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Abstract

Communication compression is a crucial technique for modern distributed learn-
ing systems to alleviate their communication bottlenecks over slower networks.
Despite recent intensive studies of gradient compression for data parallel-style
training, compressing the activations for models trained with pipeline parallelism
is still an open problem. In this paper, we propose AQ-SGD, a novel activation
compression algorithm for communication-efficient pipeline parallelism training
over slow networks. Different from previous efforts in activation compression,
instead of compressing activation values directly, AQ-SGD compresses the changes
of the activations. This allows us to show, to the best of our knowledge for the
first time, that one can still achieve O(1/

√
T ) convergence rate for non-convex

objectives under activation compression, without making assumptions on gradient
unbiasedness that do not hold for deep learning models with non-linear activation
functions. We then show that AQ-SGD can be optimized and implemented effi-
ciently, without additional end-to-end runtime overhead. We evaluated AQ-SGD to
fine-tune language models with up to 1.5 billion parameters, compressing activation
to 2-4 bits. AQ-SGD provides up to 4.3× end-to-end speed-up in slower networks,
without sacrificing model quality. Moreover, we also show that AQ-SGD can be com-
bined with state-of-the-art gradient compression algorithms to enable “end-to-end
communication compression”: All communications between machines, including
model gradients, forward activations, and backward gradients are compressed into
lower precision. This provides up to 4.9× end-to-end speed-up, without sacrificing
model quality.

1 Introduction

Decentralized or open collaborative training has recently attracted intensive interests [1, 2, 3, 4].
Despite their great potential in leveraging geo-distributed powerful GPUs, the computation efficiency
is severely hindered by low network bandwidth — typically in the range of 10-400Mbps [2, 3, 4].
Recently, efforts in improving communication efficiency have significantly decreased the dependency
on fast data center networks — the gradient can be compressed to lower precision or sparsified [5, 6,
7, 8], which speeds up training over low bandwidth networks, whereas the communication topology
can be decentralized [9, 10, 11, 12, 13, 14], which speeds up training over high latency networks.
Indeed, today’s state-of-the-art training systems, such as Pytorch [15, 16], Horovod [17], Bagua [18],
and BytePS [19], already support many of these communication-efficient training paradigms.
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Figure 1: (a) Fine-tuning GPT2-1.5B with different activation
precisions in communication; (b) Average absolute value of
activations and their changes for GPT2-1.5B during training.

Table 1: Summary of techni-
cal results. AC-GC [29] and
TinyScript [30] assume that the re-
turned gradient is unbiased, whereas
AQ-SGD algorithm does not rely on
such an assumption.

Algorithm Assumptions Conv. Rate
on Quant. Grad.

SGD [31] N/A O(1/
√
T )

AC-GC [29] Unbiased O(1/
√
T )

TinyScript [30] Unbiased O(1/
√
T )

AQ-SGD N/A O(1/
√
T )

However, with the rise of large foundation models [20] (e.g., BERT [21], GPT-3 [22], and CLIP[23]),
improving communication efficiency via compression becomes more challenging. Current training
systems for foundation models such as Megatron [24], Deepspeed [25], and Fairscale [26], allocate
different layers of the model onto multiple devices and need to communicate — in addition to
the gradients on the models — the activations during the forward pass and the gradients on the
activations during the backward pass. Compressing these activations leads to a very different behavior
compared with compressing the gradient — simply compressing these activations in a stochastically
unbiased way will lead to biases in the gradient that cannot be measured easily or expressed in
closed form. This either breaks the unbiasedness assumptions made by most gradient compression
results [5, 6, 7, 8] or makes error compensation over gradient biases [27, 28] difficult to adopt.

Previous efforts on activation compression [32, 33, 34, 35, 36] illustrate, albeit mostly empirically,
that large deep learning models can tolerate some compression errors on these activation values.
However, when it comes to the underlying theoretical analysis, these efforts mostly make assumptions
that do not apply to neural networks with non-linear activation functions — the only two recent
efforts that claim theoretical convergence analysis [29, 30] assume that an unbiased compression
on activations leads to an unbiased error on the gradient. Not surprisingly, these algorithms lead to
suboptimal quality under relatively aggressive compression, illustrated in Figure 1a — in many cases,
using activation compression to fine-tune a model might be worse than zero-shot learning without
any fine-tuning at all.

In this paper, we focus on the problem of activation compression for training language models over
slow networks by asking the following:

• Q1. Can we design an algorithm for activation compression with rigorous theoretical
guarantees on SGD convergence?

• Q2. Can such an algorithm be implemented efficiently without additional runtime overhead
and outperform today’s activation compression algorithms without accuracy loss?

Our answers to both questions are Yes. (Contribution 1) We propose AQ-SGD, a novel algorithm for
activation compression. The idea of AQ-SGD is simple — instead of directly compressing the activa-
tions, compress the change of activations for the same training example across epochs. Intuitively,
we expect AQ-SGD to outperform simply compressing the activations because it enables an interesting
“self-enforcing” dynamics: the more training stabilizes→ the smaller the changes of the model across
epochs→ the smaller the changes of activations for the same training example across epochs→ the
smaller the compression error using the same #bits→ training stabilizes more. (Contribution 2) The
theoretical analysis of AQ-SGD is non-trivial since we have to analyze the above dynamics and connect
it to SGD convergence, which is quite different from most of today’s results on gradient compression
and error compensation. Under mild technical conditions and quantization functions with bounded
error, we show that AQ-SGD converges with a rate of O(1/

√
T ) for non-convex objectives, the same

as vanilla SGD [31, 37]. To the best of our knowledge, AQ-SGD is the first activation compression
algorithm with rigorous theoretical analysis that shows a convergence rate of O(1/

√
T ) (without

relying on assumptions of unbiased gradient). (Contribution 3) We then show that AQ-SGD can be
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• Direct Quantization [26, 27]: ! " = Quantize(")
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Figure 2: The communication pattern of training large language models with both data parallelism
and pipeline model parallelism. C denotes a compression module. The goal of this paper is to
understand the design of C for forward activation and backward gradient.

optimized and implemented efficiently2, without adding additional end-to-end runtime overhead
over non-compression and other compression schemes (it does require us to utilize more memory
and SSD for storage of activations). (Contribution 4) We then conduct extensive experiments on
sequence classification and language modeling datasets using DeBERTa-1.5B and GPT2-1.5B mod-
els, respectively. We show that AQ-SGD can aggressively quantize activations to 2-4 bits without
sacrificing convergence performance, where direct quantization of activations fails to converge; in
slow networks, AQ-SGD achieves up to 4.3× end-to-end speedup. (Contribution 5) Last but not least,
we also show that AQ-SGD can be combined with state-of-the-art gradient compression algorithms to
enable “end-to-end communication compression”: All data exchanges between machines, including
model gradients, forward activations, and backward gradients are quantized into lower precision.
This provides up to 4.9× end-to-end speed-up, without sacrificing model quality.

2 Overview and Problem Formulation

Training large language models over multiple devices is a challenging task. Because of the vast
number of parameters of the model and data examples, state-of-the-art systems need to combine
different forms of parallelism. Figure 2 illustrates an example in which such a model is distributed
over four machines: (Pipeline Model Parallelism) The model is partitioned onto Machine 1 and
Machine 2 (similarly, Machine 3 and Machine 4), each of which is holding a subset of layers. To
compute the gradient over the model using backpropagation, these two machines need to communicate
the activations during the forward pass and the gradient on activations during the backward pass.
(Data Parallelism) Machine 1 and Machine 3 (similarly, Machine 2 and Machine 4) process the same
set of layers for different macro-batches. In this case, each of them will hold a replica of the same
model. After the gradient over their model parameters are ready, they need to communicate the model
gradient, usually by taking an average [15, 17, 18].

Communication Compression for Forward Activations and Backward Gradients. In slow
networks, the communication among all machines often becomes the bottleneck [37]. To improve
the speed of training, one can conduct lossy compression of the data before they are communicated,
illustrated as the C module in Figure 2. When the model fits into a single machine, there have been
intensive efforts on compressing the model gradient [5, 6, 7, 8]. However, when it comes to pipeline
model parallelism, such compression techniques are less studied. In this paper, we focus on designing

2Our code is available at: https://github.com/DS3Lab/AC-SGD.
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efficient communication compression algorithms to compress both forward activations and backward
gradients. As we will show later, both can be compressed significantly with AQ-SGD without hurting
the model quality. We also show that it is possible to combine AQ-SGD with state-of-the-art gradient
compression techniques to enable the end-to-end compression scheme illustrated in Figure 2.
Problem Formulation. In this paper, we focus on the following technical problem. Note that, for
the simplicity of notations, we present here the case where the model is partitioned onto K = 2
machines. AQ-SGD works for cases with K > 2: (1) in experiments, we consider K = 8, i.e., a single
model is partitioned onto 8 machines; (2) in the supplementary material we provide the theoretical
analysis for K > 2.

Given a distribution of samples D, we consider the following optimization task:

min
x∈Rd

f(x) := Eξ∼DF (b(a(ξ, x(a)), x(b))), (2.1)

where F is a loss function, a(−) and b(−) correspond to two sets of layers of the model — a(−)
has model x(a) and b(−) has model x(b). In Figure 2, Machine 1 would hold x(a) and Machine 2
would hold x(b). In the following, we call the machine that holds x(a) Machine a and the machine
that holds x(b) Machine b . In the standard backpropagation algorithm, the communication between
these two machines are as follows:

• Given a data sample ξ, Machine a sends to Machine b the forward activation: a(ξ, x(a))

• Machine b sends to Machine a the backward gradient on a(ξ, x(a)).

Difficulties in Direct Quantization. A natural way at compressing forward activations is to send,
instead of a(ξ, x(a)), a quantized version m(ξ, x(a)) = Q(a(ξ, x(a))). This is the quantization
scheme that state-of-the-art methods such as AC-GC [29] and TinyScript [30] use. Both AC-GC [29]
and TinyScript [30] assume that gradient is unbiased when m(ξ, x(a)) is an unbiased estimator of
a(ξ, x(a)). This enables their convergence rates of O(1/

√
T ). However, because of the non-linearity

of F and b in a deep learning model with non-linear activation functions, an unbiased m(ξ, x(a))
will lead to biases on the gradient. In Appendix, we will provide an example showing that such a
gradient bias will hurt SGD convergence even for a very simple optimization problem. On the theory
side, previous efforts on understanding gradient bias [38] have also shown that even bounded bias on
gradient can impact the converges of SGD. As we will show later, empirically, this bias can indeed
lead to suboptimal models under aggressive compression.

Notation. Throughout the paper we use the following definitions:

• f∗ is the optimal value of f .
• N is the number of samples.

• xt = (x
(a)
t , x

(b)
t ) is the full model at iteration t.

• ∇f(·) is the gradient of function f .
• gξt(xt) = ∇F (ξt;xt) is the stochastic gradient.
• Q(·) is the quantization function used to compress activations.
• m(·) is the message exchanged between a and b in the feed forward path.
• ∥ · ∥ denotes the L2-norm.

3 AQ-SGD: Theoretical Analysis and System Implementations

In this section we present the AQ-SGD, with the goal to mitigate the above mentioned difficulties that
appear in direct quantization of the activation functions.

3.1 AQ-SGD Algorithm

Algorithm 1 illustrates the AQ-SGD algorithm. The idea behind Algorithm 1 is simple — instead of
quantizing the activations directly, quantize the changes of activations for the same training example
across epochs. As illustrated in Algorithm 1, for iteration t and the data sample ξt, if it is the first time
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Algorithm 1 AQ-SGD Algorithm

1: Initialize: x0, learning rate γ, sub-network a(−) weights x(a), sub-network b(−) weights x(b),
quantization function Q, array of previous messages m initialized to 0

2: for t = 1, . . . , T do
3: Randomly sample ξt
4: if ξt not seen before then
5: Set m(ξt) = a(ξt, x

(a)
t )

6: else
7: Update m(ξt)← m(ξt) +Q

(
a(ξt, x

(a)
t )−m(ξt)

)
8: end if
9: // Machine a sends Q

(
a(ξt, x

(a)
t )−m(ξt)

)
to Machine b, which knows m(ξt) through a local

version of m
10: Update x

(b)
t+1 ← x

(b)
t − γ · ∇x(b)(f ◦ b)|m

11: // Machine b sends Q(∇a(f ◦ b)|m) to Machine a

12: Update x
(a)
t+1 ← x

(a)
t − γ ·Q(∇a(f ◦ b)|m) · ∇x(a)a

13: end for
14: Output: x = (x

(a)
T , x

(b)
T )

that ξt is sampled, Machine a communicates the full precision activations without any compression:
m(ξt) = a(ξt, x

(a)
t ) (Lines 4-5). Both machines will save m(ξt) in a local buffer. If ξt has been

sampled in previous iterations, Machine a communicates a quantized version:

Q(a(ξt, x
(a)
t )−m(ξt)),

where m(ξt) was the previous message, stored in the local buffer. Both machines then update this
local buffer:

m(ξt)← m(ξt) +Q(a(ξt, x
(a)
t )−m(ξt)).

Machine b then use m(ξt) as the forward activations, compute backward gradients, and communicate
a quantized version of the backward gradient to Machine a (Line 11). We use

δξ = a(ξt, x
(a)
t )−m(ξt)

to denote the message error in sending the activations.

Update Rules. The above algorithm corresponds to the following update rules, at iteration t with
sample ξt:

x
(a)
t+1 = x

(a)
t − γ ·Q(∇a(f ◦ b)|(m(ξ,x

(a)
t ),x

(b)
t )

) · ∇x(a)a|
x
(a)
t

,

x
(b)
t+1 = x

(b)
t − γ · ∇x(b)(f ◦ b)|

(m(ξ,x
(a)
t ),x

(b)
t )

,

where γ is the learning rate, ∇x(b)(f ◦ b)|
(m(ξ,x

(a)
t ),x

(b)
t )

is the gradient on x(b) using the quantized

forward activations (m(ξ, x
(a)
t ), and Q(∇a(f ◦b)|(m(ξ,x

(a)
t ),x

(b)
t )

) is the quantized backward gradient.

Setting xt = (x
(a)
t , x

(b)
t ), we can rephrase the update rule as

xt+1 = xt − γ · (gξ(xt) + ∆ξ(xt)) ,

where gξ(xt) is the stochastic gradient and ∆ξ(xt) is the gradient error introduced by communication
compression. We have ∆ξ = (∆

(a)
ξ +∆

(Q)
ξ ,∆

(b)
ξ ) given by:

∆
(Q)
ξ (xt) = Q(∇a(f ◦ b)|(m(ξ,x

(a)
t ),x

(b)
t )

) · ∇x(a)a|
x
(a)
t
−∇a(f ◦ b)|(m(ξ,x

(a)
t ),x

(b)
t )
· ∇x(a)a|

x
(a)
t

,

∆
(a)
ξ (xt) = ∇a(f ◦ b)|(m(ξ,x

(a)
t ),x

(b)
t )
· ∇x(a)a|

x
(a)
t
−∇a(f ◦ b ◦ a)|(x(a)

t ,x
(b)
t )

∆
(b)
ξ (xt) = ∇x(b)(f ◦ b)|

(m(ξ,x
(a)
t ),x

(b)
t )
−∇x(b)(f ◦ b)|

(a(ξ,x
(a)
t ),x

(b)
t )

,

where ∆
(Q)
ξ (xt) is the error introduced by the gradient quantization in the backpropagation part,

whilst ∆(a)
ξ (xt) and ∆

(b)
ξ (xt) are the errors that the gradients of a and b, respectively, inherit from

the bias introduced in the forward pass.
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3.2 Theoretical Analysis

We now prove the main theorem which states that, under some standard assumptions that are often
used in the literature [31, 37], the convergence rate of AQ-SGD algorithm is O(1/

√
T ) for non-convex

objectives, same as vanilla SGD.

Assumptions. We make several assumptions on the networks and the quantization. It is important
to note is that we put no restrictions on either the message error δξ, nor the gradient error ∆ξ.

• (A1: Lipschitz assumptions) We assume that∇f ,∇(f ◦ b) and a are Lf , Lf◦b-, and ℓa-Lipschitz,
respectively, recalling that a function g is Lg-Lipschitz if

∥g(x)− g(y)∥ ≤ Lg∥x− y∥, ∀x, ∀y.

Furthermore, we assume that a and f ◦ b have gradients bounded by Ca and Cf◦b, respectively, i.e.
∥∇a(x)∥ ≤ Ca, and ∥∇(f ◦ b)(x)∥ ≤ Cf◦b.

• (A2: SGD assumptions) We assume that the stochastic gradient gξ is unbiased, i.e. Eξ[gξ(x)] =
∇f(x), for all x, and with bounded variance, i.e. Eξ∥gξ(x)−∇f(x)∥2 ≤ σ2, for all x.

Theorem 3.1. Suppose that Assumptions A1, A2 hold, and consider an unbiased quantization function
Q(x) which satisfies that there exists cQ <

√
1/2 such that E∥x−Q(x)∥ ≤ cQ∥x∥, for all x.3 Let

γ = 1
3(3Lf+C)

√
T

be the learning rate, where

C =
4cQℓa(1 + Ca)Lf◦bN√

1− 2c2Q

.

Then after performing T updates one has

1

T

∑
t∈[T ]

E∥∇f(xt)∥2 ≲
(C + Lf )(f(x1)− f∗)√

T
+

σ2 + (cQCaCf◦b)
2

√
T

. (3.1)

We present the full proof of Theorem 3.1 in Appendix ??, whereas here we explain the main intuition.
The usual starting point in examining convergence rates is to use the fact that f has Lf -Lipschitz
gradient. It is well known that this implies

γ⟨∇f(xt), gξt(xt)⟩+ f(xt+1)− f(xt) ≤ −⟨∇f(xt),∆ξt(xt)⟩+
γ2Lf

2
∥gξt(xt) + ∆ξt(xt)∥2.

After taking the expectation over all ξt and summing over all t = 1, . . . , T , we easily see that the
key quantity to bound is

∑T
t=1 E∥∆̃ξt(xt)∥2, where ∆̃ξt(xt) = (∆

(a)
ξt

(xt),∆
(b)
ξt

(xt)). On the other
hand, the main object that we can control is the message error, δξ. Therefore, we first prove an
auxiliary result which shows that ∥∆̃ξt(xt)∥ ≤ (1 + Ca)ℓa∥δξt(xt)∥, for all t. The key arguments
for bounding δξt closely follow the self-improving loop described in the introduction, and can be
summarized as follows. Since we are compressing the information in such a way that we compare
with all the accumulated differences, this allows us to unwrap the changes which appeared since the
last time that we observed the current sample, in an iterative way. However, since these are gradient
updates, they are bounded by the learning rate — as long as we have a quantization method that keeps
enough information about the signal, we can recursively build enough saving throughout the process.
In particular, the more stability we have in the process, the smaller the changes of the model and the
compression error gets, further strengthening the stability.

Tightness. The bound is tight with respect to quantization — setting cQ = 0 (implying C = 0), i.e.
quantization does not incur any loss, recovers the original original SGD convergence (cf. [31, 37]).

3Even for a very simple quantization function Q(x) = ∥x∥ · ⌈x/||x||⌋, where ⌈·⌋ denotes rounding to the
closest k/2b, stochastically, through a simple bound cQ =

√
d/2b, 6 bits suffice in a low-dimensional (∼ 103),

11 bits in a high-dimensional scenario (∼ 106), and 16 bits in a super-high-dimensional scenario (∼ 109). In
practice, as we show in the experiments, we observe that for 2-4 bits are often enough for fine-tuning GPT-2
style model. This leaves interesting direction for future exploration as we expect a careful analysis of sparsity
together with more advanced quantization functions can make this condition much weaker.

6



Regularization and other optimizers. Assuming A1 and A2 for f , and under further assumptions
on b and ∇x(b)b, one can prove that the L2-regularized loss f̃(x) = f(x) + λ

2 ∥x∥
2, which results

in weight decay, satisfies Assumptions A1 and A2 with slightly weaker constants. We note that a
theoretical analysis for other regularization methods or optimizers such as Adam [39], could be an
independent study and represent an interesting line of future research.

3.3 System Implementations and Optimizations.

Additional storage and communication. AQ-SGD requires us to store, for each data example ξ, the
quantized activation m(ξ) in a local buffer in memory or SSD. For example, in GPT2-XL training,
a simple calculation shows that we need an approximately extra 1TB storage. When using data
parallelism, it reduces to 1TB / # parallel degree, but also incurs communication overhead if data
is shuffled in every epoch. In addition, when the example ξ is sampled again, m(ξ) needs to be (1)
loaded from this local buffer to the GPU, and (2) updated when a new value for m(ξ) is ready.

Optimization. It is easy to implement and optimize the system such that this additional loading and
updating step do not incur significant overhead on the end-to-end runtime. This is because of the fact
that the GPU computation time for a forward pass is usually much longer than the data transfer time
to load the activations — for GPT2-XL with 1.5 billion model parameters, a single forward pass on 6
layers require 44 ms, whereas loading m(ξ) need 0.2 ms from memory and 12 ms from SSD. One
can simply pre-fetch m(ξ) right before the forward pass, and hide it within the forward pass of other
data examples. Similarly, updating m(ξ) can also be hidden in the backward computation. It is also
simple to reduce the communication overhead by shuffling data only once or less frequently.

4 Evaluation

We demonstrate that AQ-SGD can significantly speed up fine-tuning large language models in slow
networks. Specifically, we show: (1) on four standard benchmark tasks, AQ-SGD can tolerate
aggressive quantization on the activations (2-4 bits) and backward gradients (4-8 bits), without
hurting convergence and final loss, whereas direct quantization converges to a worse loss or even
diverge, (2) in slow networks, AQ-SGD provide an end-to-end speed-up up to 4.3×, and (3) AQ-SGD
can be combined with state-of-the-art gradient compression methods and achieve an end-to-end
speed-up of up to 4.9×.

4.1 Experimental Setup

Datasets and Benchmarks. We consider both sequence classification and language modeling tasks
with state-of-the-art foundation models. For sequence classification, we fine-tune a 1.5B parameter
DeBERTa4 on two datasets: QNLI and CoLA. For language modeling, we fine-tune the GPT2 model
with 1.5B parameters5 on two datasets: WikiText2 and arXiv abstracts. All datasets are publicly
available and do not contain sensitive or offensive content. Detailed setup can be found in Appendix
??.

Distributed Cluster. We conduct our experiments on AWS with 8-32 p3.2xlarge instances, each
containing a V100 GPU. For a single pipeline, we partition a model onto 8 machines. When combined
with data parallelism, we use 32 instances — data parallel degree is 4 and pipeline parallel degree is
8. By default, instances are interconnected with 10Gbps bandwidth. We simulate slow networks by
controlling the communication bandwidth between instances using Linux traffic control.

Baselines. We compare with several strong baselines:

1. FP32: in which all communications are in 32 bit floating point without any compression.
2. DirectQ [29, 30]: in which activations and backward gradients are directly quantized.

We use a simple, uniform quantization scheme, which first normalizes a given vector into [−1, 1]
and quantize each number into a b-bit integers by uniforming partitioning the range [−1, 1] into 2b

intervals [35]. Additional details of the configuration can be found in Appendix ??.

4we use the v2-xxlarge checkpoint: https://huggingface.co/microsoft/deberta-v2-xxlarge.
5we use the extra large checkpoint: https://huggingface.co/gpt2-xl.
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Figure 3: Convergence (loss vs. # steps) of different approaches. × represents divergence.
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Figure 4: End-to-end training performance over different networks. × represents divergence.

Hyperparameter Tuning. We conduct careful tuning for all methods on all datasets. We perform
grid search to choose learning rate from {2.5e-6, 3e-6, 5e-6, 1e-5} and macro-batch size from {32,
64, 96} for best model performance. We train all models using the Adam optimizer with weight
decay.

4.2 Results

Convergence. We first compare the convergence behavior of different methods. For all compression
methods, we try various settings: fwx bwy means that we use x bits for forward activation and y bits
for backward gradients. Figure 3 shows the convergence behavior for the sequence classification and
language modeling tasks. FP32 converges fast since it does not introduce any compression errors.
DirectQ, under aggressive quantization, can converge to a significantly worse model, or even diverge.
This is not surprising, given the biases on model gradients that direct quantization introduced. On the
other hand, AQ-SGD converges almost as fast as FP32 in terms of number of training steps.

End-to-End Runtime. We show the end-to-end runtime of different methods under slow networks.
As illustrated in Figure 4, AQ-SGD achieves a 4.3× end-to-end speed-up comparing with that of FP32
(in terms of time to the same loss), illustrating the importance of communication compression in slow
networks. Table 2 shows the training throughput and Table 3 shows the breakdown of our algorithm.
We note that computation and communication can overlap, so the end-to-end time depends on the
larger one of the two. Another interesting observation is that when the network is 100× slower
(from 10Gbps to 100Mbps), the training is only about 1.18× slower! This is exciting — if AQ-SGD
were to be deployed in a in real-world geo-distributed decentralized networks, the training throughput
would be almost as fast as the performance inside a data center!

Moreover, AQ-SGD does not introduce significant runtime overhead over direct quantization. From
Table 2, we see that AQ-SGD is essentially as efficient as direct quantization compression in throughput.
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Table 2: Training Throughput of GPT2-1.5B. Oth-
ers are similar and shown in Appendix.

Network
Bandwidth FP32

DirectQ

fw3 bw6 / fw4 bw8

AQ-SGD

fw3 bw6 / fw4 bw8

10 Gbps 3.8 4.0 / 4.1 4.0 / 4.0
1 Gbps 3.2 4.0 / 4.0 4.0 / 3.9

500 Mbps 2.7 3.9 / 3.9 3.9 / 3.9
300 Mbps 1.8 3.9 / 3.8 3.8 / 3.8
100 Mbps 0.5 3.5 / 3.0 3.4 / 3.0

Table 3: Breakdown of AQ-SGD (fw4 bw8) on
GPT2-1.5B. We show the computation and com-
munication time of each micro batch.

Network
Bandwidth

Forward pass Backward pass

comp. comm. comp. comm.

500 Mbps 45 ms 13 ms 135 ms 25 ms
300 Mbps 45 ms 21 ms 135 ms 42 ms
200 Mbps 45 ms 31 ms 135 ms 63 ms
100 Mbps 45 ms 63 ms 135 ms 125 ms
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Figure 5: Convergence and Throughput of AQ-SGD combined with gradient compression.

4.3 End-to-end Communication Compression: AQ-SGD + QuantizedAdam

AQ-SGD can also be combined with existing methods on gradient compression. This allows us to
compress all communications during training. We combine AQ-SGD with QuantizedAdam [40], an
error compensation-based gradient compression algorithm for data parallel training.

We quantize the forward activations with 3 bits, the backward gradient with 6 bits, and model gradient
with 4 bits. Figure 5 illustrates the convergence and the training throughput under different network
configuration. We see that AQ-SGD converges well when combined with QuantizedAdam (Figure 5(a,
b)). On the other hand, DirectQ, when combined with gradient compression, converges to a much
worse model. In terms of training throughput, with both activation and gradient compression, we can
achieve up to 8.5× throughput improvement compared to the no-compression baseline (Figure 5(c)).
We also see that both activation and gradient compression are important in terms of improving
end-to-end training throughput — as illustrated in Figure 5(c), disabling any of them will lead to a
much lower training throughput.

5 Related Work

Distributed training of foundation models. Modern distributed training of deep neural networks
goes beyond data parallelism [24, 41, 42] due to the advance of the large-scale foundation models
[20], such as BERT [21], GPT-3 [22], and CLIP[23]. Popular systems to support foundation model
training include Megatron [24], Deepspeed [25], and Fairscale [26]. To scale out the training of
large-scale models, pipeline parallelism (e.g., Gpipe[41], Pipedream[43, 44]) is a popular option,
where the model is partitioned into multiple stages, different stages are allocated on different GPUs
and the exchange of activations and gradients on activations goes through network communication.

Communication compression of distributed learning. Communication compression is an effective
system relaxation for distributed training, especially in data parallelism [40, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55]. Popular techniques include quantization [5, 6, 7, 8], sparsification [56, 57, 58, 59],
sketching [60, 61] and error compensation [27]. Recently, TinyScript [30] proposes to compress
activations and gradients simultaneously.

Sparse Learning for activation compression. Sparse learning [30, 62, 63, 64, 65, 66, 67, 68, 69]
has become increasingly popular for training neural networks, as it can significantly reduce the
use of computation and memory while preserving the generalization of such models. In particular,
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activation compression methods [32, 33, 34, 35, 36, 29] are proposed to reduce the memory footprint
by adopting lossless [70, 71, 72] and lossy [73, 29, 74] compression techniques in the training of
various deep neural networks (e.g., CNN[66, 75, 76], GNN[77]). These approaches usually compute
the activation with full precision in forward propagation, adopt the compression method over the
activation, and store the compressed version in DRAM for later use in backward propagation. Thus,
compression does not introduce any error in forward propagation in contrast to the scenario of
communicating compressed activation in the distributed setting.

Delta-based compression. Delta-based compression [78] is a classic solution to various system
problems. Recent research has also used the property of spatial proximity within activation in neural
network training based on empirical observations [79, 80, 74]. However, to our knowledge, no
attempt has been made to consider the proximity of activation through training epochs to enable
efficient compression with theoretical guarantee.

6 Conclusion

In this paper, we discuss how to adopt communication compression for activations in distributed
learning. We proposed AQ-SGD, a novel activation compression algorithm for communication-efficient
pipeline parallelism training over slow networks. AQ-SGD achieves O(1/

√
T ) convergence rate for

non-convex optimization without making assumptions on gradient unbiasedness. Our empirical study
suggests that AQ-SGD can achieve up to 4.3× speedup for pipeline parallelism. When combined with
gradient compression in data parallelism, the end-to-end speed-up can be up to 4.9×.
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1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] AQ-SGD requires additional

storage to store the activation for each data example. We describe the limitations from
the perspectives of algorithm and implementation in Section 3.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Language
models increase the inequality on employment as suggested by DeepMind. The
acceleration of training may lead to more misuse of language models. Our work also
makes positive social impact in privacy protection because it can also be applied in
split learning as shown in Appendix.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] We repeated some of the experiments for at least three
times and reported the average in the paper. Details are reported in Appendix.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] Our system was built on PyTorch and

CuPy and was evaluated using publicly available datasets (QNLI, CoLA, WikiText2
and arXiv abstracts). All of them use open-source licenses and can be used for non-
commercial educational purposes.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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