
Fine-tuning Language Models over Slow Networks
using Activation Quantization with Guarantees

Jue Wang1,3∗, Binhang Yuan1∗, Luka Rimanic1†∗, Yongjun He1, Tri Dao2,
Beidi Chen34, Christopher Ré2, Ce Zhang1

1ETH Zürich, Switzerland 2Stanford University, USA 3Zhejiang University, China
4Carnegie Mellon University 5Meta AI

{juewang, binhang.yuan, luka.rimanic, yongjun.he, ce.zhang}@inf.ethz.ch
{beidic, trid, chrismre}@stanford.edu

Abstract

Communication compression is a crucial technique for modern distributed learn-
ing systems to alleviate their communication bottlenecks over slower networks.
Despite recent intensive studies of gradient compression for data parallel-style
training, compressing the activations for models trained with pipeline parallelism
is still an open problem. In this paper, we propose AQ-SGD, a novel activation
compression algorithm for communication-efficient pipeline parallelism training
over slow networks. Different from previous efforts in activation compression,
instead of compressing activation values directly, AQ-SGD compresses the changes
of the activations. This allows us to show, to the best of our knowledge for the
first time, that one can still achieve O(1/

√
T) convergence rate for non-convex

objectives under activation compression, without making assumptions on gradient
unbiasedness that do not hold for deep learning models with non-linear activation
functions. We then show that AQ-SGD can be optimized and implemented effi-
ciently, without additional end-to-end runtime overhead. We evaluated AQ-SGD to
fine-tune language models with up to 1.5 billion parameters, compressing activation
to 2-4 bits. AQ-SGD provides up to 4.3× end-to-end speed-up in slower networks,
without sacrificing model quality. Moreover, we also show that AQ-SGD can be com-
bined with state-of-the-art gradient compression algorithms to enable “end-to-end
communication compression”: All communications between machines, including
model gradients, forward activations, and backward gradients are compressed into
lower precision. This provides up to 4.9× end-to-end speed-up, without sacrificing
model quality.

1 Introduction

Decentralized or open collaborative training has recently attracted intensive interests [1, 2, 3, 4].
Despite their great potential in leveraging geo-distributed powerful GPUs, the computation efficiency
is severely hindered by low network bandwidth — typically in the range of 10-400Mbps [2, 3, 4].
Recently, efforts in improving communication efficiency have significantly decreased the dependency
on fast data center networks — the gradient can be compressed to lower precision or sparsified [5, 6,
7, 8], which speeds up training over low bandwidth networks, whereas the communication topology
can be decentralized [9, 10, 11, 12, 13, 14], which speeds up training over high latency networks.
Indeed, today’s state-of-the-art training systems, such as Pytorch [15, 16], Horovod [17], Bagua [18],
and BytePS [19], already support many of these communication-efficient training paradigms.

∗Equal contribution. †Now at Google.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

zero-shot 2bit 3bit 4bit 5bit FP32

12

13

14

15

16

17

18

19

te
st

 p
er

pl
ex

ity

(a) Fine-tune WikiText2

2.0
2.5
3.0
3.5
4.0

[|a
ct

iv
at

io
n|

]

0 2 4 6 8
epoch

0.7
0.8
0.9
1.0
1.1

[|d
el

ta
|]

(b) Activation and delta

Figure 1: (a) Fine-tuning GPT2-1.5B with different activation
precisions in communication; (b) Average absolute value of
activations and their changes for GPT2-1.5B during training.

Table 1: Summary of techni-
cal results. AC-GC [29] and
TinyScript [30] assume that the re-
turned gradient is unbiased, whereas
AQ-SGD algorithm does not rely on
such an assumption.

Algorithm Assumptions Conv. Rate
on Quant. Grad.

SGD [31] N/A O(1/
√
T)

AC-GC [29] Unbiased O(1/
√
T)

TinyScript [30] Unbiased O(1/
√
T)

AQ-SGD N/A O(1/
√
T)

However, with the rise of large foundation models [20] (e.g., BERT [21], GPT-3 [22], and CLIP[23]),
improving communication efficiency via compression becomes more challenging. Current training
systems for foundation models such as Megatron [24], Deepspeed [25], and Fairscale [26], allocate
different layers of the model onto multiple devices and need to communicate — in addition to
the gradients on the models — the activations during the forward pass and the gradients on the
activations during the backward pass. Compressing these activations leads to a very different behavior
compared with compressing the gradient — simply compressing these activations in a stochastically
unbiased way will lead to biases in the gradient that cannot be measured easily or expressed in
closed form. This either breaks the unbiasedness assumptions made by most gradient compression
results [5, 6, 7, 8] or makes error compensation over gradient biases [27, 28] difficult to adopt.

Previous efforts on activation compression [32, 33, 34, 35, 36] illustrate, albeit mostly empirically,
that large deep learning models can tolerate some compression errors on these activation values.
However, when it comes to the underlying theoretical analysis, these efforts mostly make assumptions
that do not apply to neural networks with non-linear activation functions — the only two recent
efforts that claim theoretical convergence analysis [29, 30] assume that an unbiased compression
on activations leads to an unbiased error on the gradient. Not surprisingly, these algorithms lead to
suboptimal quality under relatively aggressive compression, illustrated in Figure 1a — in many cases,
using activation compression to fine-tune a model might be worse than zero-shot learning without
any fine-tuning at all.

In this paper, we focus on the problem of activation compression for training language models over
slow networks by asking the following:

• Q1. Can we design an algorithm for activation compression with rigorous theoretical
guarantees on SGD convergence?

• Q2. Can such an algorithm be implemented efficiently without additional runtime overhead
and outperform today’s activation compression algorithms without accuracy loss?

Our answers to both questions are Yes. (Contribution 1) We propose AQ-SGD, a novel algorithm for
activation compression. The idea of AQ-SGD is simple — instead of directly compressing the activa-
tions, compress the change of activations for the same training example across epochs. Intuitively,
we expect AQ-SGD to outperform simply compressing the activations because it enables an interesting
“self-enforcing” dynamics: the more training stabilizes→ the smaller the changes of the model across
epochs→ the smaller the changes of activations for the same training example across epochs→ the
smaller the compression error using the same #bits→ training stabilizes more. (Contribution 2) The
theoretical analysis of AQ-SGD is non-trivial since we have to analyze the above dynamics and connect
it to SGD convergence, which is quite different from most of today’s results on gradient compression
and error compensation. Under mild technical conditions and quantization functions with bounded
error, we show that AQ-SGD converges with a rate of O(1/

√
T) for non-convex objectives, the same

as vanilla SGD [31, 37]. To the best of our knowledge, AQ-SGD is the first activation compression
algorithm with rigorous theoretical analysis that shows a convergence rate of O(1/

√
T) (without

relying on assumptions of unbiased gradient). (Contribution 3) We then show that AQ-SGD can be

2

Tran
sfo

rm
er

B
lo

ck
Tran

sfo
rm

er
B

lo
ck

Forward
Activation

Backward
Gradient

Model
Gradient

Macro-
batch 1

Macro-
batch 2

M
ac

h
in

e
1

M
ach

in
e 2

M
ac

h
in

e
3

Tran
sfo

rm
er

B
lo

ck

Tran
sfo

rm
er

B
lo

ck

Tran
sfo

rm
er

B
lo

ck

Tran
sfo

rm
er

B
lo

ck

Tran
sfo

rm
er

B
lo

ck
Tran

sfo
rm

er
B

lo
ck

Tran
sfo

rm
er

B
lo

ck

Tran
sfo

rm
er

B
lo

ck

Tran
sfo

rm
er

B
lo

ck

Tran
sfo

rm
er

B
lo

ck

M
ach

in
e 4

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

• Direct Quantization [26, 27]: ! " = Quantize(")
• AQ-SGD: ! " = Quantize " − / 01

/ 01 ← / 01 + 4 " −/ 01

For sample 01:

Figure 2: The communication pattern of training large language models with both data parallelism
and pipeline model parallelism. C denotes a compression module. The goal of this paper is to
understand the design of C for forward activation and backward gradient.

optimized and implemented efficiently2, without adding additional end-to-end runtime overhead
over non-compression and other compression schemes (it does require us to utilize more memory
and SSD for storage of activations). (Contribution 4) We then conduct extensive experiments on
sequence classification and language modeling datasets using DeBERTa-1.5B and GPT2-1.5B mod-
els, respectively. We show that AQ-SGD can aggressively quantize activations to 2-4 bits without
sacrificing convergence performance, where direct quantization of activations fails to converge; in
slow networks, AQ-SGD achieves up to 4.3× end-to-end speedup. (Contribution 5) Last but not least,
we also show that AQ-SGD can be combined with state-of-the-art gradient compression algorithms to
enable “end-to-end communication compression”: All data exchanges between machines, including
model gradients, forward activations, and backward gradients are quantized into lower precision.
This provides up to 4.9× end-to-end speed-up, without sacrificing model quality.

2 Overview and Problem Formulation

Training large language models over multiple devices is a challenging task. Because of the vast
number of parameters of the model and data examples, state-of-the-art systems need to combine
different forms of parallelism. Figure 2 illustrates an example in which such a model is distributed
over four machines: (Pipeline Model Parallelism) The model is partitioned onto Machine 1 and
Machine 2 (similarly, Machine 3 and Machine 4), each of which is holding a subset of layers. To
compute the gradient over the model using backpropagation, these two machines need to communicate
the activations during the forward pass and the gradient on activations during the backward pass.
(Data Parallelism) Machine 1 and Machine 3 (similarly, Machine 2 and Machine 4) process the same
set of layers for different macro-batches. In this case, each of them will hold a replica of the same
model. After the gradient over their model parameters are ready, they need to communicate the model
gradient, usually by taking an average [15, 17, 18].

Communication Compression for Forward Activations and Backward Gradients. In slow
networks, the communication among all machines often becomes the bottleneck [37]. To improve
the speed of training, one can conduct lossy compression of the data before they are communicated,
illustrated as the C module in Figure 2. When the model fits into a single machine, there have been
intensive efforts on compressing the model gradient [5, 6, 7, 8]. However, when it comes to pipeline
model parallelism, such compression techniques are less studied. In this paper, we focus on designing

2Our code is available at: https://github.com/DS3Lab/AC-SGD.

3

https://github.com/DS3Lab/AC-SGD

efficient communication compression algorithms to compress both forward activations and backward
gradients. As we will show later, both can be compressed significantly with AQ-SGD without hurting
the model quality. We also show that it is possible to combine AQ-SGD with state-of-the-art gradient
compression techniques to enable the end-to-end compression scheme illustrated in Figure 2.
Problem Formulation. In this paper, we focus on the following technical problem. Note that, for
the simplicity of notations, we present here the case where the model is partitioned onto K = 2
machines. AQ-SGD works for cases with K > 2: (1) in experiments, we consider K = 8, i.e., a single
model is partitioned onto 8 machines; (2) in the supplementary material we provide the theoretical
analysis for K > 2.

Given a distribution of samples D, we consider the following optimization task:

min
x∈Rd

f(x) := Eξ∼DF (b(a(ξ, x(a)), x(b))), (2.1)

where F is a loss function, a(−) and b(−) correspond to two sets of layers of the model — a(−)
has model x(a) and b(−) has model x(b). In Figure 2, Machine 1 would hold x(a) and Machine 2
would hold x(b). In the following, we call the machine that holds x(a) Machine a and the machine
that holds x(b) Machine b . In the standard backpropagation algorithm, the communication between
these two machines are as follows:

• Given a data sample ξ, Machine a sends to Machine b the forward activation: a(ξ, x(a))

• Machine b sends to Machine a the backward gradient on a(ξ, x(a)).

Difficulties in Direct Quantization. A natural way at compressing forward activations is to send,
instead of a(ξ, x(a)), a quantized version m(ξ, x(a)) = Q(a(ξ, x(a))). This is the quantization
scheme that state-of-the-art methods such as AC-GC [29] and TinyScript [30] use. Both AC-GC [29]
and TinyScript [30] assume that gradient is unbiased when m(ξ, x(a)) is an unbiased estimator of
a(ξ, x(a)). This enables their convergence rates of O(1/

√
T). However, because of the non-linearity

of F and b in a deep learning model with non-linear activation functions, an unbiased m(ξ, x(a))
will lead to biases on the gradient. In Appendix, we will provide an example showing that such a
gradient bias will hurt SGD convergence even for a very simple optimization problem. On the theory
side, previous efforts on understanding gradient bias [38] have also shown that even bounded bias on
gradient can impact the converges of SGD. As we will show later, empirically, this bias can indeed
lead to suboptimal models under aggressive compression.

Notation. Throughout the paper we use the following definitions:

• f∗ is the optimal value of f .
• N is the number of samples.

• xt = (x
(a)
t , x

(b)
t) is the full model at iteration t.

• ∇f(·) is the gradient of function f .
• gξt(xt) = ∇F (ξt;xt) is the stochastic gradient.
• Q(·) is the quantization function used to compress activations.
• m(·) is the message exchanged between a and b in the feed forward path.
• ∥ · ∥ denotes the L2-norm.

3 AQ-SGD: Theoretical Analysis and System Implementations

In this section we present the AQ-SGD, with the goal to mitigate the above mentioned difficulties that
appear in direct quantization of the activation functions.

3.1 AQ-SGD Algorithm

Algorithm 1 illustrates the AQ-SGD algorithm. The idea behind Algorithm 1 is simple — instead of
quantizing the activations directly, quantize the changes of activations for the same training example
across epochs. As illustrated in Algorithm 1, for iteration t and the data sample ξt, if it is the first time

4

Algorithm 1 AQ-SGD Algorithm

1: Initialize: x0, learning rate γ, sub-network a(−) weights x(a), sub-network b(−) weights x(b),
quantization function Q, array of previous messages m initialized to 0

2: for t = 1, . . . , T do
3: Randomly sample ξt
4: if ξt not seen before then
5: Set m(ξt) = a(ξt, x

(a)
t)

6: else
7: Update m(ξt)← m(ξt) +Q

(
a(ξt, x

(a)
t)−m(ξt)

)
8: end if
9: // Machine a sends Q

(
a(ξt, x

(a)
t)−m(ξt)

)
to Machine b, which knows m(ξt) through a local

version of m
10: Update x

(b)
t+1 ← x

(b)
t − γ · ∇x(b)(f ◦ b)|m

11: // Machine b sends Q(∇a(f ◦ b)|m) to Machine a

12: Update x
(a)
t+1 ← x

(a)
t − γ ·Q(∇a(f ◦ b)|m) · ∇x(a)a

13: end for
14: Output: x = (x

(a)
T , x

(b)
T)

that ξt is sampled, Machine a communicates the full precision activations without any compression:
m(ξt) = a(ξt, x

(a)
t) (Lines 4-5). Both machines will save m(ξt) in a local buffer. If ξt has been

sampled in previous iterations, Machine a communicates a quantized version:

Q(a(ξt, x
(a)
t)−m(ξt)),

where m(ξt) was the previous message, stored in the local buffer. Both machines then update this
local buffer:

m(ξt)← m(ξt) +Q(a(ξt, x
(a)
t)−m(ξt)).

Machine b then use m(ξt) as the forward activations, compute backward gradients, and communicate
a quantized version of the backward gradient to Machine a (Line 11). We use

δξ = a(ξt, x
(a)
t)−m(ξt)

to denote the message error in sending the activations.

Update Rules. The above algorithm corresponds to the following update rules, at iteration t with
sample ξt:

x
(a)
t+1 = x

(a)
t − γ ·Q(∇a(f ◦ b)|(m(ξ,x

(a)
t),x

(b)
t)

) · ∇x(a)a|
x
(a)
t

,

x
(b)
t+1 = x

(b)
t − γ · ∇x(b)(f ◦ b)|

(m(ξ,x
(a)
t),x

(b)
t)

,

where γ is the learning rate, ∇x(b)(f ◦ b)|
(m(ξ,x

(a)
t),x

(b)
t)

is the gradient on x(b) using the quantized

forward activations (m(ξ, x
(a)
t), and Q(∇a(f ◦b)|(m(ξ,x

(a)
t),x

(b)
t)

) is the quantized backward gradient.

Setting xt = (x
(a)
t , x

(b)
t), we can rephrase the update rule as

xt+1 = xt − γ · (gξ(xt) + ∆ξ(xt)) ,

where gξ(xt) is the stochastic gradient and ∆ξ(xt) is the gradient error introduced by communication
compression. We have ∆ξ = (∆

(a)
ξ +∆

(Q)
ξ ,∆

(b)
ξ) given by:

∆
(Q)
ξ (xt) = Q(∇a(f ◦ b)|(m(ξ,x

(a)
t),x

(b)
t)

) · ∇x(a)a|
x
(a)
t
−∇a(f ◦ b)|(m(ξ,x

(a)
t),x

(b)
t)
· ∇x(a)a|

x
(a)
t

,

∆
(a)
ξ (xt) = ∇a(f ◦ b)|(m(ξ,x

(a)
t),x

(b)
t)
· ∇x(a)a|

x
(a)
t
−∇a(f ◦ b ◦ a)|(x(a)

t ,x
(b)
t)

∆
(b)
ξ (xt) = ∇x(b)(f ◦ b)|

(m(ξ,x
(a)
t),x

(b)
t)
−∇x(b)(f ◦ b)|

(a(ξ,x
(a)
t),x

(b)
t)

,

where ∆
(Q)
ξ (xt) is the error introduced by the gradient quantization in the backpropagation part,

whilst ∆(a)
ξ (xt) and ∆

(b)
ξ (xt) are the errors that the gradients of a and b, respectively, inherit from

the bias introduced in the forward pass.

5

3.2 Theoretical Analysis

We now prove the main theorem which states that, under some standard assumptions that are often
used in the literature [31, 37], the convergence rate of AQ-SGD algorithm is O(1/

√
T) for non-convex

objectives, same as vanilla SGD.

Assumptions. We make several assumptions on the networks and the quantization. It is important
to note is that we put no restrictions on either the message error δξ, nor the gradient error ∆ξ.

• (A1: Lipschitz assumptions) We assume that∇f ,∇(f ◦ b) and a are Lf , Lf◦b-, and ℓa-Lipschitz,
respectively, recalling that a function g is Lg-Lipschitz if

∥g(x)− g(y)∥ ≤ Lg∥x− y∥, ∀x, ∀y.

Furthermore, we assume that a and f ◦ b have gradients bounded by Ca and Cf◦b, respectively, i.e.
∥∇a(x)∥ ≤ Ca, and ∥∇(f ◦ b)(x)∥ ≤ Cf◦b.

• (A2: SGD assumptions) We assume that the stochastic gradient gξ is unbiased, i.e. Eξ[gξ(x)] =
∇f(x), for all x, and with bounded variance, i.e. Eξ∥gξ(x)−∇f(x)∥2 ≤ σ2, for all x.

Theorem 3.1. Suppose that Assumptions A1, A2 hold, and consider an unbiased quantization function
Q(x) which satisfies that there exists cQ <

√
1/2 such that E∥x−Q(x)∥ ≤ cQ∥x∥, for all x.3 Let

γ = 1
3(3Lf+C)

√
T

be the learning rate, where

C =
4cQℓa(1 + Ca)Lf◦bN√

1− 2c2Q

.

Then after performing T updates one has

1

T

∑
t∈[T]

E∥∇f(xt)∥2 ≲
(C + Lf)(f(x1)− f∗)√

T
+

σ2 + (cQCaCf◦b)
2

√
T

. (3.1)

We present the full proof of Theorem 3.1 in Appendix A, whereas here we explain the main intuition.
The usual starting point in examining convergence rates is to use the fact that f has Lf -Lipschitz
gradient. It is well known that this implies

γ⟨∇f(xt), gξt(xt)⟩+ f(xt+1)− f(xt) ≤ −⟨∇f(xt),∆ξt(xt)⟩+
γ2Lf

2
∥gξt(xt) + ∆ξt(xt)∥2.

After taking the expectation over all ξt and summing over all t = 1, . . . , T , we easily see that the
key quantity to bound is

∑T
t=1 E∥∆̃ξt(xt)∥2, where ∆̃ξt(xt) = (∆

(a)
ξt

(xt),∆
(b)
ξt

(xt)). On the other
hand, the main object that we can control is the message error, δξ. Therefore, we first prove an
auxiliary result which shows that ∥∆̃ξt(xt)∥ ≤ (1 + Ca)ℓa∥δξt(xt)∥, for all t. The key arguments
for bounding δξt closely follow the self-improving loop described in the introduction, and can be
summarized as follows. Since we are compressing the information in such a way that we compare
with all the accumulated differences, this allows us to unwrap the changes which appeared since the
last time that we observed the current sample, in an iterative way. However, since these are gradient
updates, they are bounded by the learning rate — as long as we have a quantization method that keeps
enough information about the signal, we can recursively build enough saving throughout the process.
In particular, the more stability we have in the process, the smaller the changes of the model and the
compression error gets, further strengthening the stability.

Tightness. The bound is tight with respect to quantization — setting cQ = 0 (implying C = 0), i.e.
quantization does not incur any loss, recovers the original original SGD convergence (cf. [31, 37]).

3Even for a very simple quantization function Q(x) = ∥x∥ · ⌈x/||x||⌋, where ⌈·⌋ denotes rounding to the
closest k/2b, stochastically, through a simple bound cQ =

√
d/2b, 6 bits suffice in a low-dimensional (∼ 103),

11 bits in a high-dimensional scenario (∼ 106), and 16 bits in a super-high-dimensional scenario (∼ 109). In
practice, as we show in the experiments, we observe that for 2-4 bits are often enough for fine-tuning GPT-2
style model. This leaves interesting direction for future exploration as we expect a careful analysis of sparsity
together with more advanced quantization functions can make this condition much weaker.

6

Regularization and other optimizers. Assuming A1 and A2 for f , and under further assumptions
on b and ∇x(b)b, one can prove that the L2-regularized loss f̃(x) = f(x) + λ

2 ∥x∥
2, which results

in weight decay, satisfies Assumptions A1 and A2 with slightly weaker constants. We note that a
theoretical analysis for other regularization methods or optimizers such as Adam [39], could be an
independent study and represent an interesting line of future research.

3.3 System Implementations and Optimizations.

Additional storage and communication. AQ-SGD requires us to store, for each data example ξ, the
quantized activation m(ξ) in a local buffer in memory or SSD. For example, in GPT2-XL training,
a simple calculation shows that we need an approximately extra 1TB storage. When using data
parallelism, it reduces to 1TB / # parallel degree, but also incurs communication overhead if data
is shuffled in every epoch. In addition, when the example ξ is sampled again, m(ξ) needs to be (1)
loaded from this local buffer to the GPU, and (2) updated when a new value for m(ξ) is ready.

Optimization. It is easy to implement and optimize the system such that this additional loading and
updating step do not incur significant overhead on the end-to-end runtime. This is because of the fact
that the GPU computation time for a forward pass is usually much longer than the data transfer time
to load the activations — for GPT2-XL with 1.5 billion model parameters, a single forward pass on 6
layers require 44 ms, whereas loading m(ξ) need 0.2 ms from memory and 12 ms from SSD. One
can simply pre-fetch m(ξ) right before the forward pass, and hide it within the forward pass of other
data examples. Similarly, updating m(ξ) can also be hidden in the backward computation. It is also
simple to reduce the communication overhead by shuffling data only once or less frequently.

4 Evaluation

We demonstrate that AQ-SGD can significantly speed up fine-tuning large language models in slow
networks. Specifically, we show: (1) on four standard benchmark tasks, AQ-SGD can tolerate
aggressive quantization on the activations (2-4 bits) and backward gradients (4-8 bits), without
hurting convergence and final loss, whereas direct quantization converges to a worse loss or even
diverge, (2) in slow networks, AQ-SGD provide an end-to-end speed-up up to 4.3×, and (3) AQ-SGD
can be combined with state-of-the-art gradient compression methods and achieve an end-to-end
speed-up of up to 4.9×.

4.1 Experimental Setup

Datasets and Benchmarks. We consider both sequence classification and language modeling tasks
with state-of-the-art foundation models. For sequence classification, we fine-tune a 1.5B parameter
DeBERTa4 on two datasets: QNLI and CoLA. For language modeling, we fine-tune the GPT2 model
with 1.5B parameters5 on two datasets: WikiText2 and arXiv abstracts. All datasets are publicly
available and do not contain sensitive or offensive content. Detailed setup can be found in Appendix
B.

Distributed Cluster. We conduct our experiments on AWS with 8-32 p3.2xlarge instances, each
containing a V100 GPU. For a single pipeline, we partition a model onto 8 machines. When combined
with data parallelism, we use 32 instances — data parallel degree is 4 and pipeline parallel degree is
8. By default, instances are interconnected with 10Gbps bandwidth. We simulate slow networks by
controlling the communication bandwidth between instances using Linux traffic control.

Baselines. We compare with several strong baselines:

1. FP32: in which all communications are in 32 bit floating point without any compression.
2. DirectQ [29, 30]: in which activations and backward gradients are directly quantized.

We use a simple, uniform quantization scheme, which first normalizes a given vector into [−1, 1]
and quantize each number into a b-bit integers by uniforming partitioning the range [−1, 1] into 2b

intervals [35]. Additional details of the configuration can be found in Appendix C.

4we use the v2-xxlarge checkpoint: https://huggingface.co/microsoft/deberta-v2-xxlarge.
5we use the extra large checkpoint: https://huggingface.co/gpt2-xl.

7

https://huggingface.co/microsoft/deberta-v2-xxlarge
https://huggingface.co/gpt2-xl

0.0 5.0K 10.0K 15.0K
step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tra
in

 lo
ss

FP32
DirectQ (fw2 bw4)
DirectQ (fw3 bw6)
AQ-SGD (fw2 bw4)
AQ-SGD (fw3 bw6)

(a) QNLI, DeBERTa-1.5B

500.0 1.0K 1.5K 2.0K 2.5K
step

0.1

0.2

0.3

0.4

0.5

tra
in

 lo
ss

FP32
DirectQ (fw2 bw4)
DirectQ (fw3 bw6)
AQ-SGD (fw2 bw4)
AQ-SGD (fw3 bw6)

(b) CoLA, DeBERTa-1.5B

200.0 400.0 600.0
step

2.5

3.0

3.5

4.0

4.5

5.0

tra
in

 lo
ss

FP32
DirectQ (fw3 bw6)
DirectQ (fw4 bw8)
AQ-SGD (fw3 bw6)
AQ-SGD (fw4 bw8)

(c) WikiText2, GPT2-1.5B

0.0 500.0 1.0K 1.5K 2.0K
step

2.8

3.0

3.2

3.4

3.6

3.8

4.0

tra
in

 lo
ss

FP32
DirectQ (fw3 bw6)
DirectQ (fw4 bw8)
AQ-SGD (fw3 bw6)
AQ-SGD (fw4 bw8)

(d) arXiv, GPT2-1.5B

Figure 3: Convergence (loss vs. # steps) of different approaches. × represents divergence.

0.0 500.0 1.0K 1.5K 2.0K 2.5K
time/min

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tra
in

 lo
ss

FP32
DirectQ (fw2 bw4)
DirectQ (fw3 bw6)
AQ-SGD (fw2 bw4)
AQ-SGD (fw3 bw6)

(a) QNLI, 500Mbps

0.0 2.0K 4.0K 6.0K 8.0K 10.0K
time/min

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tra
in

 lo
ss

FP32
DirectQ (fw2 bw4)
DirectQ (fw3 bw6)
AQ-SGD (fw2 bw4)
AQ-SGD (fw3 bw6)

(b) QNLI, 100Mbps

25.0 50.0 75.0 100.0 125.0 150.0
time/min

0.1

0.2

0.3

0.4

0.5

tra
in

 lo
ss

FP32
DirectQ (fw2 bw4)
DirectQ (fw3 bw6)
AQ-SGD (fw2 bw4)
AQ-SGD (fw3 bw6)

(c) CoLA, 500Mbps

100.0 200.0 300.0 400.0 500.0 600.0
time/min

0.1

0.2

0.3

0.4

0.5

tra
in

 lo
ss

FP32
DirectQ (fw2 bw4)
DirectQ (fw3 bw6)
AQ-SGD (fw2 bw4)
AQ-SGD (fw3 bw6)

(d) CoLA, 100Mbps

0.0 25.0 50.0 75.0 100.0 125.0
time/min

2.5

3.0

3.5

4.0

4.5

5.0

tra
in

 lo
ss

FP32
DirectQ (fw3 bw6)
DirectQ (fw4 bw8)
AQ-SGD (fw3 bw6)
AQ-SGD (fw4 bw8)

(e) WikiText2, 500Mbps

200.0 400.0 600.0
time/min

2.5

3.0

3.5

4.0

4.5

5.0

tra
in

 lo
ss

FP32
DirectQ (fw3 bw6)
DirectQ (fw4 bw8)
AQ-SGD (fw3 bw6)
AQ-SGD (fw4 bw8)

(f) WikiText2, 100Mbps

100.0 200.0 300.0 400.0
time/min

2.8

3.0

3.2

3.4

3.6

3.8

4.0

tra
in

 lo
ss

FP32
DirectQ (fw3 bw6)
DirectQ (fw4 bw8)
AQ-SGD (fw3 bw6)
AQ-SGD (fw4 bw8)

(g) arXiv, 500Mbps

0.0 500.0 1.0K 1.5K 2.0K
time/min

2.8

3.0

3.2

3.4

3.6

3.8

tra
in

 lo
ss

FP32
DirectQ (fw3 bw6)
DirectQ (fw4 bw8)
AQ-SGD (fw3 bw6)
AQ-SGD (fw4 bw8)

(h) arXiv, 100Mbps

Figure 4: End-to-end training performance over different networks. × represents divergence.

Hyperparameter Tuning. We conduct careful tuning for all methods on all datasets. We perform
grid search to choose learning rate from {2.5e-6, 3e-6, 5e-6, 1e-5} and macro-batch size from {32,
64, 96} for best model performance. We train all models using the Adam optimizer with weight
decay.

4.2 Results

Convergence. We first compare the convergence behavior of different methods. For all compression
methods, we try various settings: fwx bwy means that we use x bits for forward activation and y bits
for backward gradients. Figure 3 shows the convergence behavior for the sequence classification and
language modeling tasks. FP32 converges fast since it does not introduce any compression errors.
DirectQ, under aggressive quantization, can converge to a significantly worse model, or even diverge.
This is not surprising, given the biases on model gradients that direct quantization introduced. On the
other hand, AQ-SGD converges almost as fast as FP32 in terms of number of training steps.

End-to-End Runtime. We show the end-to-end runtime of different methods under slow networks.
As illustrated in Figure 4, AQ-SGD achieves a 4.3× end-to-end speed-up comparing with that of FP32
(in terms of time to the same loss), illustrating the importance of communication compression in slow
networks. Table 2 shows the training throughput and Table 3 shows the breakdown of our algorithm.
We note that computation and communication can overlap, so the end-to-end time depends on the
larger one of the two. Another interesting observation is that when the network is 100× slower
(from 10Gbps to 100Mbps), the training is only about 1.18× slower! This is exciting — if AQ-SGD
were to be deployed in a in real-world geo-distributed decentralized networks, the training throughput
would be almost as fast as the performance inside a data center!

Moreover, AQ-SGD does not introduce significant runtime overhead over direct quantization. From
Table 2, we see that AQ-SGD is essentially as efficient as direct quantization compression in throughput.

8

Table 2: Training Throughput of GPT2-1.5B. Oth-
ers are similar and shown in Appendix.

Network
Bandwidth FP32

DirectQ

fw3 bw6 / fw4 bw8

AQ-SGD

fw3 bw6 / fw4 bw8

10 Gbps 3.8 4.0 / 4.1 4.0 / 4.0
1 Gbps 3.2 4.0 / 4.0 4.0 / 3.9

500 Mbps 2.7 3.9 / 3.9 3.9 / 3.9
300 Mbps 1.8 3.9 / 3.8 3.8 / 3.8
100 Mbps 0.5 3.5 / 3.0 3.4 / 3.0

Table 3: Breakdown of AQ-SGD (fw4 bw8) on
GPT2-1.5B. We show the computation and com-
munication time of each micro batch.

Network
Bandwidth

Forward pass Backward pass

comp. comm. comp. comm.

500 Mbps 45 ms 13 ms 135 ms 25 ms
300 Mbps 45 ms 21 ms 135 ms 42 ms
200 Mbps 45 ms 31 ms 135 ms 63 ms
100 Mbps 45 ms 63 ms 135 ms 125 ms

100.0 200.0 300.0 400.0
step

2.5

3.0

3.5

4.0

4.5

5.0

tra
in

 lo
ss

FP32
DirectQ (fw3 bw6 dp4)
AQ-SGD (fw3 bw6 dp4)

(a) WikiText2, GPT2-1.5B

250.0 500.0 750.0 1.0K 1.2K 1.5K
step

2.8
3.0
3.2
3.4
3.6
3.8
4.0

tra
in

 lo
ss

FP32
DirectQ (fw3 bw6 dp4)
AQ-SGD (fw3 bw6 dp4)

(b) arXiv, GPT2-1.5B

10Gbps 1Gbps 500Mbps 300Mbps 100Mbps
0

2

4

6

8

10

12

14

sa
m

pl
es

 /
se

co
nd

FP32
AQ-SGD (fw3 bw6 dp32)
AQ-SGD (fw32 bw32 dp4)
AQ-SGD (fw3 bw6 dp4)

(c) Training Throughput

Figure 5: Convergence and Throughput of AQ-SGD combined with gradient compression.

4.3 End-to-end Communication Compression: AQ-SGD + QuantizedAdam

AQ-SGD can also be combined with existing methods on gradient compression. This allows us to
compress all communications during training. We combine AQ-SGD with QuantizedAdam [40], an
error compensation-based gradient compression algorithm for data parallel training.

We quantize the forward activations with 3 bits, the backward gradient with 6 bits, and model gradient
with 4 bits. Figure 5 illustrates the convergence and the training throughput under different network
configuration. We see that AQ-SGD converges well when combined with QuantizedAdam (Figure 5(a,
b)). On the other hand, DirectQ, when combined with gradient compression, converges to a much
worse model. In terms of training throughput, with both activation and gradient compression, we can
achieve up to 8.5× throughput improvement compared to the no-compression baseline (Figure 5(c)).
We also see that both activation and gradient compression are important in terms of improving
end-to-end training throughput — as illustrated in Figure 5(c), disabling any of them will lead to a
much lower training throughput.

5 Related Work

Distributed training of foundation models. Modern distributed training of deep neural networks
goes beyond data parallelism [24, 41, 42] due to the advance of the large-scale foundation models
[20], such as BERT [21], GPT-3 [22], and CLIP[23]. Popular systems to support foundation model
training include Megatron [24], Deepspeed [25], and Fairscale [26]. To scale out the training of
large-scale models, pipeline parallelism (e.g., Gpipe[41], Pipedream[43, 44]) is a popular option,
where the model is partitioned into multiple stages, different stages are allocated on different GPUs
and the exchange of activations and gradients on activations goes through network communication.

Communication compression of distributed learning. Communication compression is an effective
system relaxation for distributed training, especially in data parallelism [40, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55]. Popular techniques include quantization [5, 6, 7, 8], sparsification [56, 57, 58, 59],
sketching [60, 61] and error compensation [27]. Recently, TinyScript [30] proposes to compress
activations and gradients simultaneously.

Sparse Learning for activation compression. Sparse learning [30, 62, 63, 64, 65, 66, 67, 68, 69]
has become increasingly popular for training neural networks, as it can significantly reduce the
use of computation and memory while preserving the generalization of such models. In particular,

9

activation compression methods [32, 33, 34, 35, 36, 29] are proposed to reduce the memory footprint
by adopting lossless [70, 71, 72] and lossy [73, 29, 74] compression techniques in the training of
various deep neural networks (e.g., CNN[66, 75, 76], GNN[77]). These approaches usually compute
the activation with full precision in forward propagation, adopt the compression method over the
activation, and store the compressed version in DRAM for later use in backward propagation. Thus,
compression does not introduce any error in forward propagation in contrast to the scenario of
communicating compressed activation in the distributed setting.

Delta-based compression. Delta-based compression [78] is a classic solution to various system
problems. Recent research has also used the property of spatial proximity within activation in neural
network training based on empirical observations [79, 80, 74]. However, to our knowledge, no
attempt has been made to consider the proximity of activation through training epochs to enable
efficient compression with theoretical guarantee.

6 Conclusion

In this paper, we discuss how to adopt communication compression for activations in distributed
learning. We proposed AQ-SGD, a novel activation compression algorithm for communication-efficient
pipeline parallelism training over slow networks. AQ-SGD achieves O(1/

√
T) convergence rate for

non-convex optimization without making assumptions on gradient unbiasedness. Our empirical study
suggests that AQ-SGD can achieve up to 4.3× speedup for pipeline parallelism. When combined with
gradient compression in data parallelism, the end-to-end speed-up can be up to 4.9×.

Acknowledgments

CZ and the DS3Lab gratefully acknowledge the support from the Swiss State Secretariat for Education, Research
and Innovation (SERI) under contract number MB22.00036 (for European Research Council (ERC) Starting
Grant TRIDENT 101042665), the Swiss National Science Foundation (Project Number 200021_184628, and
197485), Innosuisse/SNF BRIDGE Discovery (Project Number 40B2-0_187132), European Union Horizon
2020 Research and Innovation Programme (DAPHNE, 957407), Botnar Research Centre for Child Health,
Swiss Data Science Center, Alibaba, Cisco, eBay, Google Focused Research Awards, Kuaishou Inc., Oracle
Labs, Zurich Insurance, and the Department of Computer Science at ETH Zurich. CR gratefully acknowledges
the support of NIH under No. U54EB020405 (Mobilize), NSF under Nos. CCF1763315 (Beyond Sparsity),
CCF1563078 (Volume to Velocity), and 1937301 (RTML); ARL under No. W911NF-21-2-0251 (Interactive
Human-AI Teaming); ONR under No. N000141712266 (Unifying Weak Supervision); ONR N00014-20-1-2480:
Understanding and Applying Non-Euclidean Geometry in Machine Learning; N000142012275 (NEPTUNE);
NXP, Xilinx, LETI-CEA, Intel, IBM, Microsoft, NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Accenture,
Ericsson, Qualcomm, Analog Devices, Google Cloud, Salesforce, Total, the HAI-GCP Cloud Credits for
Research program, the Stanford Data Science Initiative (SDSI), and members of the Stanford DAWN project:
Facebook, Google, and VMWare. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not necessarily reflect the views,
policies, or endorsements, either expressed or implied, of NIH, ONR, or the U.S. This work was done during
Jue Wang’s visit to ETH Zürich, which was supported by Key Research and Development Program of Zhejiang
Province of China (No. 2021C01009) and Fundamental Research Funds for the Central Universities. The
computation required in this work was provided by Together Computer (https://together.xyz/).

References
[1] Max Ryabinin and Anton Gusev. Towards crowdsourced training of large neural networks

using decentralized mixture-of-experts. Advances in Neural Information Processing Systems,
33:3659–3672, 2020.

[2] Michael Diskin, Alexey Bukhtiyarov, Max Ryabinin, Lucile Saulnier, Anton Sinitsin, Dmitry
Popov, Dmitry V Pyrkin, Maxim Kashirin, Alexander Borzunov, Albert Villanova del Moral,
et al. Distributed deep learning in open collaborations. Advances in Neural Information
Processing Systems, 34:7879–7897, 2021.

10

https://together.xyz/

[3] Alexander Borzunov, Max Ryabinin, Tim Dettmers, Quentin Lhoest, Lucile Saulnier, Michael
Diskin, and Yacine Jernite. Training transformers together. In NeurIPS 2021 Competitions and
Demonstrations Track, pages 335–342. PMLR, 2022.

[4] Max Ryabinin, Tim Dettmers, Michael Diskin, and Alexander Borzunov. Swarm parallelism:
Training large models can be surprisingly communication-efficient. 2021.

[5] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. arXiv preprint
arXiv:1610.02132, 2016.

[6] Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, and Ce Zhang. Zipml: Training
linear models with end-to-end low precision, and a little bit of deep learning. In International
Conference on Machine Learning, pages 4035–4043. PMLR, 2017.

[7] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning, pages 560–569. PMLR, 2018.

[8] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
ternary gradients to reduce communication in distributed deep learning. In Proceedings of the
31st International Conference on Neural Information Processing Systems, pages 1508–1518,
2017.

[9] Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. Decentralized stochastic optimization
and gossip algorithms with compressed communication. In International Conference on
Machine Learning, pages 3478–3487. PMLR, 2019.

[10] Youjie Li, Mingchao Yu, Songze Li, Salman Avestimehr, Nam Sung Kim, and Alexander
Schwing. Pipe-sgd: a decentralized pipelined sgd framework for distributed deep net training.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
pages 8056–8067, 2018.

[11] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, pages 5336–5346, 2017.

[12] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochastic
gradient descent. In International Conference on Machine Learning, pages 3043–3052. PMLR,
2018.

[13] Hanlin Tang, Shaoduo Gan, Ce Zhang, Tong Zhang, and Ji Liu. Communication compression
for decentralized training. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, pages 7663–7673, 2018.

[14] Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu. D2: Decentralized training
over decentralized data. In International Conference on Machine Learning, pages 4848–4856.
PMLR, 2018.

[15] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke,
Jeff Smith, Brian Vaughan, Pritam Damania, et al. Pytorch distributed: Experiences on
accelerating data parallel training. Proceedings of the VLDB Endowment, 13(12).

[16] Pytorch-lightning. https://www.pytorchlightning.ai/.

[17] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in
tensorflow. arXiv preprint arXiv:1802.05799, 2018.

[18] Gan, Shaoduo and Lian, Xiangru and Wang, Rui and Chang, Jianbin and Liu, Chengjun and
Shi, Hongmei and Zhang, Shengzhuo and Li, Xianghong and Sun, Tengxu and Jiang, Jiawei
and others. BAGUA: scaling up distributed learning with system relaxations. Proceedings of
the VLDB Endowment, 15(4):804–813, 2021.

11

https://www.pytorchlightning.ai/

[19] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo. A unified
architecture for accelerating distributed {DNN} training in heterogeneous gpu/cpu clusters. In
14th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 20),
pages 463–479, 2020.

[20] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri S. Chatterji, Annie S. Chen, Kathleen
Creel, Jared Quincy Davis, Dorottya Demszky, Chris Donahue, Moussa Doumbouya, Esin
Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn,
Trevor Gale, Lauren Gillespie, Karan Goel, Noah D. Goodman, Shelby Grossman, Neel Guha,
Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu,
Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti,
Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark S. Krass, Ranjay Krishna,
Rohith Kuditipudi, and et al. On the opportunities and risks of foundation models. CoRR,
abs/2108.07258, 2021.

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[22] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[23] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021.

[24] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model
parallelism. arXiv preprint arXiv:1909.08053, 2019.

[25] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System
optimizations enable training deep learning models with over 100 billion parameters. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 3505–3506, 2020.

[26] Mandeep Baines, Shruti Bhosale, Vittorio Caggiano, Naman Goyal, Siddharth Goyal, Myle
Ott, Benjamin Lefaudeux, Vitaliy Liptchinsky, Mike Rabbat, Sam Sheiffer, et al. Fairscale: A
general purpose modular pytorch library for high performance and large scale training, 2021.

[27] Hanlin Tang, Chen Yu, Xiangru Lian, Tong Zhang, and Ji Liu. Doublesqueeze: Parallel
stochastic gradient descent with double-pass error-compensated compression. In International
Conference on Machine Learning, pages 6155–6165. PMLR, 2019.

[28] Hanlin Tang, Xiangru Lian, Shuang Qiu, Lei Yuan, Ce Zhang, Tong Zhang, and Ji Liu. Deep-
squeeze: Parallel stochastic gradient descent with double-pass error-compensated compression.
arXiv preprint arXiv:1907.07346, 2019.

[29] R David Evans and Tor Aamodt. Ac-gc: Lossy activation compression with guaranteed
convergence. Advances in Neural Information Processing Systems, 34, 2021.

[30] Fangcheng Fu, Yuzheng Hu, Yihan He, Jiawei Jiang, Yingxia Shao, Ce Zhang, and Bin Cui.
Don’t waste your bits! squeeze activations and gradients for deep neural networks via tinyscript.
In International Conference on Machine Learning, pages 3304–3314. PMLR, 2020.

[31] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018.

[32] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. 2016.

12

[33] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quan-
tized neural networks: Training neural networks with low precision weights and activations.
The Journal of Machine Learning Research, 18(1):6869–6898, 2017.

[34] Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia Tang, and Gennady Pekhimenko. Gist:
Efficient data encoding for deep neural network training. In 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), pages 776–789. IEEE, 2018.

[35] Ayan Chakrabarti and Benjamin Moseley. Backprop with approximate activations for memory-
efficient network training. Advances in Neural Information Processing Systems, 32, 2019.

[36] Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang, Ion Stoica, Michael Mahoney, and
Joseph Gonzalez. Actnn: Reducing training memory footprint via 2-bit activation compressed
training. In International Conference on Machine Learning, pages 1803–1813. PMLR, 2021.

[37] Ji Liu and Ce Zhang. Distributed learning systems with first-order methods. arXiv preprint
arXiv:2104.05245, 2021.

[38] Ahmad Ajalloeian and Sebastian U. Stich. On the convergence of sgd with biased gradients,
2020.

[39] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[40] Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan, Samyam Rajbhandari, Conglong Li, Xiangru
Lian, Ji Liu, Ce Zhang, and Yuxiong He. 1-bit adam: Communication efficient large-scale
training with adam’s convergence speed. In International Conference on Machine Learning,
pages 10118–10129. PMLR, 2021.

[41] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, Hy-
oukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant
neural networks using pipeline parallelism. Advances in neural information processing systems,
32, 2019.

[42] Bowen Yang, Jian Zhang, Jonathan Li, Christopher Ré, Christopher Aberger, and Christopher
De Sa. Pipemare: Asynchronous pipeline parallel dnn training. Proceedings of Machine
Learning and Systems, 3:269–296, 2021.

[43] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R Devanur,
Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream: generalized pipeline
parallelism for dnn training. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, pages 1–15, 2019.

[44] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and Matei Zaharia. Memory-
efficient pipeline-parallel dnn training. In International Conference on Machine Learning, pages
7937–7947. PMLR, 2021.

[45] Chia-Yu Chen, Jiamin Ni, Songtao Lu, Xiaodong Cui, Pin-Yu Chen, Xiao Sun, Naigang Wang,
Swagath Venkataramani, Vijayalakshmi Viji Srinivasan, Wei Zhang, et al. Scalecom: Scalable
sparsified gradient compression for communication-efficient distributed training. Advances in
Neural Information Processing Systems, 33:13551–13563, 2020.

[46] Cong Xie, Shuai Zheng, Sanmi Koyejo, Indranil Gupta, Mu Li, and Haibin Lin. Cser:
Communication-efficient sgd with error reset. Advances in Neural Information Processing
Systems, 33:12593–12603, 2020.

[47] Fartash Faghri, Iman Tabrizian, Ilia Markov, Dan Alistarh, Daniel M Roy, and Ali Ramezani-
Kebrya. Adaptive gradient quantization for data-parallel sgd. Advances in neural information
processing systems, 33:3174–3185, 2020.

[48] Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtarik. Acceleration for compressed gradient
descent in distributed and federated optimization. In International Conference on Machine
Learning, pages 5895–5904. PMLR, 2020.

13

[49] Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braverman,
Joseph Gonzalez, and Raman Arora. Fetchsgd: Communication-efficient federated learning
with sketching. In International Conference on Machine Learning, pages 8253–8265. PMLR,
2020.

[50] Mher Safaryan and Peter Richtárik. Stochastic sign descent methods: New algorithms and
better theory. In International Conference on Machine Learning, pages 9224–9234. PMLR,
2021.

[51] Eduard Gorbunov, Konstantin P Burlachenko, Zhize Li, and Peter Richtárik. Marina: Faster
non-convex distributed learning with compression. In International Conference on Machine
Learning, pages 3788–3798. PMLR, 2021.

[52] Mher Safaryan, Filip Hanzely, and Peter Richtárik. Smoothness matrices beat smoothness
constants: better communication compression techniques for distributed optimization. Advances
in Neural Information Processing Systems, 34, 2021.

[53] Xun Qian, Peter Richtárik, and Tong Zhang. Error compensated distributed sgd can be acceler-
ated. Advances in Neural Information Processing Systems, 34, 2021.

[54] Ahmed M Abdelmoniem, Ahmed Elzanaty, Mohamed-Slim Alouini, and Marco Canini. An
efficient statistical-based gradient compression technique for distributed training systems. Pro-
ceedings of Machine Learning and Systems, 3:297–322, 2021.

[55] Hongyi Wang, Saurabh Agarwal, and Dimitris Papailiopoulos. Pufferfish: Communication-
efficient models at no extra cost. Proceedings of Machine Learning and Systems, 3:365–386,
2021.

[56] J Wangni, J Liu, J Wang, and T Zhang. Gradient sparsification for communication-efficient
distributed optimization. Advances in Neural Information Processing Systems, 31:1299, 2018.

[57] Dan Alistarh, Torsten Hoefler, Mikael Johansson, Sarit Khirirat, Nikola Konstantinov, and
Cédric Renggli. The convergence of sparsified gradient methods. In Proceedings of the 32nd
International Conference on Neural Information Processing Systems, pages 5977–5987, 2018.

[58] Hongyi Wang, Scott Sievert, Zachary Charles, Shengchao Liu, Stephen Wright, and Dimitris
Papailiopoulos. Atomo: communication-efficient learning via atomic sparsification. In Proceed-
ings of the 32nd International Conference on Neural Information Processing Systems, pages
9872–9883, 2018.

[59] Jialei Wang, Mladen Kolar, Nathan Srebro, and Tong Zhang. Efficient distributed learning with
sparsity. In International Conference on Machine Learning, pages 3636–3645. PMLR, 2017.

[60] Jiawei Jiang, Fangcheng Fu, Tong Yang, and Bin Cui. Sketchml: Accelerating distributed
machine learning with data sketches. In Proceedings of the 2018 ACM SIGMOD International
Conference on Management of Data, pages 1269–1284, 2018.

[61] Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Ion Stoica, Raman Arora, et al. Communication-
efficient distributed sgd with sketching. In Advances in Neural Information Processing Systems,
pages 13144–13154, 2019.

[62] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine
Gibescu, and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse
connectivity inspired by network science. Nature communications, 9(1):1–12, 2018.

[63] Md Aamir Raihan and Tor Aamodt. Sparse weight activation training. Advances in Neural
Information Processing Systems, 33:15625–15638, 2020.

[64] Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher
Re. Pixelated butterfly: Simple and efficient sparse training for neural network models. arXiv
preprint arXiv:2112.00029, 2021.

[65] Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without
losing performance. arXiv preprint arXiv:1907.04840, 2019.

14

[66] Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural
networks by dynamic sparse reparameterization. In International Conference on Machine
Learning, pages 4646–4655. PMLR, 2019.

[67] LIU Junjie, XU Zhe, SHI Runbin, Ray CC Cheung, and Hayden KH So. Dynamic sparse train-
ing: Find efficient sparse network from scratch with trainable masked layers. In International
Conference on Learning Representations, 2019.

[68] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity
in deep learning: Pruning and growth for efficient inference and training in neural networks.
Journal of Machine Learning Research, 22(241):1–124, 2021.

[69] Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atashgahi, Lu Yin, Huanyu Kou, Li Shen,
Mykola Pechenizkiy, Zhangyang Wang, and Decebal Constantin Mocanu. Sparse training via
boosting pruning plasticity with neuroregeneration. Advances in Neural Information Processing
Systems, 34, 2021.

[70] Esha Choukse, Michael B Sullivan, Mike O’Connor, Mattan Erez, Jeff Pool, David Nellans, and
Stephen W Keckler. Buddy compression: Enabling larger memory for deep learning and hpc
workloads on gpus. In 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), pages 926–939. IEEE, 2020.

[71] Minsoo Rhu, Mike O’Connor, Niladrish Chatterjee, Jeff Pool, Youngeun Kwon, and Stephen W
Keckler. Compressing dma engine: Leveraging activation sparsity for training deep neural
networks. In 2018 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 78–91. IEEE, 2018.

[72] Alberto Delmás Lascorz, Sayeh Sharify, Isak Edo, Dylan Malone Stuart, Omar Mohamed Awad,
Patrick Judd, Mostafa Mahmoud, Milos Nikolic, Kevin Siu, Zissis Poulos, et al. Shapeshifter:
Enabling fine-grain data width adaptation in deep learning. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, pages 28–41, 2019.

[73] Sian Jin, Guanpeng Li, Shuaiwen Leon Song, and Dingwen Tao. A novel memory-efficient
deep learning training framework via error-bounded lossy compression. In Proceedings of the
26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages
485–487, 2021.

[74] R David Evans, Lufei Liu, and Tor M Aamodt. Jpeg-act: accelerating deep learning via
transform-based lossy compression. In 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA), pages 860–873. IEEE, 2020.

[75] Georgios Georgiadis. Accelerating convolutional neural networks via activation map compres-
sion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 7085–7095, 2019.

[76] Denis Gudovskiy, Alec Hodgkinson, and Luca Rigazio. Dnn feature map compression using
learned representation over gf (2). In Proceedings of the European Conference on Computer
Vision (ECCV) Workshops, pages 0–0, 2018.

[77] Zirui Liu, Kaixiong Zhou, Fan Yang, Li Li, Rui Chen, and Xia Hu. Exact: Scalable graph neural
networks training via extreme activation compression. In International Conference on Learning
Representations, 2021.

[78] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Michael A Kozuch, Phillip B Gibbons,
and Todd C Mowry. Base-delta-immediate compression: Practical data compression for on-
chip caches. In 2012 21st international conference on parallel architectures and compilation
techniques (PACT), pages 377–388. IEEE, 2012.

[79] Omar Mohamed Awad, Mostafa Mahmoud, Isak Edo, Ali Hadi Zadeh, Ciaran Bannon, Anand
Jayarajan, Gennady Pekhimenko, and Andreas Moshovos. Fpraker: A processing element for
accelerating neural network training. In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 857–869, 2021.

15

[80] Andrei Bersatti, Nima Shoghi Ghalehshahi, and Hyesoon Kim. Neural network weight com-
pression with nnw-bdi. In The International Symposium on Memory Systems, pages 335–340,
2020.

16

A Proof of the Main Theorem

In this section we prove Theorem 3.1. The main idea comes from the “self-enforcing” dynamics
described in the introduction of this work: the more training stabilizes→ the smaller the changes
of the model across epochs→ the smaller the changes of activations for the same training example
across epochs→ the smaller the compression error using the same #bits→ training stabilizes more.

We start by providing two auxiliary results. The first one connects the message error and the gradient
error.
Lemma A.1. For every sample ξ, one has

∥∆(Q)
ξ (x)∥ ≤ cQCaCf◦b,

and
∥∆̃ξ(x)∥ ≤ (1 + Ca)Lf◦b∥δξ(x)∥,

where ∆̃ξ(x) = (∆
(a)
ξ (x),∆

(b)
ξ).

PROOF: Note that

∥∆(Q)
ξ (xt)∥ = ∥∇xa(ξ, x)x=x

(a)
t
∥ · ∥Q(∇x(f ◦ b)(x, x(b)

t)
x=m(ξ,x

(a)
t)

)−∇x(f ◦ b)(x, x(b)
t)

x=m(ξ,x
(a)
t)
∥

≤ CacQ∥∇x(f ◦ b)(x, x(b)
t)

x=m(ξ,x
(a)
t)
∥ ≤ cQCaCf◦b,

∥∆(a)
ξ (xt)∥ = ∥∇xa(ξ, x)x=x

(a)
t
∥ · ∥∇x(f ◦ b)(x, x(b)

t)
x=m(ξ,x

(a)
t)
−∇x(f ◦ b)(x, x(b)

t)
x=a(ξ,x

(a)
t)
∥

≤ CaLf◦b∥(m(ξ, x
(a)
t), x

(b)
t)− (a(ξ, x

(a)
t), x

(b)
t)∥ = CaLf◦b∥δξ(xt)∥,

∥∆(b)
ξ (xt)∥ = ∥∇y(f ◦ b)(m(ξ, x

(a)
t), y)

y=x
(b)
t
−∇y(f ◦ b)(a(ξ, x(a)

t), y)
y=x

(b)
t
∥

≤ Lf◦b∥(m(ξ, x
(a)
t), x

(b)
t)− (a(ξ, x

(a)
t), x

(b)
t)∥ = Lf◦b∥δξ(xt)∥,

which together with ∥∆̃ξ(xt)∥ = ∥∆(a)
ξ (xt)∥+ ∥∆(b)

ξ (xt)∥ yields the claim. ■

We now prove that the message error can be efficiently bounded by the true gradient.

Lemma A.2. For C ′ =
18c2Ql2aN

2

1−2c2Q
, one has

1

T

∑
t∈[T]

E∥δξt(xt)∥2 ≤ C ′γ2 ·

 1

T

∑
t∈[T]

E∥∇f(xt)∥2 + σ2 + (cQCaCf◦b)
2

 .

PROOF: Let ξ be a fixed sample. To simplify the exposition, we abuse the notation slightly by
a(x) = a(ξ, x), m(x) = m(ξ, x). Let T (ξ) be the number of realizations of ξ before time T . Using
the definition of δξ (recalling that δξ(xt1(ξ)) = 0, since in the first iteration we send the correct
signal), we have

T (ξ)∑
k=1

∥δξ(xtk(ξ))∥
2 =

T (ξ)∑
k=2

∥a(xtk(ξ))−m(xtk(ξ))∥
2

=

T (ξ)∑
k=2

∥a(xtk(ξ))−m(xtk−1(ξ))−Q(a(xtk(ξ))−m(xtk−1(ξ)))∥
2

{∥x−Q(x)∥ ≤ cQ∥x∥} ≤ c2Q

T (ξ)∑
k=2

∥a(xtk(ξ))− a(xtk−1(ξ)) + δξ(xtk−1(ξ))∥
2

{(α+ β)2 ≤ 2α2 + 2β2} ≤ 2c2Q

T (ξ)∑
k=2

∥a(xtk(ξ))− a(xtk−1(ξ))∥
2 + 2c2Q

T (ξ)∑
k=2

∥δξ(xtk−1(ξ))∥
2

{a is ℓa-Lipschitz } ≤ 2c2Qℓ
2
a

T (ξ)∑
k=2

∥xtk(ξ) − xtk−1(ξ)∥
2 + 2c2Q

T (ξ)∑
k=2

∥δξ(xtk−1(ξ))∥
2.

17

Transferring the δξ part to the LHS, and noting that between every two realizations of ξ at times
tk−1(ξ) and tk(ξ), we can follow updates for t = tk−1(ξ), . . . , tk(ξ)− 1, we get

(1− 2c2Q)

T (ξ)∑
k=1

∥δξ(xtk(ξ))∥
2 ≤ γ2 · (2c2Qℓ2a)

T (ξ)∑
k=1

∥∥∥∥∥∥
tk(ξ)−1∑

t=tk−1(ξ)

(gξt(xt) + ∆ξt(xt))

∥∥∥∥∥∥
2

{Cauchy-Schwarz} ≤ γ2 · (2c2Qℓ2a)
T (ξ)∑
k=1

(tk(ξ)− tk−1(ξ))

tk(ξ)−1∑
t=tk−1(ξ)

∥gξt(xt) + ∆ξt(xt)∥2

= γ2 · (2c2Qℓ2a)
∑
t∈[T]

ωξ(t) · ∥gξt(xt) + ∆ξt(xt)∥2,

where ω : [T]→ {0, 1, . . .} is defined by ωξ(t) = tk(ξ)− tk−1(ξ), if t ∈ [tk−1(ξ), tk(ξ)− 1], and
ωξ(t) = 0, if t > tT (ξ)(ξ). We note that for two different samples ξ and ξ′, the sums on the LHS are
disjoint. Therefore, summing over all samples ξ and taking the expectation over ξ and all ξt yields

(1− 2c2Q) ·
1

T

∑
t∈[T]

E∥δξt(xt)∥2 ≤ γ2 · (2c2Qℓ2a) ·
1

T

∑
t∈[T]

E∥gξt(xt) + ∆ξt(xt)∥2 ·N · E[ωξ(t)]

≤ γ2 · (2c2Qℓ2aN2) · 1
T

∑
t∈[T]

E∥gξt(xt) + ∆ξt(xt)∥2,

since E[ωξ(t)] ≤ N . Applying ∥gξt(xt)+∆ξt(xt)∥2 ≤ 3∥gξt(xt)∥2+3∥∆(Q)
ξt

(xt)∥2+3∥∆̃ξt(xt)∥2,
bounded variance E∥gξ(x)−∇f(x)∥2 ≤ σ2, and Lemma A.1, we get(

1− 2c2Q − γ2 · 6c2Qℓ2aN2(1 + Ca)
2L2

f◦b
)
· 1
T

∑
t∈[T]

E∥δξt(xt)∥2

≤ γ2 · (6c2Qℓ2aN2)

2σ2 + 2 · 1
T

∑
t∈[T]

E∥∇f(xt)∥2 + (cQCaCf◦b)
2

 ,

which implies(
1− 2c2Q − γ2 · 3

8
· C2 · (1− 2c2Q)

)
· 1
T

∑
t∈[T]

E∥δξt(xt)∥2

≤ γ2 · (12c2Qℓ2aN2)

σ2 +
1

T

∑
t∈[T]

E∥∇f(xt)∥2 + (cQCaCf◦b)
2

 ,

Recalling the definitions of C and γ, and the fact that γ · C < 1
3 , we can simplify the LHS to get

(
1− 2c2Q

)
· 1
T

∑
t∈[T]

E∥δξt(xt)∥2 ≤ γ2 · (12 · 24
23
· c2Qℓ2aN2)

σ2 +
1

T

∑
t∈[T]

E∥∇fξt(xt)∥2 + (cQCaCf◦b)
2

 ,

yielding the claim. ■

We are ready to prove the main result, with a learning rate of

γ =
1

3(3Lf + C)
√
T
.

PROOF OF THEOREM 3.1: Since f has Lf -Lipschitz gradient, we know that

f(xt+1)− f(xt) ≤ −γ · ⟨∇f(xt), gξt(xt) + ∆ξt(xt)⟩+
γ2Lf

2
∥gξt(xt) + ∆ξt(xt)∥2.

18

Since the quantization is unbiased, implying EQ[∆
(Q)
ξ (x)] = 0, taking the expectation with respect

to the quantization yields

EQ[f(xt+1)]− EQ[f(xt)]

≤ −γEQ⟨∇f(xt), gξt(xt) + ∆̃ξt(xt)⟩+
3γ2Lf

2

(
∥gξt(xt)∥2 + ∥∆̃ξt(xt)∥2 + EQ∥∆(Q)

ξt
∥2
)
,

where ∆̃ξt(xt) = (∆
(a)
ξt

,∆
(b)
ξt

), and we used (α+ β + ρ)2 ≤ 3α2 + 3β2 + 3ρ2.

Taking the expectation over ξt (simplifying the notation of EQEξ to simply E), and recalling that
E[gξt(xt)] = ∇f(xt), we can bound the first two terms of the RHS by

− γE⟨∇f(xt), gξt(xt) + ∆̃ξt(xt)⟩+
3

4
γ2LfE∥gξt(xt) + ∆̃ξt(xt)∥2

≤ −γ

2
E∥∇f(xt)∥2 +

γ

2
E∥∆̃ξt(xt)∥2 +

3

2
γ2LfE

(
∥gξt(xt)∥2 + ∥∆̃ξt(xt)∥2

)
{α · β ≤ 1

2
(α2 + β2)}

≤
(
−γ

2
+ 3γ2Lf

)
E∥∇f(xt)∥2 +

(
γ

2
+

3

2
γ2Lf

)
E∥∆̃ξt(xt)∥2 + 3γ2Lfσ

2 {E∥gξt −∇f∥2 ≤ σ2}

≤
(
−γ

2
+ 3γ2Lf

)
E∥∇f(xt)∥2

+

(
γ

2
+

3

2
γ2Lf

)
(1 + Ca)

2L2
f◦bE∥δξt(xt)∥2 + 3γ2Lfσ

2. {Lemma A.2}

Reorganizing the terms, summing over all t ∈ [T] and dividing by T yields

γ ·
(
1

2
− 3γLf

)
· 1
T

∑
t∈[T]

E∥∇f(xt)∥2 ≤
f(x1)− E[f(xT+1)]

T
+ γ · C ′′ · 1

T

∑
t∈[T]

E∥δξt(xt)∥2

+ γ2Lf (3σ
2 +

3

2
· (cQCaCf◦b)

2),

where

C ′′ =

(
1

2
+

3

2
γLf

)
(1 + Ca)

2L2
f◦b < (1 + Ca)

2L2
f◦b, (A.1)

by the definition of γ. Applying Lemma A.2 and regrouping the terms now yields

γ ·
(
1

2
− 3γLf − γ2 · C ′C ′′

)
· 1
T

∑
t∈[T]

∥∇f(xt)∥2

≤ f(x1)− E[f(xT+1)]

T
+ γ2 (γ · C ′C ′′ + 3Lf) · (σ2 + (cQCaCf◦b)

2).

Noting that C ′C ′′ < C2 and recalling that γC < 1/3 and γLf < 1/9, we get

γ ·
(
1

2
− γ(3Lf + C)

)
· 1
T

∑
t∈[T]

∥∇fξt(xt)∥2

≤ f(x1)− E[f(xT+1)]

T
+ γ2 (3Lf + C) · (σ2 + (cQCaCf◦b)

2).

Since γ · (3Lf + C) = 1
3
√
T
≤ 1

3 , the LHS coefficent is at least γ/6, so dividing by γ/6 now yields
the claim by substituting γ with 1

3(3Lf+C)
√
T

. ■

A.1 Theoretical analysis when K > 2

In this section we sketch how one can generalize the already provided theoretical analysis for the
K = 2 case.

19

Instead of Machines a and b, we now suppose that we have a stack a1, . . . , aK of K Machines
such that every pair ai, ai+1 communicates a compressed message, denoted by mi. We simplify the
notation of the complete model by x = (x(1), . . . , x(K)), and, for a sample ξ, further denote

a(i)(ξ, xt) = ai(ai−1(. . . (a1(ξ, x
(1)
t), x

(2)
t), . . . x

(i)
t)),

m(i)(ξ, xt) = mi(mi−1(. . . (m1(ξ, x
(1)
t), x

(2)
t), . . . x

(i)
t)),

for i ∈ [K]. As in Algorithm 1, for iteration t and the data sample ξt, if it is the first time that
ξt is sampled, Machine ai communicates to Machine ai+1 the full precision activations without
any compression: mi(ξt) = a(i)(ξt, xt). If ξt has been sampled in previous iterations, Machine ai
communicates a compressed version:

Q(ai(m
(i−1)(ξt), x

(i)
t)−mi(ξt)),

where mi(ξt) was the previous message, stored in the local buffer. Both machines then update this
local buffer:

mi(ξt)← mi(ξt) +Q(ai(m
(i−1)(ξt), x

(i)
t)−mi(ξt)).

Machine ai+1 then uses mi(ξt) as the forward activations. Upon receiving backward gradients
from Machine ai+2, it computes backward gradients, and communicates a quantized version of the
backward gradient to Machine ai. We use

δ
(i)
ξ = a(i)(ξ, xt)−m(i)(ξ, xt)

to denote the message error of i-th machine in sending the activations (accumulated also through
messages in previous pairs), and denote the total message error by δξ = (δ

(1)
ξ , . . . , δ

(K−1)
ξ).

Update Rules. We can now generalize the update rule for a and b to

x
(K)
t+1 = x

(K)
t − γ · ∇x(K)(f ◦ aK)|

(m(K−1)(ξt),x
(K)
t)

,

x
(i)
t+1 = x

(i)
t − γ ·Q(∇ai

(f ◦ aK ◦ . . . ◦ ai+1)|(m(i)(ξt),x
(i+1)
t ,...,x

(K)
t)

) · ∇x(i)ai|(m(i−1)(ξt),x
(i)
t)

,

for i = 1, . . . ,K − 1, where γ is the learning rate. We can rephrase the update rule as

xt+1 = xt − γ · (gξ(xt) + ∆ξ(xt)) ,

where gξ(xt) is the stochastic gradient and ∆ξ(xt) is the total gradient error introduced by com-
munication compression. We have ∆ξ = (∆

(1)
ξ +∆

(Q,1)
ξ , . . . ,∆

(K−1)
ξ +∆

(Q,K−1)
ξ ,∆

(K)
ξ), given

by:

∆
(Q,i)
ξ (xt) = Q(∇ai

(f ◦ aK ◦ . . . ◦ ai+1)|(m(i)(ξt),x
(i+1)
t ,...,x

(K)
t)

) · ∇x(i)ai|(m(i−1)(ξt),x
(i)
t)

−∇ai
(f ◦ aK ◦ . . . ◦ ai+1)|(m(i)(ξt),x

(i+1)
t ,...,x

(K)
t)
· ∇x(i)ai|(m(i−1)(ξt),x

(i)
t)

,

∆
(i)
ξ (xt) = ∇ai

(f ◦ aK ◦ . . . ◦ ai+1)|(m(i)(ξt),x
(i+1)
t ,...,x

(K)
t)
· ∇x(i)ai|(m(i−1)(ξt),x

(i)
t)

−∇ai
(f ◦ aK ◦ . . . ◦ ai+1)|(a(i)(ξt),x

(i+1)
t ,...,x

(K)
t)
· ∇x(i)ai|(a(i−1)(ξt),x

(i)
t)

,

∆
(K)
ξ (xt) = ∇x(K)(f ◦ aK)|

(m(K−1)(ξt),x
(K)
t)
−∇x(K)(f ◦ aK)|

(a(K−1)(ξt),x
(K)
t)

,

for all i = 1, . . . ,K − 1.

Generalized Assumptions. In order to state the analogue of Theorem 3.1 for K > 2, we need to
define the corresponding assumptions with respect to Lipschitz properties (whereas Assumption GA2
is here only for completeness, being the same as A2).

• (GA1: Lipschitz assumptions) We assume that
– f had Lf -Lipschitz gradient,
– f ◦ aK ◦ . . . ◦ ai+1 has Lf◦aK◦...◦ai+1

-Lipschitz gradient, and has gradient bounded by
Cf◦aK◦...◦ai+1

for all i = 1, . . . ,K − 1,
– ai is ℓai

-Lipschitz, and has gradient bounded by Cai
, for all i = 1, . . . ,K.

20

• (GA2: SGD assumptions) We assume that the stochastic gradient gξ is unbiased, i.e. Eξ[gξ(x)] =
∇f(x), for all x, and with bounded variance, i.e. Eξ∥gξ(x)−∇f(x)∥2 ≤ σ2, for all x.

We have the following analogue of Theorem 3.1.
Theorem A.3. Suppose that Assumptions GA1, GA2 hold, and let

C̃ =

√√√√K−1∑
i=1

C2
ai
C2

f◦aK◦...◦ai+1
.

Consider an unbiased quantization function Q(x) which satisfies that there exists cQ <
√

1/2
such that E∥x − Q(x)∥ ≤ cQ∥x∥, for all x. Then there exists a constant C that depends only on
the constants defined above and on

√
K and N , such that for the learning rate γ proportional to

1
(C+Lf)

√
T

, after performing T updates one has

1

T

∑
t∈[T]

E∥∇f(xt)∥2 ≲
(C + Lf)(f(x1)− f∗)√

T
+

σ2 + (cQC̃)2√
T

. (A.2)

Instead of performing a tedious job of rewriting the proof of the K = 2 case with inherently more
constant-chasing, we will simply sketch the differences with respect to the proof of Theorem 3.1.
First we note that, having analogous assumptions as in the case when K = 2, we can easily prove the
following analogue of Lemma A.1.
Lemma A.4. Let

∆
(Q)
ξ = (∆

(Q,1)
ξ , . . . ,∆

(Q,K−1)
ξ).

For every sample ξ, one has

∥∆(Q,i)
ξ (x)∥ ≤ cQCai

Cf◦aK◦...◦ai+1
, i = 1, . . . ,K − 1,

∥∆(i)
ξ (x)∥ ≤ CaiLf◦aK◦...◦ai+1∥δ

(i)
ξ ∥+ Cf◦aK◦...◦ai+1Lai∥δ

(i−1)
ξ ∥, i = 1, . . . ,K − 1,

and
∥∆(K)

ξ (x)∥ ≤ Lf◦aK
∥δ(K−1)

ξ ∥,

implying ∥∆(Q)
ξ ∥ ≤ C̃cQ.

Comparing this with Lemma A.1, we see that for ∆̃ξ = (∆
(1)
ξ , . . . ,∆

(K)
ξ), we now have an additional

term that depends on δ
(i−1)
ξ . However, since in the proof of Theorem 3.1 we only rely on ∥∆ξ∥2, we

can proceed even with a crude bound

∥∆̃ξ∥2 =

K∑
i=1

∥∆(i)
ξ ∥

2

≤ (1 + 2C2
aK−1

)L2
f◦aK

∥δ(K−1)
ξ ∥2 + 2

K−2∑
i=1

(C2
aK−2

L2
f◦aK◦...◦ai+1

+ C2
f◦aK◦...◦ai+2

L2
ai+1

)∥δ(i)ξ ∥
2

≤ 2K ·max

{
(1 + 2C2

aK−1
)L2

f◦aK
, max
i∈[K−2]

{C2
aK−2

L2
f◦aK◦...◦ai+1

+ C2
f◦aK◦...◦ai+2

L2
ai+1
}
}

︸ ︷︷ ︸
C1

·∥δξ∥2.

Mimicking closely the steps of Lemma A.2, separately for each i and the summing over all i via
∥ℓa∥2 =

∑K
i=1 ∥ℓai

∥2, one can straightforwardly yield the following analogue of Lemma A.2.

Lemma A.5. For C ′ = K · 36c
2
Q∥la∥2N2C1

1−2c2Q
, where la = (la1

, . . . , laK
), one has

1

T

∑
t∈[T]

E∥δξt(xt)∥2 ≤ C ′γ2 ·

 1

T

∑
t∈[T]

E∥∇f(xt)∥2 + σ2 + (cQC̃)2

 .

Theorem A.3 can now be proved by repeating the steps of the proof of Theorem 3.1, carefully
substituting Lemma A.1 by Lemma A.4, and Lemma A.2 by Lemma A.5.

21

Dataset # labels # train samples Task description

QNLI 2 105K question-paragraph pairs natural language inference
CoLA 2 8.6K sentences linguistic acceptability
WikiText2 - 2M tokens language modeling
arXiv - 7M tokens language modeling

Table 4: Dataset statistics

B Benchmark Dataset

The data statistics can be found in Table 4. We fine-tune DeBERTa on QNLI and CoLA datasets. The
QNLI task is to determine whether the context sentence contains the answer to the question. The
CoLA task aims to detect whether a given sequence of tokens is a grammatical English sentence. In
addition, we fine-tune GPT2 on the WikiText2 training set. We also collect 30K arXiv abstracts in
2021 to fine-tune GPT2. Neither corpus is included in the GPT2 pre-training data set.

C Training Task Setup and Hyper-parameter Tuning

Sequence Classification. We use the AdamW optimizer to fine-tune the model for 10 epochs.
Specifically, for QNLI, we set the learning rate to 3.0e-6, learning rate warm-up steps to 1000, max
sequence length to 256, the macro-batch size to 64 and micro-batch size to 8; for CoLA, we set
the learning rate to 2.5e-6, learning rate warm-up steps to 250, max sequence length to 128, the
macro-batch size to 32 and micro-batch size to 8. After the learning rate warm-up stage, we decay
the learning rate linearly over the training epochs.

Language Modeling. For both WikiText and arXiv datasets, we use AdamW optimizer with a
learning rate of 5.0e-6. We train the model for 10 epochs with a macro-batch size of 32 and a
micro-batch size of 1. The max sequence length is set to 1024 for both datasets. After the learning
rate warm-up stage, we decay the learning rate linearly over the training epochs.

D Distributed View of AQ-SGD lgorithm

Algorithm 2 shows a multi-node view of AQ-SGD. For brevity, we omit the first warm-up epoch, where
we conduct uncompressed training, and thus we update the previous messages by m(ξ)← a(ξ, x).

Algorithm 2 AQ-SGD Algorithm

Initialize: x0, learning rate γ, network a’s weights x(a), network b’s weights x(b), quantization
function Q, the arrays of previous messages m, where networks a and b each maintain a copy of it.
for t = 1, . . . , T do

(on network a)
Randomly sample ξt
∆m(ξt)← Q

(
a(ξt, x

(a)
t)−m(ξt)

)
Update m(ξt)← m(ξt) + ∆m(ξt)
Send ∆m(ξt) to network b
(on network b)
Update m(ξt)← m(ξt) + ∆m(ξt)

Update x
(b)
t+1 ← x

(b)
t − γ · ∇x(b)(f ◦ b)|m

Send Q(∇a(f ◦ b)|m) to network a
(on network a)
Update x

(a)
t+1 ← x

(a)
t − γ ·Q(∇a(f ◦ b)|m) · ∇x(a)a

end for
Output: x = (x

(a)
T , x

(b)
T)

22

E Decentralized Training over Slow Network

Decentralized training for large foundation models recently attracted intensive interests. Example
projects include Learning@home [1], DeDLOC [2], and Training Transformers Together [3]. The
goal of these projects is to enable a decentralized open-volunteering paradigm for foundation model
training. As many geo-distributed users contribute their GPUs, these GPUs are often connected
via slow networks. For example, [2] investigates a heterogeneous with bandwidths of 200Mbps,
100Mbps, and 50Mbps; [3] advocates to train Transformer over the Internet with 10-100Mbps
bandwidth; [4] considers network bandwidth less than 400Mbps.

In this setting, communication compression is key to performance. However, when compressing
activations, existing methods rely on direct quantization. This inspired our paper, which provides
the first activation quantization method with rigorous theoretical guarantee and outperforms direct
quantization.

F Discussion on Tensor Parallelism

We here discuss tensor parallelism [24], and the potential adaptation of our algorithm to it. In
tensor parallelism, the activations are computed across different machines, and need to be aggregated.
Therefore we need to compress activations both before and after allreduce to support tensor parallelism.
Specifically, suppose N machines conduct tensor parallelism, then the output activation is:

A = A1 +A2 + ...+AN , (F.1)

and we need to compress communication twice:

AQ = Q[Q(A1) +Q(A2) + . . . +Q(AN)]. (F.2)

We believe that delta compensation could be applied to all Q(−), similar to how previous work
handles gradient compression (e.g. Eq. 3 and 4 in [27]). However, this requires careful further studies,
both empirically and theoretically. We leave activation compression for tensor parallelism as future
work.

G Limitation and Potential Future Direction

Additional Storage. Our algorithm trades storage for communication. Fortunately, we find this is a
reasonable trade-off in our settings. In the following we show that we can offload the activations to
SSD and hide it within the GPU computation of other data examples.

We compare the throughput under the bandwidth of 10Gb/s. FP32 achieves a throughput of 3.8 seqs/s,
while AQ-SGD, either offloading activations to host memory or SSDs, achieves 4.0 seqs/s. Considering
the similar training throughput of the above three settings, we show that the overhead of offloading to
SSD can be successfully hided in GPU computation. In particular, our largest experiment in this paper
requires 172GB storage per machine, which even with a 10x larger dataset can be easily offloaded
to SSDs. For much larger datasets (e.g. 100x), we can use data parallelism to reduce the storage
requirement for each machine. For an even larger dataset, our algorithm might not support it well.
This then requires further studies.

Online Learning. Our proposal relies on iterating over multiple epochs, which is a common setting.
We understand our current algorithm has limitations in the settings such as online learning. In the
following, we provide a potential solution (to both storage requirement and limitation in online
learning) – relaxing AQ-SGD by clustering activations and storing only the centers of the clusters.

Recall that AQ-SGD compresses the “delta” (difference between activations from two epochs) and
thereby needs to store activations from the previous epoch. In the relaxed AQ-SGD, we could use
algorithms like clustering or locality sensitive hashing to partition the activations and then we only
store the “centers” of each partition/cluster. When computing the “delta”, we can first identify which
partition/cluster the current activation belongs to and retrieve the corresponding “center”. Then “delta”
= activation - “center”. This will potentially help address storage and online learning limitations. We
will explore this in future work.

23

0.0 5.0K 10.0K 15.0K
step

0.0

0.2

0.4

0.6

tra
in

 lo
ss

FP32
DirectQ (fw2 bw4)
DirectQ (fw3 bw6)
AQ-SGD (fw2 bw4)
AQ-SGD (fw3 bw6)

(a) QNLI, DeBERTa-1.5B

500.0 1.0K 1.5K 2.0K 2.5K
step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

tra
in

 lo
ss

FP32
DirectQ (fw2 bw4)
DirectQ (fw3 bw6)
AQ-SGD (fw2 bw4)
AQ-SGD (fw3 bw6)

(b) CoLA, DeBERTa-1.5B

200.0 400.0 600.0
step

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

tra
in

 lo
ss

FP32
DirectQ (fw3 bw6)
DirectQ (fw4 bw8)
AQ-SGD (fw3 bw6)
AQ-SGD (fw4 bw8)

(c) WikiText2, GPT2-1.5B

500.0 1.0K 1.5K 2.0K
step

2.75

3.00

3.25

3.50

3.75

4.00

tra
in

 lo
ss

FP32
DirectQ (fw3 bw6)
DirectQ (fw4 bw8)
AQ-SGD (fw3 bw6)
AQ-SGD (fw4 bw8)

(d) arXiv, GPT2-1.5B

Figure 6: Convergence (loss vs. # stpes) of different approaches. × represents divergence.

Table 5: Training Throughput.
DeBERTa-1.5B, QNLI GPT2-1.5B, WikiText2

Network
Bandwidth FP32 DirectQ

fw2 bw4 / fw3 bw6
AQ-SGD

fw2 bw4 / fw3 bw6 FP32 DirectQ
fw3 bw6 / fw4 bw8

AQ-SGD
fw3 bw6 / fw4 bw8

10 Gbps 12.9±0.02 13.6±0.02 / 13.6±0.02 13.6±0.02 / 13.5±0.02 3.8±0.01 4.0±0.01 / 4.1±0.01 4.0±0.01 / 4.0±0.01

1 Gbps 9.6±0.02 13.3±0.02 / 13.1±0.02 13.3±0.02 / 13.0±0.02 3.2±0.01 4.0±0.01 / 4.0±0.01 4.0±0.01 / 3.9±0.01

500 Mbps 6.2±0.03 13.0±0.03 / 12.6±0.03 12.9±0.03 / 12.5±0.03 2.7±0.02 3.9±0.01 / 3.9±0.01 3.9±0.01 / 3.9±0.01

300 Mbps 4.4±0.04 12.5±0.02 / 11.9±0.03 12.4±0.03 / 11.8±0.03 1.8±0.02 3.9±0.01 / 3.8±0.01 3.8±0.01 / 3.8±0.01

100 Mbps 1.6±0.04 10.7±0.03 / 9.4±0.03 10.6±0.03 / 9.1±0.03 0.5±0.02 3.5±0.02 / 3.0±0.02 3.4±0.01 / 3.0±0.02

DeBERTa-1.5B, CoLA GPT2-1.5B, arXiv

Network
Bandwidth FP32 DirectQ

fw2 bw4 / fw3 bw6
AQ-SGD

fw2 bw4 / fw3 bw6 FP32 DirectQ
fw3 bw6 / fw4 bw8

AQ-SGD
fw3 bw6 / fw4 bw8

10 Gbps 17.1±0.03 18.0±0.03 / 17.9±0.03 17.9±0.03 / 17.8±0.03 3.8±0.01 4.0±0.01 / 4.1±0.01 4.0±0.01 / 4.0±0.01

1 Gbps 12.2±0.03 17.4±0.02 / 17.1±0.02 17.3±0.02 / 16.9±0.02 3.2±0.01 4.0±0.01 / 4.0±0.01 4.0±0.01 / 3.9±0.01

500 Mbps 8.9±0.03 16.7±0.03 / 16.2±0.03 16.7±0.03 / 16.1±0.03 2.7±0.02 3.9±0.01 / 3.9±0.01 3.9±0.01 / 3.9±0.01

300 Mbps 6.0±0.04 16.1±0.03 / 15.2±0.03 16.0±0.03 / 15.1±0.03 1.8±0.02 3.9±0.01 / 3.8±0.01 3.8±0.01 / 3.8±0.01

100 Mbps 2.2±0.04 13.1±0.03 / 11.5±0.03 13.1±0.03 / 11.3±0.03 0.5±0.03 3.5±0.01 / 3.0±0.02 3.4±0.01 / 3.0±0.01

H Additional Results

We provide additional experimental results. Specifically, we show:

• the convergence results with standard deviation;
• the training throughput for different dataset settings;
• the numerical stability of training from scratch;
• the training results under FP16 precision;
• the robustness of AQ-SGD under different hyperparameter settings;
• the effectiveness of AQ-SGD in the split learning scenario.

H.1 Convergence Results with Standard Deviation

In the main content, we show the convergence performance of different approaches. We repeated
each experiment three times to ensure reproducibility. We calculate the moving averages of these
convergence curves and then average the results of repeated experiments. We visualize (shaded areas)
the moving standard deviation in all repeated experiments in Figure 6. Overall, we observe consistent
results for all datasets.

H.2 Throughput under Different Dataset Settings

We show the training throughput under different dataset settings in Figure 5. In general, the observa-
tion is similar to that of the main content: our approach maintains similar throughput even when the
network is 100× slower (from 10Gbps to 100Mbps). WikiText2 and arXiv have essentially the same
throughput results, since we use the same training settings for them.

24

0.0 200.0 400.0 600.0 800.0 1.0K 1.2K 1.4K
step

5.5

6.0

6.5

7.0

7.5

8.0

tra
in

 lo
ss

FP32
DirectQ (fw4 bw8)
AQ-SGD (fw4 bw8)

(a) Wiki from scratch

0.0 1.0K 2.0K 3.0K 4.0K
step

4

5

6

7

8

tra
in

 lo
ss

FP32
DirectQ (fw4 bw8)
AQ-SGD (fw4 bw8)

(b) arXiv from scratch

Figure 7: Convergence results of training from scratch.

200.0 400.0 600.0
step

2.5

3.0

3.5

4.0

tra
in

 lo
ss

FP32
DirectQ (fw4 bw8)
AQ-SGD (fw4 bw8)

(a) Wiki, FP32

200.0 400.0 600.0
step

2.5

3.0

3.5

4.0

tra
in

 lo
ss

FP16
DirectQ-FP16 (fw4 bw8)
AQ-SGD-FP16 (fw4 bw8)

(b) Wiki, FP16

0.0 500.0 1.0K 1.5K 2.0K
step

2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4

tra
in

 lo
ss

FP32
DirectQ (fw4 bw8)
AQ-SGD (fw4 bw8)

(c) arXiv, FP32

0.0 500.0 1.0K 1.5K 2.0K
step

2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4

tra
in

 lo
ss

FP16
DirectQ-FP16 (fw4 bw8)
AQ-SGD-FP16 (fw4 bw8)

(d) arXiv, FP16

Figure 8: Comparison of fine-tuning under FP32 and FP16.

H.3 Results of Training from Scratch

We investigate the numerical stability of AQ-SGD by showing the convergence result of training from
scratch, where the model parameters are randomly initialized. We train WikiText and arXiv datasets
for 20 epochs and use the first 10% of steps as warm-up, respectively. As shown in Figure H.3, we
can see that AQ-SGD converges almost as fast as FP32 when training from scratch, which indicates
our approach is robust enough even when the model is far from the converged state. In contrast, the
curve of DirectQ becomes flatter in the late training stage, showing a clear gap with FP32.

H.4 Results of Training under FP16

To investigate the convergence performance of AQ-SGD under low-precision training, we here show
the results of FP16 training, and compare it with FP32 training. Figure 8 compares the results under
FP32 and FP16. In general, the convergence curves are consistent with the FP32 case. This confirms
the effectiveness of AQ-SGD when the activation is already in low precision.

H.5 Hyper-parameter Sensitivity

Here we demonstrate the robustness of our method in various settings. For fast validation, we focus
on evaluating DeBERTa-v3-base6 on QNIL and CoLA datasets. We by default use K = 4 devices for
pipeline parallel training, 2 bits for forward activation, and 4 bits for backward gradients (fw2 bw4).

Number of Pipeline Stages. We first investigate the influence of the number of pipeline stages on
convergence performance. Intuitively, partitioning into more pipeline stages leads to more rounds
of data compression and communication,resulting in a larger accumulated compression error. The
results of Figures 9a and 9b confirm this intuition. Specifically, the direct quantization method works
not bad when K = 2, but its performance becomes unsatisfied when we further enlarge K. In
comparison, our approach can maintain similar convergence performance to FP32.

Number of Bits in Communication. Figures 9c and 9d compare different methods with different
numbers of bits in communication. We observe that using more bits can improve the convergence
performance but lead to higher communication overheads. In general, our approach achieves better
accuracy-efficiency trade-offs.

6https://huggingface.co/microsoft/deberta-v3-base

25

https://huggingface.co/microsoft/deberta-v3-base

5.0K 10.0K 15.0K 20.0K 25.0K 30.0K
step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

tra
in

 lo
ss

FP32
DirectQ K=2
DirectQ K=4
DirectQ K=6
AQ-SGD K=2
AQ-SGD K=4
AQ-SGD K=6

(a) QNLI, K stages

500.0 1.0K 1.5K 2.0K 2.5K
step

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

tra
in

 lo
ss

FP32
DirectQ K=2
DirectQ K=4
DirectQ K=6
AQ-SGD K=2
AQ-SGD K=4
AQ-SGD K=6

(b) CoLA, K stages

5.0K 10.0K 15.0K 20.0K 25.0K 30.0K
step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

tra
in

 lo
ss

FP32
DirectQ fw4 bw8
DirectQ fw3 bw6
DirectQ fw2 bw4
AQ-SGD fw4 bw8
AQ-SGD fw3 bw6
AQ-SGD fw2 bw4

(c) QNLI, n bits

500.0 1.0K 1.5K 2.0K 2.5K
step

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

tra
in

 lo
ss

FP32
DirectQ fw4 bw8
DirectQ fw3 bw6
DirectQ fw2 bw4
AQ-SGD fw4 bw8
AQ-SGD fw3 bw6
AQ-SGD fw2 bw4

(d) CoLA, n bits

5.0K 10.0K 15.0K 20.0K 25.0K 30.0K
step

0.0

0.1

0.2

0.3

0.4

tra
in

 lo
ss

FP32
DirectQ
AQ-SGD m32
AQ-SGD m8
AQ-SGD m4
AQ-SGD m2

(e) QNLI, low-bit m

500.0 1.0K 1.5K 2.0K 2.5K
step

0.0

0.1

0.2

0.3

0.4

0.5

tra
in

 lo
ss

FP32
DirectQ
AQ-SGD m32
AQ-SGD m8
AQ-SGD m4
AQ-SGD m2

(f) CoLA, low-bit m

500.0 1.0K 1.5K 2.0K 2.5K
step

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

tra
in

 lo
ss

FP32
DirectQ
AQ-SGD

(g) CoLA, DeBERTa-base

500.0 1.0K 1.5K 2.0K 2.5K
step

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

tra
in

 lo
ss

FP32
DirectQ
AQ-SGD

(h) CoLA, DeBERTa-large

Figure 9: Convergence curves under different configurations.

Number of Bits for Previous Messages. We may find that storing all previous messages is space-
intensive. To reduce such requirements, we show that previous messages m can be preserved with
low precision. We here perform quantization on m, where mz means that we use z bits for previous
messages. Figures 9e and 9f show the results with different number of bits of the previous messages.
When only 2 bits are used for the previous messages, despite the fact that it is slightly worse than our
default setting, our approach is still significantly better than DirectQ. And there is no significant
performance drop when 8 bits are used for the previous messages.

Pre-trained Model Sizes. Figures 9g and 9h show the results of the base and large version of
DeBERTa. Surprisingly, larger models seem to be more tolerant of errors from activation compression
than smaller models. One possible reason is that larger models usually use much smaller learning
rates. So the error of each iteration can be restricted to a smaller range. Here, we use 2.0e-5 for the
base model and 7e-6 for the large model, as suggested in the official repository of DeBERTa.

H.6 Split Learning

Split learning is a scenario of federated learning, where the client trains a shallow part of deep
network (known as the cut layer) that accesses the training data, while the rest of the model is trained
in a data center. Clients and server need to exchange the activation and its gradients in the cut, where
AQ-SGD can be adopted. We evaluated AQ-SGD on a split learning scenario where neither the input
data nor its labels are shared with the server—the model is cut twice, one after the first resnet block
and one before the last block to generate the prediction. We evaluate AQ-SGD for split learning over
Cifar10 and Cifar100 with the ResNet34 model. We set 16 clients and use a Dirichlet distribution
with concentration parameter 0.5 to synthesize non-identical datasets. Following the previously
established work of split learning, in each communication round, we conduct local training for each
client sequentially. and each client will train 3 epochs with its local data. We utilize SGD optimizer
with momentum of 0.9, a batch size of 64, and a learning rate of 0.01. We decay the learning rate to
its 10% for every 20 communication rounds.

The datasets are augmented with random cropping and flipping. To adapt to random cropping, we do
the same cropping operation on the retrieved previous message, and only update its non-cropped part.
To adapt to random flipping, we maintain another previous message copy for flipped images, and
retrieve and update only the corresponding copy during training.

Figure 10 presents the results of split learning, where fw2 bw8[0.2] means that, for forward pass,
we perform 2-bit quantization, and for backward pass, we keep only the top 20% gradients and
then perform 8-bit quantization. We can see that AQ-SGD transfers the activations in 2 bits while
maintaining a performance similar to FP32, which indicates the effectiveness of AQ-SGD in improving
the communication efficiency in the split learning scenario. Furthermore, compared to DirectQ,
AQ-SGD shows advantages in terms of both the convergence and generalization of the trained model.

26

10 20 30 40 50 60
round

10 2

10 1

100

tra
in

 lo
ss

FP32
DirectQ (fw2 bw8[0.2])
AQ-SGD (fw2 bw8[0.2])

(a) Cifar10, Train Loss

0 10 20 30 40 50 60
round

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

te
st

 a
cc

ur
ac

y

FP32
DirectQ (fw2 bw8[0.2])
AQ-SGD (fw2 bw8[0.2])

(b) Cifar10, Test ACC

10 20 30 40 50 60
round

10 2

10 1

100

tra
in

 lo
ss

FP32
DirectQ (fw2 bw8[0.2])
AQ-SGD (fw2 bw8[0.2])

(c) Cifar100, Train Loss

0 10 20 30 40 50 60
round

0.2

0.3

0.4

0.5

0.6

0.7

te
st

 a
cc

ur
ac

y

FP32
DirectQ (fw2 bw8[0.2])
AQ-SGD (fw2 bw8[0.2])

(d) Cifar100, Test ACC

Figure 10: Results of split learning with ResNet34.

I Case Study of Generation Results

We here conduct case study to better understand the generation quality across different methods. All
methods are fine-tuned on WikiText with the same seed. We use greedy decoding to generate texts.
For DirectQ and AQ-SGD, we use 4-bit in forward pass and 8-bit in backward pass.

We randomly pick documents from the test set of WikiText to construct the prompts and let the
model complete the rest. The generation results after fine-tuning are presented in Tables 6 and 7.
For instance, in Cases 1 and 2, AQ-SGD produces the same results as FP32; in Case 3, although
AQ-SGD does not generate the exact same output as FP32, it still expresses a similar meaning. This
indicates our proposed compression scheme has relatively little impact on the learning process. In
contrast, DirectQ may generate text that is not relevant to the context. For example, in Case 1, we
know that “Matsuo Bashō was strongly influenced by Du Fu”, so we should expect the text below to
show the fact how he was influenced, just like FP32 and AQ-SGD did. But DirectQ fails to generate
reasonable text based on the context. Other inference results presented in Tables 6 and 7 lead to the
same observation.

27

Table 6: Case study of generation results.
Case 1

Prompt: ... Matsuo Bashō, the greatest haiku poet, was also strongly influenced by Du Fu;
in Oku no Hosomichi, his masterpiece, he cites the first two lines of A Spring
View before a haiku as its introduction and also many of his other haiku have
similar wording and themes. It is said that when he died

Gold: in Osaka during a long travel, a copy of Du Fu’s poetry was found with him as
one of a few precious items which he was able to carry around.

FP32: , his body was placed in a coffin with a Du Fu-like inscription.
AQ-SGD: , his body was placed in a coffin with a Du Fu-like inscription.

DirectQ: , his body was covered with a red cloth and his head was shaved.

Case 2
Prompt: ... Peppiatt notes that the exhibition showed Bacon no longer needed sensational-

ist material to make an impact, and was now
Gold: capable of creating an intense emotional response through more subtle means ...
FP32: able to "make a serious contribution to the art of painting"

AQ-SGD: able to "make a serious contribution to the art of painting"
DirectQ: able to "make a serious statement about the state of the art"

Case 3
Prompt: ... At this point, Dokhturov’s column appeared behind the French line and joined

the battle. The French were outnumbered more than three to
Gold: one, assaulted in the front by Miloradovich’s column, in the middle by Strik’s

and in the rear by Dokhturov.
FP32: one, but they held their ground and forced the Russians to retreat.

AQ-SGD: one, but they were able to hold their ground.
DirectQ: one, and the Russians were able to hold their ground.

Case 4
Prompt: ... Between Jupiter and Fort Pierce, the storm knocked down power and telegraph

lines. In the latter city, high waves washed out a portion of the causeway. In the
1980s, an elderly resident recalled that the storm was the

Gold: most severe on record in Fort Pierce.
FP32: worst storm he had ever seen.

AQ-SGD: worst storm he had ever seen.
DirectQ: worst he had ever experienced.

Case 5
Prompt: ... Lesnar was born in Webster, South Dakota, on July 12, 1977. He was raised

on a Webster dairy farm owned by his parents, Stephanie and Richard Lesnar. He
is of German descent. He has two older brothers named Troy and Chad, and a
younger sister named Brandi. At age 17, he joined the National Guard, where he

Gold: was assigned to an office job after his red-green colorblindness was deemed
hazardous to his desire to work with explosives.

FP32: served in the South Dakota National Guard. He was a member of the South
Dakota National Guard for two years.

AQ-SGD: served in the South Dakota National Guard. He was a member of the South
Dakota National Guard for two years.

DirectQ: served in the South Dakota National Guard for two years. He was discharged in
May 1991.

28

Table 7: Case study of generation results (more).
Case 6

Prompt: ... Mega placed the game at # 7 in their "Top Mega Drive Games of All Time"
list. MegaTech magazine praised the game’s graphics, but criticized the game’s
easy difficulty level,

Gold: explaining simply that "the graphics are excellent, but the game is easy to com-
plete."

FP32: stating that "the game is too easy to be enjoyable".
AQ-SGD: stating that it was "too easy".

DirectQ: which was criticized for being too easy.

Case 7
Prompt: ... "Obviously, he has great rapport and communication ability with his team."

Yahoo! Sports compared Stevens to legendary coach John Wooden writing "
Gold: Brad Stevens is winning at Butler the Wooden way – calm and composed on the

sideline."
FP32: He’s a coach who has been around the block, and he’s not afraid to tell you what

he thinks."
AQ-SGD: Stevens is a coach who has been around the game for a long time, and he has a

knack for getting the most out of his players."
DirectQ: Stevens is a coach who has been able to mold a team into a championship

contender. He has a knack for getting the most out of his players, and he has a
knack for getting the most out of his players’ personalities."

Case 8
Prompt: ... The Gore’s social circle in England revolved around his good friend Rufus

King, who
Gold: was appointed Ambassador to Great Britain in 1796, along with other Mas-

sachusetts expatriates.
FP32: was a member of the Royal Society.

AQ-SGD: was a member of the Royal Society.
DirectQ: was a member of the Royal Society.

Case 9
Prompt: ... The city has 896 barangays that are known by sequential numbers instead of

names. These barangays are further group into
Gold: 100 zones for administrative and municipal purposes.
FP32: districts, which are further subdivided into wards.

AQ-SGD: districts, which are further subdivided into wards.
DirectQ: districts, which are numbered according to the number of barangays in the district.

Case 10
Prompt: ... The National Spiritual Assembly of the Bahá ’ís of the Philippines, the

governing body of the Filipino Bahá’í community, is
Gold: headquartered near Manila’s eastern border with Makati.
FP32: headquartered in the city.

AQ-SGD: headquartered in the city.
DirectQ: headquartered in the city.

29

	Introduction
	Overview and Problem Formulation
	AQ-SGD: Theoretical Analysis and System Implementations
	AQ-SGD Algorithm
	Theoretical Analysis
	System Implementations and Optimizations.

	Evaluation
	Experimental Setup
	Results
	End-to-end Communication Compression: AQ-SGD + QuantizedAdam

	Related Work
	Conclusion
	Proof of the Main Theorem
	Theoretical analysis when K>2

	Benchmark Dataset
	Training Task Setup and Hyper-parameter Tuning
	Distributed View of AQ-SGD lgorithm
	Decentralized Training over Slow Network
	Discussion on Tensor Parallelism
	Limitation and Potential Future Direction
	Additional Results
	Convergence Results with Standard Deviation
	Throughput under Different Dataset Settings
	Results of Training from Scratch
	Results of Training under FP16
	Hyper-parameter Sensitivity
	Split Learning

	Case Study of Generation Results

