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A Additional Related Works

We complement Section 1 by discussing a few additional related works as follows.

Client unavailability was also studied from the perspective of block-cyclic SGD [6, 7], which trains
multiple models each for a block (group) of clients with known identity and was analyzed for convex
objectives. Different from those works, our goal is to train a single model without requiring block
structure, and we focus on non-convex objectives that frequently arise in modern problems involving
neural networks.

In the literature of SGD in the centralized setting, the effect of different ways of minibatch sampling
has also been studied, such as IID sampling from an arbitrary distribution [11] and random reshuffling
[13, 25]. However, the problem in FL is much more complex and needs to incorporate the diversity
of different clients’ local objectives. Moreover, we focus on a unified framework that is more general
than the special cases of IID sampling and random reshuffling.

FedAvg with two-sided learning rates has been studied in the literature [18, 36], where a global
learning rate is applied to the updates at the end of each round, giving an improved convergence
bound compared to using a single-sided learning rate. This is equivalent to our Algorithm 1 with
P = 1 and the amplification factor η being the global learning rate. We extend this setup by allowing
any P ≥ 1. Moreover, most existing works including [18, 36] have only shown the benefit of
two-sided learning rates in a theoretical setting; their experiments still uses a global learning rate
of 1.0, which is equivalent to the case of a single-sided learning rate. Although some recent works
have used different global learning rates in experiments, the best setting often remains to be choosing
1.0 as the global learning rate in the case of FedAvg [26, Table 8]. In contrast, we have verified the
benefit of amplification in our experiments (Section 6), for scenarios with more challenging client
participation patterns than existing works. The idea of amplification is also related to look-ahead
algorithms [31, 42], which consider a two-agent setting, e.g., a server and a single client. Different
from these works, we consider the unique challenges in federated learning with multiple arbitrarily
participating clients, where the data is non-IID across clients.

It is also worth pointing out that our discussion related to waiting for all clients in Section 5 has
some analogy to the comparison between local SGD and minibatch SGD [32, 33, 41]. Even when
not considering the effect of partial participation, these existing works have only identified some
specific classes of convex objectives where local SGD can be shown to have a better theoretical
convergence rate than minibatch SGD. An improved theoretical approach to capture the fact that
local SGD often outperforms minibatch SGD in practice, for a wide range of problems and objective
functions (especially non-convex objectives), remains an interesting future direction.

B Additional Discussions

B.1 Why Does Amplification Help?

We give an illustrative example to explain why the use of amplification with η > 1 generally improves
the performance, as shown in both our theory and experiments. Consider a simple setting with N = 3

clients. Each client n has a local objective defined as Fn(x) = 1
2 ∥x− zn∥2 for some constant

vector zn ∈ R
m. It is evident that the true optimal solution that minimizes the global objective

f(x) = 1
6

∑3
n=1 ∥x− zn∥2 is x∗ = 1

3

∑3
n=1 zn, but we assume that this is not known to the system

and we would like to solve this problem using Algorithm 1. In this specific example, we consider a

two-dimensional space (i.e., m = 2) and define z1 = (−1, 0), z2 = (1, 0), z3 = (0,
√
3). We further

assume that the three clients are available in a cyclic manner, so that in the first round, only client
n = 1 is available; in the second round, only client n = 2 is available; in the third round, only client
n = 3 is available; then this cycle continues with client n = 1 available in the fourth round, and so
on. We plot the trajectory of how the model parameter x changes from the initial value x0 to x15

that is obtained after T = 15 rounds. The initial parameter is set to x0 = (1, 2) in this example. The
plots of the trajectories with different choices of local learning rate γ and amplification factor η are
shown in Figures B.1±B.2.

With the local objectives defined in this example, the local gradient can be directly computed as
∇Fn(x) = x− zn. Therefore, in the case of no amplification (i.e., η = 1), the solution variable x
moves towards z1 in the first round when client n = 1 is available; then, it moves towards z2 in the

16



second round when client n = 2 is available, and so on. As we see from Figure B.1, this can lead to a
pattern where x cycles around the optimal solution x∗ but approaches x∗ only very slowly, especially
when γ is large. In the case of small γ, this cyclic pattern is not apparent, but we can still see that
x moves towards different local optimal points (i.e., zn for different n) in different rounds, and the
overall convergence speed is slow. This leads to the following problem: regardless of whether we
choose a large or small γ, at the end of the 15-th round, there is an apparent gap between x15 and x∗.

The advantage of amplification is that it increases the importance of the aggregated updates made by
clients that participate in different rounds. In this specific example, a single client’s update direction
may be towards its own local optimum, which can be different from the direction towards the global
optimum. However, the accumulated updates by all the three clients over every three rounds will be
more likely towards the global optimum (or a neighborhood of it). By amplifying such accumulated
updates after every three rounds (i.e., P = 3), we can let the solution variable x move much faster
towards the true (global) optimum. This intuition is confirmed by the trajectories shown in Figure B.2.
Here, we note that the product of γ and η in the corresponding sub-figures of Figures B.1 and B.2
are equal. By keeping a small local learning rate γ and amplifying the updates accumulated in every
P = 3 rounds, we can converge to the optimal value x∗, as shown in Figure B.2.

Note that in practice, P does not need to perfectly align with the ªcycleº of participation, as seen in
Figure 2 in Section 6 of the main paper.

(a) γ = 0.05, η = 1 (b) γ = 0.1, η = 1 (c) γ = 0.25, η = 1 (d) γ = 0.5, η = 1

Figure B.1: Motivating example: different local learning rates γ without amplification (i.e., η = 1).
The trajectory from x0 to x15 shows how the model parameter changes from round t = 0 to round
t = 15.

(a) γ = 0.05, η = 1 (b) γ = 0.05, η = 2 (c) γ = 0.05, η = 5 (d) γ = 0.05, η = 10

Figure B.2: Motivating example: fixed local learning rate γ = 0.05 with different amplification
factors η. The trajectory from x0 to x15 shows how the model parameter changes from round t = 0
to round t = 15. The segments in cyan color shows the change in parameter x due to amplification,
while the segments in black color shows the parameter change due to regular SGD operation.

B.2 Relating Different Participation Patterns to Practical FL Scenarios

In the following, we discuss some possible connections between practical FL application scenarios
and the different participation patterns that are considered in our theoretical analysis.

The case of periodic shifts, which is often seen in practical cross-device FL scenarios, is mostly
related to regularized participation. In this case, the clients participate equally over the entire
period, but only a subset of clients from a specific population (and with a specific data distribution)
may participate in each ªperiodº that includes a certain number of consecutive rounds. In practice,
this ªequal participationº only needs to hold approximately, and our empirical results at the end of
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Section 6 show that our Algorithm 1 can still give good performance even if P is less than the full
cycle (period) of participation.

Among the stochastic participation patterns, ergodic is the most generic. Intuitively, it says that
the participation weights of different clients are the same when averaged over a long enough time.
This can represent a cross-device FL scenario, where the participation of each client at any time
instance can be highly random, but the long-term average statistics of clients are the same. The case
of strongly mixing participation includes the special case where the participation follows a Markov
chain, i.e., if the client is currently unavailable, there is a certain (possibly small) probability that it
will become available in the next round, and vice versa. This can also represent a cross-device FL
setting, where the devices get connected and disconnected over time, and there is some randomness
in the exact time it gets connected or disconnected. Finally, the case of independent participation
may represent a cross-silo FL setting, where the reason for not participating in a certain round is not
because the client is disconnected for an extended period of time, but rather because the client has
some other higher-priority tasks to run so that it cannot participate in all rounds.

C Proofs

C.1 Preliminaries

The following inequalities are frequently used throughout our proofs. We will use them without
further explanation.

From Jensen’s inequality, for any zm ∈ R
d,m ∈ {1, 2, . . . ,M}, we have

∥

∥

∥

∥

∥

1

M

M
∑

m=1

zm

∥

∥

∥

∥

∥

2

≤ 1

M

M
∑

m=1

∥zm∥2 (C.1)

which directly gives
∥

∥

∥

∥

∥

M
∑

m=1

zm

∥

∥

∥

∥

∥

2

≤ M
M
∑

m=1

∥zm∥2 . (C.2)

Peter-Paul inequality (also known as Young’s inequality) gives

⟨z1, z2⟩ ≤
b ∥z1∥2

2
+

∥z2∥2
2b

(C.3)

for any b > 0 and any z1, z2 ∈ R
d. Hence, we also have

∥z1 + z2∥2 ≤ (1 + b) ∥z1∥2 +
(

1 +
1

b

)

∥z2∥2 . (C.4)

Throughout the analysis, we use the short-hand notation E·|Q [·] to denote E [·|Q].

In addition, we use the notations in Algorithm 1 and Assumptions 1, 2, and 3’.

C.2 Lemmas

Lemma C.1. When γ ≤ 1
12LIP , we have

N
∑

n=1

qnt E·|Q





∥

∥

∥

∥

∥
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t,i −

N
∑
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(

6Iν̃2 + σ2

(
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(qnt )
2

))

. (C.5)

Proof. Note that
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In the above, (a) is due to E·|Q
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where the first inequality is due to γ ≤ 1
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12LI since P ≥ 1.
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because yn
t,0 = xt for all n as specified in Algorithm 1, and

∑N
n=1 q

n
t = 1.

By combining (C.6) and (C.7) and unrolling the recursion, we have for any i that
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Lemma C.2. When γ ≤ 1
12LIP , we have
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∥

∥

N
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n
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∥

∥
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∥
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≤ 3γ2I2ν̃2 + 24γ2I2P 2β̃2 + 24γ2I2P 2
E·|Q

[

∥∇f(xt0)∥
2
]

+ 3γ2IPσ2

[

ρ2 +
1

6P

(

1−
N
∑

n=1

(qnt )
2

)]

(C.8)

for t0 ≤ t ≤ t0 + P − 1.

Proof. We have
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∥

∥

∥

∥
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∑
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n
t,i+1 − xt0

∥

∥

∥

∥

∥
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= E·|Q





∥

∥

∥

∥

∥

N
∑
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qnt
(
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t,i − γgn(y

n
t,i)
)

− xt0

∥

∥

∥

∥

∥
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= E·|Q





∥

∥

∥

∥

∥

N
∑

n=1
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(
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t,i − γ∇Fn(y

n
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− xt0
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≤ E·|Q

[∥

∥

∥

∥

∥

N
∑
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[
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t,i − γ

(

∇Fn(y
n
t,i)−∇Fn

(

N
∑
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′
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t,i

)

+∇Fn

(

N
∑
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′

t yn′

t,i

)
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−∇Fn(xt0) +∇Fn(xt0)−∇f(xt0) +∇f(xt0)

)]

− xt0

∥

∥

∥

∥

∥

2]

+ γ2ρ2σ2

≤
(

1 +
1

2IP − 1

)
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∥

∥
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∥

∥
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∥
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+ 8IPγ2
E·|Q





∥

∥

∥

∥

∥

N
∑
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[
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∥

∥
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−∇Fn(xt0)
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∥

2
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≤
(
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1
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∥

∥
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2
]
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≤
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)
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N
∑
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∥

∥

∥
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∥

∥
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2
]

+ γ2ρ2σ2

(c)

≤
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2

))
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E·|Q

[

∥∇f(xt0)∥
2
]

+ γ2ρ2σ2

(d)

≤
(
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5

9
(
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2

)

)
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∥
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∥

∥
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∥
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∥
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+ 144γ4I3PL2ν̃2
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+ 8IPγ2β̃2 + 8IPγ2
E·|Q

[

∥∇f(xt0)∥
2
]

+ γ2σ2

[

ρ2 + 24γ2I2PL2

(

1−
N
∑

n=1

(qnt )
2

)]

(e)

≤
(

1 +
5

9
(

IP − 1
2

)

)
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∥

∥

∥

∥
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P
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E·|Q

[
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2
]

+ γ2σ2

[

ρ2 +
1

6P

(

1−
N
∑

n=1

(qnt )
2

)]

. (C.9)

In the above, the stochastic gradient variance decomposition is the same as the proof of Lemma C.1,

while noting that
∑N

n=1(q
n
t )

2 ≤ ρ2; (a) uses Jensen’s inequality, the definition of β̃2, and
∑N

n=1 q
n
t = 1; (b) uses L-smoothness; (c) is from Lemma C.1; (d) is due to

1

2IP − 1
+ 8IPL2γ2 ≤ 1

2IP − 1
+

1

18IP
≤ 1

2
(

IP − 1
2

) +
1

18
(

IP − 1
2

) =
5

9
(

IP − 1
2

)

where the first inequality is due to γ ≤ 1
12LIP ; (e) uses γ ≤ 1

12LIP in the second and last terms.

We note that, for t0 ≤ t ≤ t0 + P − 2, we have
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∥

∥
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∥
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∥

∥
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∥
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2
]
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∥

∥
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(C.10)

because yn
t,0 = xt for all n as specified in Algorithm 1, and

∑N
n=1 q

n
t = 1 hence xt+1 = xt +

∑N
n=1 q

n
t (y

n
t,I − xt) =

∑N
n=1 q

n
t y

n
t,I according to Algorithm 1.

Therefore, the same recursion in (C.9) also holds between t+ 1 and t, i.e.,
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∥
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n
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∥

∥

∥

∥

∥
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≤
(

1 +
5

9
(

IP − 1
2

)

)

E·|Q





∥
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∥

∥

N
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n
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∥
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∥
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+
γ2Iν̃2

P
+ 8IPγ2β̃2 + 8IPγ2

E·|Q
[

∥∇f(xt0)∥
2
]

+ γ2σ2

[

ρ2 +
1

6P

(

1−
N
∑

n=1

(qnt )
2

)]

.

(C.11)

When t = t0 and i = 0, note that

E·|Q





∥
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∥
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qnt0y
n
t0,0 − xt0

∥

∥

∥

∥

∥

2


 = 0 (C.12)

because yn
t0,0 = xt0 for all n as specified in Algorithm 1, and

∑N
n=1 q

n
t = 1.

We combine (C.9), (C.11), and (C.12). Since t0 ≤ t ≤ t0 + P − 1, unrolling the recursion gives
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≤
IP−1
∑

κ=0

(

1 +
5

9
(

IP − 1
2

)

)κ(

γ2Iν̃2

P
+ 8IPγ2β̃2 + 8IPγ2

E·|Q
[

∥∇f(xt0)∥
2
]

+ γ2σ2

[

ρ2 +
1

6P

(

1−
N
∑

n=1

(qnt )
2

)])

=





(

1 +
5

9
(

IP− 1
2

)

)IP

− 1



· 9
(

IP− 1
2

)

5
·
(

γ2Iν̃2

P
+ 8IPγ2β̃2 + 8IPγ2

E·|Q
[

∥∇f(xt0)∥
2
]

+ γ2σ2

[

ρ2 +
1

6P

(

1−
N
∑

n=1

(qnt )
2

)])

=





(

1 +
5

9
(

IP− 1
2

)

)IP− 1

2

(

1 +
5

9
(

IP − 1
2

)

)
1

2

− 1



 · 9
(

IP− 1
2

)

5
·
(

γ2Iν̃2

P
+ 8IPγ2β̃2

+ 8IPγ2
E·|Q

[

∥∇f(xt0)∥
2
]

+ γ2σ2

[

ρ2 +
1

6P

(

1−
N
∑

n=1

(qnt )
2

)])

≤
[

e
5

9 ·
√

19

9
− 1

]

· 9
(

IP− 1
2

)

5
·
(

γ2Iν̃2

P
+ 8IPγ2β̃2 + 8IPγ2

E·|Q
[

∥∇f(xt0)∥
2
]

+ γ2σ2

[

ρ2 +
1
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(

1−
N
∑

n=1

(qnt )
2

)])

≤ 3IP

(
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P
+ 8IPγ2β̃2 + 8IPγ2
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∥∇f(xt0)∥
2
]

+ γ2σ2
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ρ2 +
1
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1−
N
∑
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)])
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[

∥∇f(xt0)∥
2
]

+3γ2IPσ2

[

ρ2+
1
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(

1−
N
∑

n=1

(qnt )
2

)]

where the rationale behind the steps is similar to the proof of Lemma C.1.

C.3 Proof of Theorem 3.1

Consider t0 = kP for k = 0, 1, 2, ....

Due to smoothness,

E·|Q,t0 [f(xt0+P )]

≤ f(xt0) + E·|Q,t0 [⟨∇f(xt0),xt0+P − xt0⟩] +
L

2
E·|Q,t0
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2
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where E·|Q,t0 [z] is a short-hand notation for E
[

z
∣

∣Q,xt0

]

; (a) is due to the law of total expectation,

where the expectation is taken over yn
t,i; (b) is due to the unbiasedness and independence of stochastic

gradients. In other parts of the proof, we may use the law of total expectation in a similar way without
explanation.

Taking expectation on both sides over xt0 , we obtain

E·|Q [f(xt0+P )] ≤ E·|Q [f(xt0)]− E·|Q
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∑
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 . (C.13)

Consider the second term in (C.13),

− γη
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∇f(xt0),
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∑
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where (a) uses Lemmas C.1 and C.2.
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C.4 Proof of Corollaries 3.2 and 3.3

For Corollary 3.2, we note that γη = min
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by the choice of γ and η. Because
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For Corollary 3.3, we have γη =
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according to the choice of γ and η. Because
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we have γη ≤ 1
LIP and the conditions of Theorem 3.1 hold. The result is obtained by plugging the

values of γ and η into the result in Theorem 3.1, and noting that ρ2 ≤ 1 in the last term.

D Additional Details and Results of Experiments

D.1 Additional Details of the Setup

Code. Please visit https://shiqiang.wang/code/fl-arbitrary-participation

Datasets. The FashionMNIST dataset3 has MIT license and a citation requirement [34]. The CIFAR-
10 dataset4 only has a citation requirement [19]. We have cited both papers in our main paper. Our

3https://github.com/zalandoresearch/fashion-mnist
4https://www.cs.toronto.edu/~kriz/cifar.html
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experiments used the original split of training and test data in each dataset, where the training data is
further split into workers in a non-IID manner according to the labels of data samples with a similarity
of 5%, as described in the main paper.

Motivation of the Setup. The non-IID splitting of data to clients and the periodic connectivity are
motivated by application scenarios of FL. An example of a real-world scenario is where different
geographically-dispersed user groups can participate in training at different times of the day, e.g.,
when their phones are charging during the night. Another example is where multiple organizations
have their local servers (also known as edge servers), which can participate in training only when
their servers are idle, such as during the night when there are few user requests, and these servers are
located in different geographical regions. Our notion of ªclientº is a general term that can stand for
the phone or the local server in these specific scenarios.

Availability of Clients. In the case of periodically available clients, as described in the main paper,
subsets of clients with different majority class labels take turns to become available. For example,
only those clients with the first two majority classes of data are available in the first 100 rounds; then,
in the next 100 rounds, only those clients with the next two majority classes of data are available,
and so on. The majority class of each client is determined by the non-IID data partitioning. There
are 10 classes in total, so a full cycle of participation of all clients is 500 rounds. To avoid inherent
synchronicity across different simulation instances, we apply a random offset in the participation
cycle at the beginning of the FL process. With this random offset, the number of rounds where the
first subset of clients participate can be decreased to less than 100. For example, the first subset
of clients may participate for 37 rounds (an arbitrary number that is less than or equal to 100), the
second subset of clients then participates for the next 100 rounds, and so on. This random offset
varies across different simulation instances. It represents the practical scenario where the FL process
can start at any time in the day. In each round, S = 10 clients are selected to participate, according
to a random permutation among the currently available clients. The selection of a small number of
clients among the available clients can be due to resource efficiency considerations, for instance.

In addition to periodic availability, we also consider a setting where all the N = 250 clients are always
available, and a subset of S = 10 clients are selected to participate in each round. Here, we consider
two participation patterns. For independent participation, the subset of clients are selected randomly
according to a uniform distribution, independently across rounds. For regularized participation, the
clients are first randomly permuted and then S clients are selected sequentially from the permuted
sequence of clients, so that all the N clients participate in FL once in every N

S rounds.

Hyperparameter Choices. The initial local learning rates of γ = 0.1 and γ = 0.05 for
FashionMNIST and CIFAR-10, respectively, were obtained from a learning rate search where
the model was trained using γ ∈ {0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001} while fixing
η = 1. We considered the case of always available clients for this learning rate search. We chose the
learning rate that gave the smallest training loss after 2, 000 rounds of training for FashionMNIST
and 4, 000 rounds of training for CIFAR-10, where we observed that the best learning rate is the
same for both independent and regularized participation with each dataset. The reason of considering
always available clients for tuning the initial learning rates is because this is the ideal case which
allows the model to make big steps in training, so it is reasonable to use these learning rates as starting
points even in the case of periodic availability. The number of rounds that use the initial learning
rate in the case of periodic availability was determined so that the model’s performance no longer
improves substantially afterwards, if keeping the same initial learning rate.

The subsequent learning rates for the methods shown in Figure 1, with periodically available clients,
are found from a search on a grid that is {1, 0.1, 0.01, 0.001, 0.0001} times the initial learning rate,
as described in the main paper. The optimal learning rates found from this search are shown in
Table D.1.

We fix the number of local updates to I = 5 and use a minibatch size of 16 for local SGD at
each participating client. These parameters were not tuned specifically, since the relative difference
between different methods will likely follow the same trend for different I and minibatch sizes.
Because I is a controllable parameter in our experiments, we consider a minor extension (compared
to our discussion in Section 5) in the ªwait-*º methods in our experiments, where each client performs
I local iterations (instead of one iteration in the discussion in Section 5) before starting to wait. The
intuition remains the same as what has been discussed in Section 5. The reason for this extension is
because the ªwait-*º methods defined in this way is equivalent to the case where all the clients are
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Table D.1: Optimal learning rates found from grid search

Method FashionMNIST CIFAR-10

wait-minibatch γ = 0.1 γ = 0.05

wait-full γ = 0.1 γ = 0.05

Algorithm 1 without amplification (η = 1) γ = 1× 10
−5 γ = 5× 10

−5

Algorithm 1 with amplification
(η = 10, P = 500)

γ = 1× 10
−5 γ = 5× 10

−6

available but the total number of rounds is reduced by P , so it has an easily interpretable meaning in
practice. In addition, changing I can change the performance of all methods (including Algorithm 1,
both with and without amplification, and the ªwait-*º methods), while their relative difference can
remain similar. We do not study the effect of I and minibatch size in details in this work.

Model Architecture. The CNN architectures used in our experiments are shown in Table D.2, where
we use Kaiming initialization [15] for all the ReLU layers. All convolutional and dense layers, except
for the last layer, use ReLU activation.

Table D.2: CNN architectures

FashionMNIST CIFAR-10

Convolutional (input: 1, kernel: 5× 5,
padding: 2, output: 32)

Convolutional (input: 3, kernel: 5× 5,
padding: 2, output: 32)

MaxPool (kernel: 2× 2, stride: 2) MaxPool (kernel: 2× 2, stride: 2)

Convolutional (input: 32, kernel: 5× 5,
padding: 2, output: 32)

Convolutional (input: 32, kernel: 5× 5,
padding: 2, output: 64)

MaxPool (kernel: 2× 2, stride: 2) MaxPool (kernel: 2× 2, stride: 2)

Dense (input: 1, 568, output: 128) Dense (input: 4, 096, output: 512)

Dense (input: 128, output: 10) Dense (input: 512, output: 128)

Softmax Dense (input: 128, output: 10)

Softmax

Collecting Results. The plots in Figures 1±2 and all the figures showing additional results in the next
section were obtained from simulations with 10 different random seeds for FashionMNIST and 5
different random seeds for CIFAR-10. For the best viewing experience, we further applied moving
average over a window length of 3% of the data points (on the x-axis) in the loss and accuracy results.
In all the figures, the solid lines and the shaded areas show the average and standard deviation values,
respectively, over the moving average window and all simulation runs for each configuration.

Computational Resources. The workload of experiments was split between a desktop machine with
RTX 3070 GPU and an internal GPU cluster. On RTX 3070, the FashionMNIST experiment with
300, 000 training rounds takes about a day to complete for a single simulation instance; the CIFAR-10
experiment with 600, 000 training rounds takes about three days to complete for a single simulation
instance. The RTX 3070 has memory that can support simulation with 5 different random seeds (i.e.,
5 different instances) at the same time. On the internal GPU cluster, the running times are slightly
shorter since it has better-performing GPUs. We also note that the ªwait-*º methods run faster than
Algorithm 1 in simulation because a lot of rounds are skipped, but this does not mean that they can
train models faster in practice, because we consider the number of training rounds as an indication
of physical time elapse. For example, in the case of periodic availability, each subset of clients is
available for 100 rounds in a cycle. This means that 100 rounds of training can take place during the
physical time duration that these clients are available. Algorithm 1 chooses to actually train models
during this time. The ªwait-*º methods choose not to train in some of the rounds, but they still need
to wait until the time has passed and the next subset of clients becomes available, where the time here
is measured by the number of training rounds that includes those rounds that may be skipped by the
ªwait-*º methods.
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D.2 Additional Results

In the following, we present some additional results obtained from experiments.

D.2.1 Always Available Clients

We first consider the case of always available clients, where a subset of S = 10 clients are selected
in an independent or regularized manner, as discussed in Section D.1. We compare the results of
independent and regularized participation in Figure D.1. The observation is that both methods give
similar performance, with regularized participation having a marginal performance improvement.
As our theory predicts (see Table 1), both independent and regularized participation can guarantee
convergence, where regularized participation gives a slightly better convergence rate.

Figure D.1: Comparison between independent and regularized participation in the case of always
available clients.

D.2.2 Periodically Available Clients

Different Learning Rates and Amplification Factors. Next, we consider periodically available
clients as in the main paper. We study the performance of Algorithm 1 with different learning rate
and amplification factor configurations. The results are shown in Figures D.2 and D.3.

Figure D.2 shows the results with different combinations of the local learning rate γ and amplification
factor η. We note that η = 1 corresponds to the case without amplification and η = 10 corresponds
to the case with amplification (and with an amplification factor of 10). We can observe that when γ is
large, the training is generally unstable with high fluctuation, high loss, and low accuracy. Reducing

γ improves the performance. According to our theory, P = 500 gives a small δ̃2(P ) with this
experimental setup, because the cycle of all clients being available once is 500 rounds. On the other

hand, a small δ̃2(P ) can be achieved with a much smaller P in the case of always available clients (in
Section D.2.1). When P gets large, our theory suggests that the learning rate γ should become small
in order to guarantee convergence. This explains why non-convergence is observed in Figure D.2 for
large γ, while convergence is observed for small γ. For the smallest γ in each case, i.e., γ = 10−5

for FashionMNIST and γ = 5 × 10−6 for CIFAR-10, we can see that amplification with η = 10
further improves the performance over no amplification (η = 1).

Figure D.2: Algorithm 1 with different learning rates in the case of periodically available clients.
Note: FashionMNIST with γ = 0.1 is not shown in the plots due to NaN values observed when the
number of training rounds is large.

32



In Figure D.3, we further investigate the impact of different amplification factors η, while fixing
γ = 10−5 for FashionMNIST and γ = 5×10−6 for CIFAR-10 as in the case of η = 10 in Figure D.2.
We observe that the cases with η = 5, η = 10, and η = 15 have similar performance, especially
when getting closer to convergence. The performance gets worse when η is too small (e.g., η = 2),
because the advantage of amplification is not fully attained in this case. When η is too large (e.g.,
η = 20), we observe higher fluctuation in the loss and accuracy values, which also leads to lower
performance. For both datasets and their corresponding models considered in our experiments, we
observe that the cases of η = 5, η = 10, and η = 15 all give reasonably good performance. This
suggests that a coarse choice of η based on experience can be sufficient in practice, without the need
of fine-grained tuning.

Figure D.3: Algorithm 1 with different amplification factors η, while fixing γ = 10−5 for
FashionMNIST and γ = 5× 10−6 for CIFAR-10.
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