RMSE is lowered by 2.33%, 4.23%
over the horizon of 6 and 12. Although the prior structure is provided to each baseline, the results on
the last two traffic datasets demonstrate that TPGNN can capture more precise variable dependence
and intra-series patterns than other GNNs-based methods.

5.3 Ablation Experiments

Table 3: Long-term prediction results for ablation study on the PEMS-D7 dataset.
Metrics TPGNN w/o TPG w/o dynamic w/o overview w/o normalize w/o K-matrices
MAE 3.215±0.014 3.701±0.021 3.480±0.047 3.330±0.031 3.261±0.035 3.294±0.036

MAPE(%) 8.221±0.035 9.553±0.106 8.873±0.014 8.539±0.118 8.347±0.061 8.406±0.245
RMSE 6.559±0.023 7.473±0.033 6.989±0.084 6.806±0.098 6.671±0.033 6.701±0.065

The PEMS-D7 includes a prior structure and has complex inter-series and intra-series dependence,
we conduct ablation experiments on the PEMS-D7 to evaluate the effectiveness of each design in
our method. Due to the importance and complexity of the long-term prediction, we set the horizon
as 12. More results of other horizons can be found in Appendix A.8. There are five experiments in
total, we repeat each experiment 5 times and report the average and standard deviation (std). w/o
TPG: TPGNN without the TPG module. We replace the graph constructed by TPG with the prior
structure of PEMS-D7. w/o dynamic: TPGNN without the time-varying coefficients. We adopt
a set of learnable static coefficients to construct the graph. w/o overview: TPGNN does not use
average coefficients in Equation 6. We predict with T graphs defined by Equation 5. w/o normalize:
TPGNN without the normalization factor in Equation 7. w/o K-matrices: TPGNN without multiple
parameter matrices in Equation 7. We use an identical normalized matrix to derive the hidden feature.
Table 3 summarizes the experimental results, which indicates that all the designs are indispensable.
The result of w/o TPG illustrates the TPG module’s critical contribution to our method. Although
we replace the graph constructed by the TPG module with the prior structure given by PEMS-D7,
the performance has a steep decline by 13.13%, 13.94%, 12.23% on the three metrics. w/o dynamic
follows the strategy of GPR-GNN [5] that uses static coefficients to capture graph structure from
data. However, the results indicate the importance of introducing time-variant coefficients, which

7

(a) The approximation and prediction error of different methods.

(b) The approximation error under the different settings of K.

Figure 3: The approximation error and prediction error of different graph approximation methods.
(a) compares TPGNN with other baselines, the results indicate TPGNN significantly reduces the
approximation error and achieves the highest prediction accuracy. (b) investigates the effect of
polynomial order to the dependence approximation error. The high-order polynomials impairs the
precision and robustness of the dependence learning.

significantly improve the long-term prediction accuracy by 7.04% on average. w/o overview and
w/o K-matrices show large variance compared with other results, indicating the two modules are
essential for improving model robustness. Besides, the w/o overview’s performance is close to the
w/o dynamic, demonstrating the necessity of using the average coefficients. w/o normalize has
comparable performance to the TPGNN, possibly due to the weight decay causing similar norms.
Nevertheless, it demonstrates that the normalization helps TPGNN capture the variable dependence.

Table 4: Average results on six synthetic datasets configured with different Nw.
Method TPGNN Graph Wavenet MTGNN GPR-GNN Self-attention

MFE 0.1266±7.057×10−3 0.2397±3.476×10−4 0.4098±1.981×10−3 0.2721±7.060×10−3 0.1653±1.469×10−6

MAE 0.01015±1.442×10−5 0.01049±10.30×10−5 0.05669±40.29×10−5 0.03008±1.638×10−5 0.01026±1.289×10−5

RMSE 0.01568±1.986×10−5 0.01632±2.276×10−4 0.1114±1.344×10−3 0.05561±3.537×10−5 0.01593±2.051×10−5

5.4 Study of the Graph Structure Approximation Gap

Synthetic data. To investigate the empirical gap between the optimal graph structure and the
approximation result, we propose to generate MTS data with ground-truth dynamic dependence
using a non-repeating random walk (NRW) model [7], which is widely adopted in time-series data
generation [1, 32]. At time step t, we synthesize the matrix signal X(t) ∈ RN×1 with a dynamic
weighted adjacency matrix W(t) by X(t) = N (W(t−1)X(t−1), σ), where N (·, ·) is the normal
distribution, σ ∈ R controls the variance, and X(0) is sampled from a discrete uniform distribution.
We define W(t) by traversing Nw constant matrices (G(1), . . . ,G(Nw)) in a cyclic order, where each
G(i) is a Laplacian of sparsified random adjacency matrix. Given a period of Tp, Tp ≥ Nw, we
partition the period into Nw even intervals of length Ts, and each interval shares one of the matrices,
i.e., W(t) = G([(t%Tp)/Ts]), where [·] is the rounding function. We point out that Nw controls the
complexity of dynamic dependence, andNw = 1 corresponds to a static-dependence case. To increase
the data diversity, we randomly initialize the X(t) for every Tp step. We set Tp = 120, σ = 0.001
in our evaluation and generate six MTS data of length 2400 with Nw = 1, . . . , 6. Besides, each

8

93

218

60

(a) The physical locations of nodes 218, 93, and 60. (b) The dynamic dependence learned by TPGNN of (93, 218) and (60, 218).

Figure 4: Three nodes are highly correlated in the TPG’s learned result but independent in the prior
structure. We find they are on the same road and have different dynamic correlation trends.

synthetic dataset is divided into three parts for training, validation, and testing with a ratio of 7:1:2.
More details about the synthetic algorithm, configuration, and synthetic results are in Appendix A.3.

Predicting with different graph approximation methods. We evaluate the dependence capturing
ability of different methods on the six synthetic datasets, where the task is the next-step prediction
based on current variable states. Suppose that W̃(t) ∈ RN×N , t = 0, . . . , T − 1 is the learned
adjacency matrix series, we measure the approximation gap with a Mean Frobenius Error (MFE)
metric, defined by MFE = 1

TN2 ΣT−1t=0 ||Wt − W̃(t)||F . Besides, we use MAE/RMSE to measure
the forecasting accuracy. The baselines are Graph Wavenet (GWN), MTGNN, GPR-GNN, and
Self-attention. The first three methods are static-dependence-based. Self-attention constructs a
dynamic graph, which is adopted in many works like GMAN [50] and StemGNN [4]. We follow
the implementation of StemGNN to learn the graph structure with a GRU module and self-attention
operator in the evaluation. The polynomial order K is fixed as 2 in the evaluation, we repeat each
experiment 5 times and report the average/std, more details about the settings are in Appenedix A.6.
The main results are summarized in Figure 3 (a) and Table 4, demonstrating that TPGNN outperforms
other baselines on the six synthetic datasets. In Table 4, TPGNN reduces the graph approximation
error by 23.41% on average over the six datasets. The first chart of Figure 3 (a) also illustrates the
improvement, we consistently achieve the best approximation under different Nw. Moreover, the
MFE of TPGNN has a descending trend with the increase of Nw while other methods’ approximation
errors are increasing. We think the TPG module overfits on datasets with small Nw, since their
behavior tends to have static dependence. TPGNN achieves the lowest prediction error on average,
the improvement in the accuracy is slight compared with MFE because the task is a simple next-step
prediction. Furthermore, we observe that the ranking on MFE is identical to the MAE/RMSE, which
demonstrates the importance of capturing precise variable dependence for MTS forecasting.

The effect of polynomial order. We further investigate the relation between approximation error
and the polynomial order K, where the K ranges from 1 to 4, and K = 1 corresponds to a linear
approximation. The first two charts of Figure 3 (b) present the average MFE and corresponding
std, respectively. The results show that the approximation variance increases significantly with K,
especially when K = 4. Moreover, TPGNN-K4 has a large MFE on the six datasets compared with
other configurations. Therefore, we think a high-order matrix polynomial impairs both the precision
and robustness of the dependence capturing ability of TPGNN. We point out that the observation is
non-trivial since GPR-GNN achieves good results with a large K (K ≥ 10) on normal graph datasets,
possibly due to the difference between MTS forecasting and node classification. The third chart
shows the prediction error, it also validates that model with low MFE has a low prediction error.

Case study on the real-world dataset. Due to the absence of ground-truth dependence, we illustrate
the correlation modeling ability of TPGNN on real-world datasets with an example of PEMS-D7. We
find three highly correlated nodes in the learned result but independent in the prior structure, where
the node IDs are 60, 93, and 218. In Figure 4 (a), we mark the physical location of the three nodes
according to PEMS [3]. The three nodes are on the same road, which illustrates that TPGNN can learn
reliable dependence from data. In Figure 4 (b), we show the learned correlation of pairs (60, 218) and
(93, 218). We observe that (93, 218) has a stable dependence and (60, 218)’s correlation increases in
the evening, the difference possibly caused by the branch road between 218 and 60.

9

6 Conclusion

We proposes a novel GNNs-based method for MTS forecasting, TPGNN, which represents the vari-
able dependence as a temporal polynomial matrix. The results on six real-world datasets illustrate the
outstanding forecasting performance of TPGNN. Besides, extensive experiments on synthetic datasets
demonstrate that our method achieves the best dependence approximation than other baselines.

Limitations and future works Although TPGNN achieves outstanding performance on MTS
forecasting and dependence capturing, our methods have limitations. First, the dependence captured
by TPGNN is not a strict causal structure. Therefore, some correlations are unreliable and decrease
the model’s robustness. Second, MTS forecasting in the real world is affected by rare events like
weather disasters, which may significantly impair prediction accuracy. The future works focus on
causal learning and transfer learning [9, 24, 28, 38] on MTS data to solve the above limitations.

7 Acknowledgment

The work of the authors was supported by the National Natural Science Foundation of China (No.
62132017).

References
[1] ADHIKARI, R., AND AGRAWAL, R. K. A combination of artificial neural network and random

walk models for financial time series forecasting. Neural Computing and Applications 24
(2013), 1441–1449.

[2] ASUNCION, A., AND NEWMAN, D. J. Uci machine learning repository. [EB/OL], 2007.
http://www.ics.uci.edu/~mlearn/MLRepository.html.

[3] CA.GOV. Pems. [EB/OL], 2010. https://pems.dot.ca.gov/.
[4] CAO, D., WANG, Y., DUAN, J., ZHANG, C., ZHU, X., HUANG, C., TONG, Y., XU, B.,

BAI, J., TONG, J., ET AL. Spectral temporal graph neural network for multivariate time-series
forecasting. arXiv preprint arXiv:2103.07719 (2021).

[5] CHIEN, E., PENG, J., LI, P., AND MILENKOVIC, O. Adaptive universal generalized pagerank
graph neural network. arXiv: Learning (2021).

[6] DEFFERRARD, M., BRESSON, X., AND VANDERGHEYNST, P. Convolutional neural networks
on graphs with fast localized spectral filtering. In NIPS (2016).

[7] DENTON, A. M. Kernel-density-based clustering of time series subsequences using a continuous
random-walk noise model. Fifth IEEE International Conference on Data Mining (ICDM’05)
(2005), 8 pp.–.

[8] DLOTKO, P., QIU, W., AND RUDKIN, S. Cyclicality, periodicity and the topology of time
series. ArXiv abs/1905.12118 (2019).

[9] FENG, H., YOU, Z., CHEN, M., ZHANG, T., ZHU, M., WU, F., WU, C., AND CHEN, W.
KD3A: unsupervised multi-source decentralized domain adaptation via knowledge distillation.
In Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event (2021), M. Meila and T. Zhang, Eds., vol. 139 of Proceedings of
Machine Learning Research, PMLR, pp. 3274–3283.

[10] FRIGOLA, R. Bayesian time series learning with Gaussian processes. PhD thesis, University
of Cambridge, 2015.

[11] GAMA, F., ISUFI, E., LEUS, G., AND RIBEIRO, A. Graphs, convolutions, and neural networks:
From graph filters to graph neural networks. IEEE Signal Processing Magazine 37 (2020),
128–138.

[12] GUO, S., LIN, Y., FENG, N., SONG, C., AND WAN, H. Attention based spatial-temporal graph
convolutional networks for traffic flow forecasting. In Proceedings of the AAAI Conference on
Artificial Intelligence (2019), vol. 33, pp. 922–929.

[13] HADOU, S., KANATSOULIS, C. I., AND RIBEIRO, A. Space-time graph neural networks.
ArXiv abs/2110.02880 (2021).

10

http://www.ics.uci.edu/~mlearn/ MLRepository.html
https://pems.dot.ca.gov/

[14] HAMILTON, W. L., YING, R., AND LESKOVEC, J. Inductive representation learning on large
graphs. arXiv preprint arXiv:1706.02216 (2017).

[15] ISUFI, E., LOUKAS, A., PERRAUDIN, N., AND LEUS, G. Forecasting time series with varma
recursions on graphs. IEEE Transactions on Signal Processing 67 (2019), 4870–4885.

[16] ISUFI, E., AND MAZZOLA, G. Graph-time convolutional neural networks. 2021 IEEE Data
Science and Learning Workshop (DSLW) (2021), 1–6.

[17] KIPF, T. N., AND WELLING, M. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016).

[18] KLICPERA, J., BOJCHEVSKI, A., AND GÜNNEMANN, S. Predict then propagate: Graph neural
networks meet personalized pagerank. In ICLR (2019).

[19] LAI, G., CHANG, W.-C., YANG, Y., AND LIU, H. Modeling long- and short-term temporal
patterns with deep neural networks. The 41st International ACM SIGIR Conference on Research
& Development in Information Retrieval (2018).

[20] LAI, G., CHANG, W.-C., YANG, Y., AND LIU, H. Modeling long-and short-term temporal
patterns with deep neural networks. In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval (2018), pp. 95–104.

[21] LEE, W. K. Partial correlation-based attention for multivariate time series forecasting. In
Proceedings of the AAAI Conference on Artificial Intelligence (2020), vol. 34, pp. 13720–13721.

[22] LI, Y., YU, R., SHAHABI, C., AND LIU, Y. Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926 (2017).

[23] LI, Y., YU, R., SHAHABI, C., AND LIU, Y. Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting. arXiv: Learning (2018).

[24] LIANG, X. S. Normalized multivariate time series causality analysis and causal graph recon-
struction. Entropy 23 (2021).

[25] MENGZHANG, L., AND ZHANXING, Z. Spatial-temporal fusion graph neural networks for
traffic flow forecasting. arXiv preprint arXiv:2012.09641 (2020).

[26] NATALI, A., ISUFI, E., COUTIÑO, M., AND LEUS, G. Learning time-varying graphs from
online data. IEEE Open Journal of Signal Processing 3 (2022), 212–228.

[27] ORESHKIN, B. N., AMINI, A., COYLE, L., AND COATES, M. J. Fc-gaga: Fully connected
gated graph architecture for spatio-temporal traffic forecasting. ArXiv abs/2007.15531 (2021).

[28] PAN, S. J., AND YANG, Q. A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering 22 (2010), 1345–1359.

[29] PUECH, T., BOUSSARD, M., D’AMATO, A., AND MILLERAND, G. A fully automated
periodicity detection in time series. In AALTD@PKDD/ECML (2019).

[30] QING, L., YONGQIN, T., YONG-GUO, H., AND QINGMING, Z. The forecast and the optimiza-
tion control of the complex traffic flow based on the hybrid immune intelligent algorithm. The
Open Electrical & Electronic Engineering Journal 8 (2014), 245–251.

[31] ROBERTS, S., OSBORNE, M., EBDEN, M., REECE, S., GIBSON, N., AND AIGRAIN, S.
Gaussian processes for time-series modelling. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences 371, 1984 (2013), 20110550.

[32] SARIA, S., DUCHI, A., AND KOLLER, D. Discovering deformable motifs in continuous time
series data. In IJCAI (2011).

[33] SHAFIPOUR, R., SEGARRA, S., MARQUES, A. G., AND MATEOS, G. Identifying the topology
of undirected networks from diffused non-stationary graph signals. IEEE Open Journal of
Signal Processing 2 (2021), 171–189.

[34] SHIH, S.-Y., SUN, F.-K., AND LEE, H.-Y. Temporal pattern attention for multivariate time
series forecasting. Machine Learning 108, 8 (2019), 1421–1441.

[35] SONG, C., LIN, Y., GUO, S., AND WAN, H. Spatial-temporal synchronous graph convolutional
networks: A new framework for spatial-temporal network data forecasting. In Proceedings of
the AAAI Conference on Artificial Intelligence (2020), vol. 34, pp. 914–921.

[36] SUTSKEVER, I., VINYALS, O., AND LE, Q. V. Sequence to sequence learning with neural
networks. arXiv preprint arXiv:1409.3215 (2014).

11

[37] VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J., JONES, L., GOMEZ, A. N.,
KAISER, L., AND POLOSUKHIN, I. Attention is all you need. arXiv preprint arXiv:1706.03762
(2017).

[38] WEN, T., AND KEYES, R. Time series anomaly detection using convolutional neural networks
and transfer learning. ArXiv abs/1905.13628 (2019).

[39] WU, C.-H., HO, J.-M., AND LEE, D.-T. Travel-time prediction with support vector regression.
IEEE transactions on intelligent transportation systems 5, 4 (2004), 276–281.

[40] WU, F., ZHANG, T., DE SOUZA, A. H., FIFTY, C., YU, T., AND WEINBERGER, K. Q.
Simplifying graph convolutional networks. ArXiv abs/1902.07153 (2019).

[41] WU, Z., PAN, S., LONG, G., JIANG, J., CHANG, X., AND ZHANG, C. Connecting the
dots: Multivariate time series forecasting with graph neural networks. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2020),
pp. 753–763.

[42] WU, Z., PAN, S., LONG, G., JIANG, J., AND ZHANG, C. Graph wavenet for deep spatial-
temporal graph modeling. arXiv preprint arXiv:1906.00121 (2019).

[43] XU, M., DAI, W., LIU, C., GAO, X., LIN, W., QI, G.-J., AND XIONG, H. Spatial-temporal
transformer networks for traffic flow forecasting. ArXiv abs/2001.02908 (2020).

[44] YU, B., YIN, H., AND ZHU, Z. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017).

[45] ZAMAN, B., RAMOS, L. M. L., ROMERO, D., AND BEFERULL-LOZANO, B. Online topology
identification from vector autoregressive time series. IEEE Transactions on Signal Processing
69 (2021), 210–225.

[46] ZERVEAS, G., JAYARAMAN, S., PATEL, D., BHAMIDIPATY, A., AND EICKHOFF, C. A
transformer-based framework for multivariate time series representation learning. Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (2021).

[47] ZHANG, G. P. Time series forecasting using a hybrid arima and neural network model.
Neurocomputing 50 (2003), 159–175.

[48] ZHANG, J.-W., SUN, Y., YANG, Y., AND CHEN, W. Feature-Proxy Transformer for Few-Shot
Segmentation. In NeurIPS (2022).

[49] ZHANG, Q., CHANG, J., MENG, G., XIANG, S., AND PAN, C. Spatio-temporal graph structure
learning for traffic forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence
(2020), vol. 34, pp. 1177–1185.

[50] ZHENG, C., FAN, X., WANG, C., AND QI, J. Gman: A graph multi-attention network for
traffic prediction. In Proceedings of the AAAI Conference on Artificial Intelligence (2020),
vol. 34, pp. 1234–1241.

[51] ZHOU, H., ZHANG, S., PENG, J., ZHANG, S., LI, J., XIONG, H., AND ZHANG, W. Informer:
Beyond efficient transformer for long sequence time-series forecasting. In AAAI (2021).

[52] ZHOU, X., YAN, H., ZHANG, H., AND PENG, C. Model predictive control with feedback
correction for optimal energy dispatch of a networked microgrid. Transactions of the Institute
of Measurement and Control 41 (2019), 1540 – 1552.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] see Section 6
(c) Did you discuss any potential negative societal impacts of your work? [Yes] see

Appendix A.1
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

12

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] see Appendix A.9

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] see Ap-
pendix A.6

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] see Appendix A.6

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] see Section 5.3 5.4 and Appendix A.8

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] see Appendix A.6

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] see Appendix A.3
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] see Appendix A.3
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] see Appendix A.3
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] not applicable

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] not applicable

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] not applicable

13

	Introduction
	Related Works
	The Framework of TPGNN
	Problem Defintion
	Represent the Correlation as a Temporal Matrix Polynomial
	Inference Pipeline

	Theoretical Properties of TPGNN
	Experiments
	Experimental Setup
	Main Results
	Ablation Experiments
	Study of the Graph Structure Approximation Gap

	Conclusion
	Acknowledgment

