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Abstract

Monte Carlo integration is a key technique for designing randomized approximation
schemes for counting problems, with applications, e.g., in machine learning and
statistical physics. The technique typically enables massively parallel computation,
however, with the risk that some of the delegated computations contain spontaneous
or adversarial errors. We present an orchestration of the computations such that
the outcome is accompanied with a proof of correctness that can be verified with
substantially less computational resources than it takes to run the computations
from scratch with state-of-the-art algorithms. Specifically, we adopt an algebraic
proof system developed in computational complexity theory, in which the proof
is represented by a polynomial; evaluating the polynomial at a random point
amounts to a verification of the proof with probabilistic guarantees. We give
examples of known Monte Carlo estimators that admit verifiable extensions with
moderate computational overhead: for the permanent of zero–one matrices, for the
model count of disjunctive normal form formulas, and for the gradient of logistic
regression models. We also discuss the prospects and challenges of engineering
efficient verifiable approximation schemes more generally.

1 Introduction

Can we trust a result computed by a machine? Putting aside questions about the sensibility of the
computational task itself, trust stems from one’s belief in the correctness of the selected algorithm, its
implementation in software, and execution on hardware. All these ingredients are prone to errors,
especially when the task is hard, the algorithm is advanced, and the computations are extensive
(distributed and long). Trustworthy computation is one pillar of trustworthy AI [28], and it is an issue
particularly when one “outsources” computations to other computational agents, e.g., to millions of
Internet users to make use of their idle cycles—some users could be dishonest and return seemingly
valid results without running any actual computation [6, 26].

Ideally, the outcome of the computations would be accompanied with a certificate of correctness, or
proof, the user can verify. Furthermore, verification should be computationally easy in that it should
consume substantially less computational resources than it takes to run the computations from scratch
with state-of-the-art algorithms. For many decision and search problems such proofs are available;
e.g., a certificate of satisfiability of a given Boolean formula is simply a satisfying truth assignment.
For optimization problems, the cost of the found (locally optimal) solution is typically easy to verify,
and certificates of optimality are sometimes obtained by linear programming duality. Certifying
algorithms extend the output accordingly with an easy-to-verify proof [20]. For counting problems,
which are central in applications involving probabilistic reasoning, such certificates are typically not
readily available, and it is not immediate whether such certificates exist in the first place.
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In this paper, we initiate research on verifiable randomized approximation schemes for weighted
counting. Specifically, we investigate Monte Carlo estimators, which approximate a target quantity µ
by a sample-average of random variables W1,W2, . . . ,WN with mean µ so that

µ ≈ 1

N

N∑
t=1

Wt . (1)

For an accurate estimate, one may have to draw a large number of samples. Fortunately, the simple
way of aggregating the N samples enables easy and efficient parallelization of the computations,
particularly if the samples are independent. This motivates studying a setting where one agent, the
verifier, delegates most of the computations to one or more other, potentially computationally more
powerful, agents. When aggregating the results of the delegated computations, how can the verifier
know if some agents made errors, whether intentional or spontaneous, in their computations?

To address this question, we build on ideas and frameworks developed in the context of proof systems
with probabilistic soundness in complexity theory and cryptography [9, 6, 8, 26, 27]. One of the key
ideas is to encode the problem instance at hand by a univariate polynomial p of degree D such that
knowing the D + 1 coefficients of p—or equivalently, evaluations of p at D + 1 points—reveals the
correct solution to the problem instance. The verifier delegates the task of computing p and receives a
claimed polynomial p̃. Now, the verifier evaluates both the correct p and the claimed p̃ at a single
random point r drawn from a range significantly larger than D: if p 6= p̃, then p(r) 6= p̃(r) with high
probability, since p− p̃ has at most D roots. Supposing the total time needed for solving the problem
with a state-of-the-art algorithm is T ≈ DE, where E is the time requirement per evaluation of p, an
optimal verifier time is achieved when D ≈ E ≈

√
T . That is, verification is computationally easy in

the sense that it consumes essentially only a square root of the resources needed to solve the problem
with state-of-the-art algorithms. Various problems can be cast in this way, with only a small overhead
in relation to the time requirement of the corresponding non-verifiable computation. Examples range
from the matrix permanent and model counting for Boolean formulas [27] to graph coloring and
counting small subgraphs [4], and to exact probabilistic inference in graphical models [14].

When extending the framework to Monte Carlo estimators of the form (1), we encounter a new
challenge: the randomness and independence of the summands Wt. Indeed, if the verifier outsources
the generation of random numbers, there is no deterministic correct result that could be verified.
We circumvent this obstacle by letting the verifier generate all needed random bits, after which the
remaining computational task is deterministic. This leads to another challenge: if the verifier has to
generate N random numbers, how can the verifier avoid its running time scaling as N , the goal for
scaling being rather

√
N? Here we make use of the facts that (i) only O(logN) independent random

bits suffice to generate N pairwise independent random bits, and (ii) pairwise independence suffices
for concentration results that stem from bounding the second moment of the random variables Wt.

The rest of this paper is organized as follows. Section 2 connects the task of designing a proof
polynomial to that of finding an appropriate low-degree arithmetic circuit [27]. In Section 3, we
present our main contribution, a generic method for obtaining what we call a verifiable randomized
approximation scheme (vras). Section 4 extends the method to settings where our arithmetic circuit
only approximates a random variable Wt. As a running example, we use the problem of computing
the permanent of a given matrix, for which practical approximating schemes have been sought in the
AI community recently [18, 10]. We also apply the methods to known Monte Carlo estimators for
model counting of Boolean formulas given in a disjunctive normal form and for estimating gradients
of a Bayesian logistic regression model. In the last section, we connect to recent work on learning
and reasoning with arithmetic circuits [25] and probabilistic generating circuits [29]. We also discuss
directions for future research.

Although this work is theoretical and leaves experimentation for future works, we include a proof-of-
concept Mathematica [11] implementation for the example of Section 3.4 in the supplement.

Throughout the paper, the notation Õ(·) suppresses factors polylogarithmic in the argument, [[P ]]
evaluates to 1 if P is true, and to 0 otherwise, and (†) marks that a proof is given in the supplement.

2 Proving and verifying with polynomials

We begin by introducing the proof system, synthetisizing ideas from related recent works [27, 4, 14].
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2.1 Prove and verify

Suppose one computational agent, the verifier, wishes to delegate most of the computational task
at hand to another agent, the prover. Here the prover may consist of multiple agents working
independently of each other, thus efficiently parallelizing the delegated computations.

Definition 1. Let A be an algorithm with access to another algorithm B. We call A a verifier and
B a prover, if given any problem instance, the output of A is correct whenever the output of B is
correct,1 and otherwise A outputs “untrusted” with probability at least 2/3. We refer to the time
requirements of A and B as the verifier time and the prover time, respectively.

The constant 2/3 is customary but arbitrary. As we will point out soon, the probability can be
efficiently amplified to arbitrarily close to 1.

For constructing a verifier, the idea is to represent the essence of the computational task as evaluation
of a univariate polynomial p(x) = p0 + p1x

1 + · · ·+ pDx
D over a finite field F at some e ≥ D + 1

distinct points ξ1, ξ2, . . . , ξe ∈ F , selected so that given the values p(ξ1), p(ξ2), . . . , p(ξe)—assuming
they are correct—the verifier can, with little additional work, solve the original problem. Crucially,
the correct polynomial p is specified by the problem instance in a way that is known to both the
verifier and the prover. From the verifier’s viewpoint the procedure is as follows.

Algorithm V
V1 Send the prover the problem instance and the points ξ1, ξ2, . . . , ξe.

V2 Receive from the prover a proof, i.e., a claimed value yk of p(ξk) for each k = 1, 2, . . . , e.

V3 Find the coefficients of p̃(x) =
∑D
k=0 p̃kx

k such that p̃(ξk) = yk for all k = 1, 2, . . . , e.

V4 Draw a random point ξ0 ∈ F and evaluate p̃(ξ0) and p(ξ0).

V5 If p̃(ξ0) = p(ξ0), then accept the proof and consume the values yk; otherwise reject the proof.

Note that if p̃ 6= p, then p̃(ξ0) = p(ξ0) with probability D/|F |, which we can make arbitrarily small
by using a finite field F that is sufficiently large in relation the degree D.

Several remarks are in order. While D + 1 evaluations would suffice for recovering the polynomial,
we allow e ≥ D + 1 to enable error-correction. Indeed, as long as at least (e+D + 1)/2 of the e
evaluations are correct, the correct polynomial can be efficiently recovered using a Reed–Solomon
decoder (see [4] and references therein); e.g., putting e = 2(D + 1), one fourth of the prover’s
evaluations can be incorrect. The procedure also enables the prover to run the e evaluations in parallel
on e computing units without any communication among them. Furthermore, the protocol is, in
essence, non-interactive: the verifier only sends one message to the prover and receives one. Finally,
in step V3 the computational efficiency of the procedure stems from fast interpolation of univariate
polynomials; this is incorporated in Theorem 1, given in the next section.

2.2 Multipoint circuit evaluation

For designing the polynomial and selecting the evaluation points, we adopt Williams’s [27] generic
method, with some changes. The idea is to represent the problem at hand as a task of evaluating
an arithmetic circuit at multiple points. This approach differs from that of Björklund and Kaski
[4], who craft their polynomials separately for each problem they consider to obtain a fine-grained
optimization of the running time.

An arithmetic circuit C in variables x1, x2, . . . , xn over a field F is a directed acyclic graph, in which
each vertex is called a gate and labeled by + (sum) or × (product) if its in-degree is not zero, and
otherwise by one of the variables xi or by a constant from F. Every gate v computes a polynomial
Cv ∈ F[x1, x2, . . . , xn] in an obvious way. Unless stated otherwise, the circuit is assumed to have a
single output gate v (i.e., of out-degree zero) and C is identified with the polynomial Cv. The size,

1We understand a problem as a map Π from a set of instances to a set of solutions, and that given an instance
I , an output S of an algorithm for Π is correct if and only if Π(I) = S. By saying that A has access to B we
mean that A can run B to solve instances of a fixed subproblem Π′, in relation to which an output of B is either
correct or incorrect.
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Figure 1: An arithmetic comparison circuit. The circuit outputs 1 if x < y, and 0 otherwise. The
numbers x and y are given as bit vectors of length n; illustrated is the case n = 2. The circuit
represents the polynomial

∑n
i=1(1− xi)yi

∏i−1
j=1

(
1− (1− xj)yj)

)
of degree 2n using O(n) gates.

depth, and degree of C are, respectively, the number of gates, the length of the longest directed path,
and the largest degree of the monomials in C. We assume that the maximum in-degree is at most 2.

Arithmetic circuits are powerful representations of functions and computation. For example, to
simulate any Boolean circuit by an arithmetic circuit of about the same size and depth, simply replace
each Boolean gate by a constant number of sum and product gates, e.g., x1 ∨ x2 by x1 + x2 − x1x2.
Figure 1 shows a circuit for comparing two n-bit nonnegative integers.

Typically we want to show that a given function admits a circuit that has small size and low degree.
While it is important that we can also efficiently construct such a circuit, usually it is clear that
construction takes time roughly linear in the size of the circuit, and we do not mention that.

The multipoint circuit evaluation problem (MCE) is as follows. Given an arithmetic circuit C in n
variables over a finite field F and points u1, u2, . . . , uK ∈ Fn, compute the values C(uk) ∈ F for all
k = 1, 2, . . . ,K. Denote by s and d the size and the degree of the circuit, respectively.

The following result tells that we can design a verifier by representing the problem as an instantiation
of MCE. We attribute the result to Williams [27, Theorem 1.2]; we have made some modifications to
the proof to also take into account the prover’s time requirement (not considered by Williams).

Theorem 1 (†). MCE admits a verifier with prover time Õ(Kds) and verifier time Õ(Kdn+ s).

Proof sketch. The main idea is to transform the circuit C of n variables into a univariate circuit p,
which then represents a univariate polynomial. We associate each point ui ∈ Fn with an element ξi
from some large enough extension field F of F. Next, we find an interpolating polynomial for each
variable of C such that for a point ξi the polynomial λj extracts the jth component uij of ui. As a
result, we obtain a circuit with p(ξi) = C(ui1, u

i
2, . . . , u

i
n).

The interpolating polynomials increase the degree of the circuit (polynomial) by a factor of K, and
therefore we need Kd+ 1 evaluations to determine the polynomial representation of p uniquely. As
a consequence, we evaluate p on some additional arbitrary distinct points ξK+1, ξK+2, . . . , ξKd+1.

The prover needs to evaluate a circuit of size s on Kd + 1 points, which takes time O(Kds). On
the verifier’s side, we need to send the circuit of size s to the prover, as well as n input variables of
C for each point ξi to enable massive parallelization. This and the other steps of Algorithm V can
be computed efficiently in given time limits by using fast interpolation and multipoint evaluation of
univariate polynomials.

Remark 1. The result relies on the prover’s and the verifier’s ability to evaluate the circuit in a given
point from Fn, where F is an extension field of F. For the time requirement of these evaluations, the
circuit size s gives an upper bound, which can be overly conservative—indeed, we may replace the
term s by the actual time required for computing the value of the circuit at a given point. For example,
the univariate polynomial 1 + x+ · · ·+ xd in one variable has a circuit of size 2d and degree d, but
it can be evaluated in the form (1− xd+1)/(1− x) using only O(log d) field operations.
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2.3 Example: the permanent

The permanent of a square matrix A = (ai,j) ∈ Fm×m is given by

perA =
∑
σ

m∏
i=1

ai,σ(i) =
∑

t∈{0,1}m

m∏
i=1

(−1)1−ti
m∑
j=1

tiai,j ,

where σ runs through all permutations on {1, 2, . . . ,m}. The second expression is due to Ryser [24].

Assume m is even and put n := m/2 and

C(t) :=

m∏
i=1

(−1)ti−1
m∑
j=1

tiai,j and C∗(u) :=
∑

v∈{0,1}n
C(u1, u2, . . . , un, v1, v2, . . . , vn) .

Now perA =
∑
u∈{0,1}n C∗(u). Write (−1)1−ti as 2ti − 1 to observe that C∗ has an arithmetic

circuit of size O(2nm2) and degree 2m. By Theorem 1, the permanent admits a verifier with prover
time Õ(2m) and verifier time Õ(2m/2).

3 Verifiable Monte Carlo integration

We next apply Theorem 1 to the computation of Monte Carlo estimators (1).

3.1 Multipoint evaluation and pairwise independence

To reduce the Monte Carlo estimator to K circuit evaluations, we simply write the sum over N terms
as a double summation:

1

N

N∑
t=1

Wt =
1

N

K∑
k=1

Vk , Vk :=

N/K∑
j=1

W(k−1)K+j .

Naturally, K has to divide N . To make this hold, we will assume that N and K are powers of 2.

Now we view each random variable Vk as an output of a fixed arithmetic circuit evaluated at some
point uk. In fact, we take the index k itself as the point uk. The circuit is obtained as a sum of K/N
evaluations of a smaller circuit C, each of which outputs W(k−1)K+j when given k and j as input.
Crucially, the output of C is a deterministic function of (k, j), implying that all randomness must be
encoded in C. Because of this, the N random variables cannot be independent, for then the encoding
would require at least N bits, rendering the circuit C large and undermining the pursuit of an efficient
verifier. To circumvent this obstacle, we resort to pairwise independence.

To develop these ideas more formally, we begin with the fact that ` independent random bits suffice for
generating 2` − 1 pairwise independent bits, by taking the exclusive-or of every nonempty subset [22,
Lemma 13.1]. We may index by a bitvector t ∈ {0, 1}`, interpreted as the integer t1+2t2+. . . 2`−1t`.

Definition 2. The subset-sum expansion of x ∈ {0, 1}` is the bit vector y ∈ {0, 1}2`−1 given by

yt :=
⊕̀
i=1

tixi , (0, 0, . . . , 0) 6= t ∈ {0, 1}` .

Fact 2. Let x be a uniform draw from {0, 1}` and y its subset-sum expansion. Then the bits yt are
pairwise independent uniform draws from {0, 1}.

Clearly, if the index t is given as a bit vector, the bit yt can be computed by a succinct circuit:

Proposition 3. Given a bit vector x ∈ {0, 1}`, there is a circuit C : F` → F of size O(`) and degree
` such that C(t) = yt for all t ∈ {0, 1}` \ {(0, 0, . . . , 0)}, where y is the subset-sum expansion of x.

Proof. The first layer computes zi := tixi for i = 1, 2, . . . , `. The second layer computes the
exclusive-or of z1, z2, . . . , z` using the arithmetization a⊕b = a(1−b)+(1−a)b = a+b−2ab.
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A single random bit yt being generally insufficient for generating the random variable Wt of interest,
we take n independent copies, where n will be set depending on the specific random variable.

Lemma 4 (†). Let C : Fn → F be a circuit of size s and degree d. Let N ≤ 2` − 1 be a power of
2. Then, given bit vectors x1, x2, . . . , xn ∈ {0, 1}` and a factorization N = 2a2b, there is a circuit
C∗ : Fa → F of size O(2b(`n+ s)) and degree `d, such that

∑
u∈{0,1}a

C∗(u) =

N∑
t=1

C(y1t , y
2
t , . . . , y

n
t ) ,

where yi ∈ {0, 1}2`−1 is the subset-sum expansion of xi.

3.2 Verifiable approximation schemes

So far we have required that the verifier’s output is correct if the prover’s output was correct
(Definition 1). While this applies to computing Monte Carlo estimators (with a fixed sequence of
random bits), as shown above, we find it convenient to extend the definition so that the verifier’s
output is only required to have probabilistic error guarantees. We focus on conrolling the relative
error; call a random variable Z an (ε, δ)-approximation of a real r if Pr(|Z/r − 1| > ε) < δ.
Definition 3. Let A be an algorithm with access to another algorithm B. We call A a verifiable
randomized approximation scheme (vras) if, given an instance and tolerance parameters ε, δ > 0,
it outputs an (ε, δ)-approximation whenever the output of B is correct, and otherwise A outputs
“untrusted” with probability at least 2/3. We refer to A and B as the verifier and the prover and their
time requirements as the verifier time and the prover time, respectively.

If a Monte Carlo estimator is an (ε, δ)-approximation for sufficiently large N , we obtain a vras by
applying Lemma 4 and Theorem 5. Typically, for averages of 0–1 random variables in particular,
such estimators are derived using Chernoff bounds assuming independent samples, which we do not
have here. Fortunately, pairwise independence suffices for concetration results based on the second
moment; Chebysev’s inequality only needs control of the critical ratio E[W 2]/E[W ]2.
Theorem 5 (†). Let W be a random variable with the critical ratio at most a known upper bound R.
Suppose there is an arithmetic circuit C : Fn → F of size s and degree d such that W = C(x) for
x drawn uniformly at random from {0, 1}n. Then the mean of W admits a vras with a prover time
Õ(T ) and a verifier time Õ(

√
T + s+ d log δ−1), where T := R · d · s · ε−2 · ln δ−1.

Note that the total work T is essentially—up to the factor d and the hidden polylogarithmic factors—
the same as the requirement of the baseline algorithm that does not enable verification. Usually the
term

√
T dominates the verifier’s time requirement. Recall that we implicitly assume that the circuit

can also be efficiently constructed for the given problem instance. The challenge is, however, rather
to show that the random variable W can be generated by a low-degree circuit.

3.3 Example: The Godsil–Gutman estimator for the permanent

Let A = (aij) be an m×m binary matrix and B = (bij) an m×m matrix where bij are independent
uniform draws from {−aij , aij} ⊂ {−1, 0, 1}. One can show that E

[
(detB)2

]
= perA. Employing

this observation, the Godsil–Gutman estimator [7] for the permanent is given by N−1
∑N
t=1Wt,

where Wt are copies of W := (detB)2. The critical ratio of W is at most 3m/2 [15].

We show that the permanent admits a vras. By Theorem 5, it suffices to give an arithmetic circuit
C that computes W given some number n of random bits as input. We put n := m2 so that there
is one random bit xij per matrix entry. The first layer of C constructs B by bij := (1 − 2xij)aij .
The second layer computes the determinant of B using, e.g., Berkowitz’s division-free circuit of size
O(m4) [3]; in fact, by Remark 1, we may use division and replace the bound by O(m3). The last
layer raises the obtained result to the second power. Since the degree of the determinant is m, the
degree of the circuit is 2m. By Theorem 5, the prover time and verifier times are Õ(T ) and Õ(

√
T ),

where T = 3m/2ε−2 ln δ−1, ignoring a factor polynomial in m. The circuit is defined over the field
Z/qZ, where q is a large prime; it is sufficient to have q ≥ 2N(n!)2 so that the arithmetic does not
overflow. Large primes can be efficiently found [2].

6



3.4 Example: A quaternion based estimator for the permanent

A more sophisticated Godsil-Gutman type estimator [5] uses a random matrix B whose entry bij
is zero if aij = 0, and otherwise an independent uniform draw from the signed quaternion basis
{±1,±i,±j,±k}. Representing the four basis elements, respectively, by the complex-valued 2× 2
matrices

(
1 0
0 1

)
,
(

i 0
0 −i

)
,
(

0 1
−1 0

)
, and

(
0 i
i 0

)
, and letting D = (dij) be the corresponding 2m× 2m

matrix representation of B, the random variable of interest is W := detD. The mean of W equals
perA and the critical ratio of W is at most (3/2)m/2 [5], improving on the basic estimator.2

Accordingly, we can apply Theorem 5 to show that the permanent admits a vras with a prover time
Õ(T ) and a verifier time Õ(

√
T + log δ−1), where T = (3/2)m/2ε−2 ln δ−1. Now our circuit to

compute W takes as input 3 random bits x, y, z per entry aij of A and puts(
d2i−1,2j−1 d2i−1,2j
d2i,2j−1 d2i,2j

)
:= aij(1− 2x)

[
y
(
zM1 + (1− z)M2

)
+ (1− y)

(
zM3 + (1− z)M4

)]
,

where M1,M2,M3,M4 are the 2× 2 matrices given above. Thus the degree of each entry of D is 3,
whence the degree of detD is 6m. The circuit is defined over Z/qZ, with an appropriate prime q:
we require q ≥ 2N(n!)2 to avoid overflows and, additionally, that q = 1 mod 4 to guarantee that the
field has fourth roots of unity (to serve as i, −1, −i, and 1); the roots can be efficiently found [1].

4 Extensions for approximate circuits

So far we have assumed that the random variable W can be exactly computed by a succinct arithmetic
circuit. We next extend the method to allow for circuits that only approximate the random variable.

4.1 Small deviation with high probability

Clearly, to obtain an (ε, δ)-approximation, the expected value of the circuit need not be exactly that of
W— achieving a relative error of order O(ε) should suffice. Likewise, the shape of the distribution
need not be similar to that ofW—having a reasonable upper bound for the critical ratio should suffice.
Moreover, we may let the circuit fail and not deliver these features with a small probability or order
O(δ). We next formalize this intuition.

For a random variable Y and event A, write σ[Y |A] for the standard deviation of the conditional
distribution, i.e., for the (nonnegative) square root of the conditional variance E[Y 2|A]− E[Y |A]2.

Definition 4. Let (Ωi,Fi, Pi) be probability spaces and Xi : Ωi → R random variables, i ∈ {1, 2}.
Let ε, δ ∈ [0, 1]. We say that X2 is an (ε, δ)-deviate of X1 if there exists an acceptance event A ∈ F2

such that P2(A) ≥ 1 − δ and E[X2|A] and σ[X2|A] approximate E[X1] and σ[X1] to within a
relative error of ε and 1, respectively.

Our choice of the upper bound 1 for the relative error of the standard deviation is somewhat arbitrary.
One may replace it by any small number, incurring only a respective small factor to the running time.

Corollary 6 (†). Let W be a random variable with the critical ratio at most a known upper bound
R. Suppose that, for any γ := (α, β) ∈ (0, 1)2, there is an arithmetic circuit Cγ : Fnγ → F of
size sγ and degree dγ such that Cγ(x) is an (α, β)-deviate of W when x is drawn uniformly at
random from {0, 1}nγ . Then, for any α ≤ ε/3 and β ≤ δε2/

(
3456R ln(2/δ)

)
, the mean of W

admits an (ε, δ)-vras with a prover time Õ(T ) and a verifier time Õ(
√
T + sγ + dγ log δ−1), where

T := R · dγ · sγ · ε−2 · ln δ−1.

We have not optimized the constants. Note also that we expect the parameter β to affect the circuit
size and degree only logaritmically, i.e., by a factor of (lnβ−1)O(1); see below for an example.

4.2 Example: Approximate model counting of disjunctive normal forms

Given a Boolean formula ψ of n variables in a disjunctive normal form C1 ∨ C2 ∨ · · · ∨ Cm, where
each clause Cj is a conjunction of literals, the DNF counting problem asks the number of truth

2The random variables (detB)2 and detD share the same first and second moments, but the former does
not admit efficient computation due to non-commutativity of the quaternion algebra [5].
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assignments that satisfy ψ, denoted by c(ψ). The problem is a fundamental #P-complete with
applications in diverse domains ranging from network reliability to probabilistic databases (see,
e.g., [21] and references therein). We next present a verifiable extension of a classic Monte Carlo
algorithm [16, 22, Sect. 10.2] that outputs an (ε, δ)-approximation in time O(m2nε−2 log δ−1).

Let Sj be the set of truth assigments that satisfy Cj . Generate a random variable W as follows:
first select j with probability proportional to the cardinality |Sj |; then draw an assignment a ∈ Sj
uniformly at random; let W := 1 if a does not belong to Sk for any k < j, and W := 0 otherwise.
Lemma 7 ([16], †). The mean of W equals c(ψ)/

∑m
j=1 |Sj | and the critical ratio is at most m.

As computing the sum of the sizes |Sj | is easy, it remains to give a succinct arithmetic circuit
that computes W . The challenge is to turn given ` random bits into a sample from the categorical
distribution where the probability of j ∈ {1, 2, . . . ,m} is proportional to |Sj |. We use rejection
sampling. When the random bit string, interpreted as an integer, falls in the range spanned by the
sum of |Sj |, the sample is accepted and output of the circuit is a copy of W . Otherwise, the sampling
fails and the circuit outputs 0. The probability of failing can be made small:

Lemma 8 (†). For any β > 0, there is an arithmetic circuit of size O
(
m(n+ log β−1)

)
and degree

O
(
mn(n+ log β−1)

)
such that the output of the circuit is an (0, β)-deviate of W when given

O(n+ log β−1) independent uniformly distributed bits as input.

Remark 2. If the mean of W is at most 1/2 (guaranteed, e.g., by duplicating each clause), then the
constructed random variable is also an (β, 0)-deviate of W . Namely, when the sampling of j fails,
the output is 0. Thus, the mean of the Bernoulli variable is at most the exact mean µ and at least
(1− β)µ. The variance is at most µ(1− (1− β)µ) = µ(1− µ) + βµ2 ≤ (1 + β)µ(1− µ) and at
least (1− β)µ(1−µ), implying that also the standard deviation is within a relative error of at most β.

Having a circuit for W , we are ready to apply Corollary 6. For simplicity of expressions, let us make
the modest assumption that ln δ−1 = Õ(n) or ln ε−1 = Õ(n). By substituting the above size and
degree bounds to the formulas in the corollary, we get, after hiding logarithmic factors, that the DNF
counting problem admits a vras with a prover time Õ(T ) and a verifier time Õ(

√
T +mn2 log δ−1),

where T = (mn)3ε−2 ln δ−1. (We leave the verification of these bounds to the reader.)

This example highlights some new features of our method. Since the required Monte Carlo sample
size is relative small (linear in m) in comparison to the time requirement per sample (linear in mn
in the original algorithm), the verifiable extension did incur a non-negligble overhead in the total
complexity, by a factor of mn2. Crucially, however, the cost of the verifier remains significantly
lower than the total cost of the original algorithm. In particular, for small ε we have ε−1 � ε−2.

4.3 Example: Gradient estimation

In variational inference the posterior distribution of model parameters w is approximated by a
parametric distribution q(w; θ) whose parameters θ are optimized to maximize the objective

F (θ) := E
q(w;θ)

[f(w)]−KL(q||p) ,

where f is the log-likelihood of the data, p is a prior of w, and KL is the Kullback–Leibler divergence
[13]. A popular optimization method iteratively updates the parameters in the direction of the gradient
∇θF (θ), for which an approximation is obtained using a Monte Carlo method.

As a concrete instantiation, consider Bayesian logistic regression [12, 23], in which the probability of a
response y ∈ {−1, 1} given a feature vector x ∈ Rn is modeled as g(yx·w), with g(z) = 1/(1+e−z).
The prior p for the parameter vector w ∈ Rn is taken as a multivariate normal N (0, cI) with
some constant c > 0, and the posterior approximation q is a multivariate normal N (µ,Σ) with
Σ = diag(σ1, σ2, . . . , σn). Thus θ = (µ,Σ) and f(w) =

∑
(x,y)∈S ln g(yx · w), where S is the

given dataset of points (x, y), which are modeled as exchangeable (i.e., independent given w).

Now, consider the estimation of the gradient of the expectation of f(w); the gradient of the KL
divergence can be obtained analytically. The basic estimator is given by

η̂N :=
1

N

N∑
t=1

f(wt)∇θ ln q(wt; θ) , w1, w2, . . . , wN ∼ q(w; θ) .
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A popular variant, we omit here for simplicity, constructs the estimator based on a subsample of the
data set, obtained by random sampling or by deterministically splitting the data set into batches [23].

To apply the method of trustworthy Monte Carlo, we need to find an arithmetic circuit that approx-
imates a random variable W := f(w)∇θ ln q(w; θ), where w ∼ q(w; θ), given some number of
uniformly distributed bits. In our example model, one can easily verify that the partial derivatives of
ln q(w; θ) with respect to µi and σ2

i equal (µi − wi)/σ2
i and [(µi − wi)2 − σ2

i ]/(2σ4
i ), respectively.

These terms being simple polynomials of wi, they can be handled in a straightforward manner, once
the scalar wi has been generated, increasing the size and degree of the circuit very little. The actual
challenge is to construct a circuit for f(w). We next sketch a construction in four phases (details in
Suppl. B). Since f(w) can be arbitrarily close to 0 (assuming exact real arithmetic), our goal is to
approximate f(w) to within an absolute error ε > 0 with high probability (over the random w).

The circuit takes as input n independent and uniformly distributed bit vectors r1, r2, . . . , rn ∈ {0, 1}`.
It operates with numbers of the form k · 2−m, where m is a positive integer and k is an integer
between−4m + 1 and 4m− 1 represented by 2m+ 1 bits; we denote by Bm the set of these numbers.
To enable exact arithmetic, we let m grow as the computations progress in the circuit, yet keeping
m = O(`). We assume that the data values xi, yi and model parameters σi, µi are represented as
elements of B`. We return to the question of how to set ` after the description of the four phases.

1. Sampling from the normal distribution. For each dimension i = 1, 2, . . . , n, a subcircuit
maps ri to a wi ∈ Bm that follows approximately a (discrete) normal distributionN (µi, σ

2
i ).

We use a finite-precision version of an algorithm that would draw exact samples if we could
peform exact arithmetic with real numbers. Each subcircuit is of size and degree `O(1).

2. Computing the dot product. For each data point (x, y) ∈ S, a subcircuit maps w ∈ Bnm to a
z ∈ B2m that equals yx ·w. Each subcircuit is of size and degree `O(1), assuming ` = Ω(n).

3. Evaluating the log-sigmoid. For each data point (x, y) ∈ S, a subcircuit maps the cor-
responding z ∈ B2m to a number vx,y ∈ F that approximates ln g(z) with an absolute
error at most α; we let α = O(ε/|S|) to keep the total absolute error below ε. We use a
cubic spline in an interval of length O(logα−1), centered at 0. Each subcircuit is of size
O(α−1/4 logα−1) and degree O(logα−1); we assume m = O(logα−1).

4. Summing over the data points. The last layer computes the sum
∑

(x,y)∈S vx,y. This
subcircuit is of size O(|S|) and degree 1.

We argue (Suppl. B) that in phases 1 and 2 the numbers z are generated from a distribution that
rapidly approaches the exact distribution as ` increases. Phase 3 assumes the input numbers z to have
precision O(α); we achieve this by setting `,m = O(logα−1), which is O(log |S|+ log ε−1).

To bound the size and degree of the circuit, assume for simplicity that |S| ≥ n. Adding up the
size bounds for the subcircuits yields |S|(`O(1) + O(α−1/4 logα−1)), which is Õ(|S|5/4ε−1/4).
Multiplying the degree bounds for the four phases yields `O(1), which is (log |S|+ log ε−1)O(1). We
conclude, by the proof of Theorem 5, that asymptotically the prover time is Õ(T ) and the verifier
time is Õ(

√
T + E), where E := |S|5/4ε−1/4 and T := NE.

This example shows that we can engineer relatively succinct arithmetic circuits to approximate
non-polynomial functions. That said, it also shows that representing numbers as bit vectors to enable
comparison (in phase 3) incurs a cost that cumulates across the layers in the circuit; e.g., the dot
product would require a very low-degree small circuit if the arithmetic was directly over F.

5 Concluding remarks

We gave a generic method for equipping Monte Carlo estimators with a certificate of correctness.
This method contributes towards general trustworthiness of machine learning and reasoning by
enabling safe, verifiable outsourcing of sampling-based integration. When the random variables of
interest can be (approximately) represented by low-degree arithmetic circuits, the method incurs
only a small computational overhead and the verifiers’s work is about a square root of the total work.
The framework readily supports massive and simple parallelization of the computations, along with
efficient error correction, with negligible additional cost [4, 14]. We used a diverse set of example
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estimators to demonstrate the technical versality of the method, with the understanding that the need
for trustworthy computations may vary considerably across real application domains.

The present work being theoretical, many practical issues remain to be addressed through imple-
mentation and experimentation. For example, our bounds hide polylogarithmic factors and leave
room for “shaving logs” and optimizing constant factors. Another direction is to more systematically
engineer building blocks needed for constructing low-degree (approximating) arithmetic circuits; we
exhibited a variety of ideas and techniques, but there is a need for a “catalogue” of primitive functions
and standard distributions. Finally, there are fundamental questions regarding the limitations of the
method: Do random variables that result from sequential importance sampling or rejection sampling
(e.g., for estimating the permanent [18, 10]) admit low-degree circuits? Can the method be extended
beyond pairwise independence, for example, to Markov chain Monte Carlo?

Given the challenges in engineering low-degree circuits, it would be tempting to learn succinct
arithmetic circuits from examples, removing the need of human effort. Unfortunately, learning
arithmetic circuits appears to be hard already for relatively restricted classes of circuits with black-
box access to the function [25]; however, some interesting classes of low-depth circuits do admit
efficient learning [17]. Arithmetic circuits have also found their use as tractable probabilistic models.
In particular, probabilistic generating circuits [29] support efficient inference and subsume related
models, such as determinantal point processes (e.g., [19]). Our work suggests that these models
might serve as building blocks that readily enable extensions to efficient verifiable inference.
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