
Appendix

A More Results for the Impact of Model Sparsity on the Network
Representation Learning Process

Sec. 3.2 of the main paper discusses the impact of model sparsity on the network representation
learning process. Here we provide more experimental results. Specifically, we evaluate the rep-
resentational similarity using the CKA value of the same layer from the model (ResNet-32) with
different sparsity at each epoch and compare them with the final model. We choose the early (1st

and 3rd), middle (18th), and late layers (25th and 32nd) to track their CKA trends. We evaluate three
sparsity ratios, including medium (50%), medium-high (80%), and high (90%) sparsity. The results
are shown in Fig. A1.

90.0%

92.0%

94.0%

96.0%

98.0%

100.0%

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

dense

sp0.5

sp0.8

sp0.9
60.0%

70.0%

80.0%

90.0%

100.0%

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

dense

sp0.5

sp0.8

sp0.9

60.0%

70.0%

80.0%

90.0%

100.0%

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

dense

sp0.5

sp0.8

sp0.9
60.0%

70.0%

80.0%

90.0%

100.0%

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

dense

sp0.5

sp0.8

sp0.9

60.0%

70.0%

80.0%

90.0%

100.0%

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

dense

sp0.5

sp0.8

sp0.9

Layer 1 Layer 3

Layer 18 Layer 25

Layer 32

Figure A1: Analysis of representational similarity: the same layer (1st, 3rd, 18th, 25th, and 32nd) with
different sparsity at different epochs. All results are collected using ResNet-32 on the CIFAR-100
dataset during the sparse training process.

We can observe that the representation learning speed of sparse training under different sparsity ratios
is similar to the dense model training at each layer. This indicates that layer sparsity does not slow

15



down the layer representation learning speed. Therefore, the layer freezing technique can potentially
achieve considerable training FLOPs reduction in sparse training domains similar to the dense model
training.

B Ablation Analysis on Freezing Schemes

In our work, we evaluate four different types of freezing schemes (Sec. 4.4.4 of the main paper),
including the single-shot freezing, single-shot freezing & resume, periodically freezing, and delayed
periodically freezing.

Single-Shot Freezing Scheme. The single-shot freezing scheme is the default freezing scheme used
in our progressive layer freezing method. For this scheme, we progressively freeze the layers/blocks
in a sequential manner, as shown in Alg. 1 and Fig. 3 (a) in the main paper.

Single-Shot Freezing & Resume Scheme. This scheme follows the same way to decide the per
layer/block freezing epoch as the single-shot scheme, except that we make the freezing epoch for
all layers/blocks t epochs earlier and resume (defrost) the training for all layers/blocks at the last t
epochs. In this case, we can keep the single-shot & resume has the same FLOPs reduction as the
single-shot scheme, and the entire network can be fine-tuned at the end of training with a small
learning rate.

Periodically Freezing Scheme. For the periodically freezing scheme, we let the selected layers
freeze periodically with a given frequency so that all the layers/blocks are able to be updated at
different stages of the training process. The basic idea is to let the early layers/blocks updated
(trained) less frequently than the later layers. For example, we let the early layers/blocks only be
updated for one epoch in every four epochs and let the middle layers/blocks only be updated for one
epoch in every two epochs. Therefore, we consider the update frequency of the early and middle
layers/blocks are 1/4 and 1/2, respectively. To ensure that when a layer is frozen, all the layers in
early of it are frozen, we need to let the freezing period be the numbers of power of two (e.g., 2, 4,
and 8). In our experiments, we divide the ResNet32 into three blocks and set the update frequency
for the first and second blocks to 1/4 and 1/2, respectively. The last block will not be frozen during
the training. We control the number of layers in each block to satisfy the overall training FLOPs
reduction requirement.

Delayed Periodically Freezing Scheme. For this scheme, we first let all the layers/blocks be trained
actively for certain epochs, then periodically freeze the layers used in the periodically freezing scheme.
To achieve the same training FLOPs reduction as the periodically freezing scheme, more layers are
needed to be included in the first and second blocks.

Table A1: Comparison of classification accuracy between different freezing schemes using ResNet32
on the CIFAR-100 dataset. The 20% FLOPs reduction in the table is only attributed to the layer
freezing and does not count the weight sparsity.

Sparsity 60% 90%

Freeze Scheme FLOPs Reduction Accuracy FLOPs Reduction Accuracy

Non-Freeze - 73.68±0.43 - 71.28±0.34

Single-Shot 20% 73.61±0.19 20% 71.30±0.17
Single-Shot & Resume 20% 73.49±0.26 20% 71.21±0.21
Periodically 20% 72.78±0.23 20% 70.86±0.44
Delayed Periodically 20% 72.88±0.13 20% 70.95±0.43

Accuracy Comparison. Tab. A1 shows the accuracy comparison of different freezing schemes at
medium (60%) and high (90%) sparsity ratio. We use the ResNet32 on the CIFAR-100 dataset. Our
target training FLOPs reduction through layer freezing is set to 20%. We do not use the data sieving
technique in this experiment. The results show that the single-shot scheme consistently achieves
the highest accuracy at both 60% and 90% sparsity ratio. The accuracy of the single-shot freezing
& resume scheme is slightly lower than the single-shot scheme and the two periodically freezing
schemes are the worst. These demonstrate that the layer freezing technique in sparse training prefers

16



to train the layers/blocks as good as possible at the beginning of the training, and the “last-minute” or
periodic fine-tuning does not benefit the final accuracy.

C Data Sieving Analysis

C.1 Basic Concepts of Dataset Efficient Training

We use the number of forgetting events [18, 1] as the criteria to measure the difficulty of the training
examples. A forgetting event can be defined as a training sample that goes from being correctly
classified to being misclassified by a network in two consecutive training epochs. The training
examples that have a higher number of forgetting events throughout the training indicate the examples
are more complex and are considered more informative to the training. On the contrary, the training
examples that have a lower number of forgetting events or have never been forgotten are relatively
easier examples and are less informative to the training. Removing the unforgettable examples from
the training dataset does not harm the training accuracy [18].

Whole training
dataset

Partial training
dataset

Removed
dataset

Initial removed examples queue

Example
index

Removed examples queue

Add to partial
training dataset

3 21 16

3 21 16

2 8 41 35 14 52

2 8 41 35 14 52 31 73 81

31 6 30 19

15 22 44

6 31 73

6 30 19

73 81

31 73 81

19 44 30

6 31 73 7 54 319 44 30

15 81 22

15 81 22

1st update

removed from partial
training dataset

and add to queue

Removed examples queue
2nd update

until all initially removed
exmaples are added to 

the partial training dataset Shuffle the queue
every time before update

2 8 41 35 14 52

Figure A2: Data sieving process.

17



C.2 More Details about the Proposed Data Sieving Method

Fig. A2 shows the detailed update process of our data sieving method. We use a queue data structure
to contain the indices of the removed examples. For each time the partial training dataset is updated,
we retrieve the examples from the head of the removed examples queue and add the newly removed
examples to the tail of the removed examples queue. To ensure all the examples are at least added to
the partial training dataset once, we do not shuffle the queue until all the initial removed examples are
added back to the partial training dataset.

Table A2: Accuracy comparison of SpFDE under different data sieving update ratios. The update
ratio is the percentage of the number of examples in the removed dataset. Results are obtained using
ResNet32 on the CIFAR-100 dataset.

Update ratio 10% 20% 30% 50%

remove 15% 70.68 71.12 71.35 70.92
remove 20% 70.69 71.03 71.25 70.86
remove 25% 70.42 70.99 71.02 70.63

Tab. A2 shows an ablation study on the data sieving update ratio. The number of updated examples in
each dataset update process is proportional to the number of examples in the removed dataset. The
update ratio in the table denotes the percentage of examples retrieved from the removed dataset and
added to the partial training dataset. We evaluate different update ratios (i.e., 10%, 20%, 30%, and
50%) under different dataset removal ratios (15%, 20%, and 25%). From the results, we can find
that a 30% update ratio is the most desirable setting for the data sieving, which achieves the highest
accuracy under different dataset removal ratios.

Table A3: Hyper-parameter settings.

Experiments CIFAR-10/100 ImageNet
Basic training hyper-parameter settings

Training epochs (τend) 160 150

Batch size 32 1024

Learning rate scheduler cosine cosine

Initial learning rate 0.15 1.024

Ending learning rate 4e-8 0

Momentum 0.9 0.875

ℓ2 regularization 1e-4 3.05e-5

Warmup epochs 0 8
DST-related (MEST [1]) hyper-parameter settings

Num of epochs do structure search 120 120

Structure change frequency (∆τ ) 5 2

Prune&Grow schedule 0 - 90: GR (s - 0.05) 0 - 90: GR (s - 0.05)
with target final sparsity s RM (s) RM (s)

90 - 120: GR (s - 0.025) 90 - 120: GR (s - 0.025)
PruneTo sparsity (RM) RM (s) RM (s)
GrowTo sparsity (GR) 120 - 160: No search 120 - 150: No search

Table A4: The epoch Tfrz that starts the progressive layer freezing stage for different target training
FLOPs reduction for ResNet32 on CIFAR-10/100.

Target FLOPs saving 10% 15% 20% 25%

Tfrz 80 70 60 60

18



Table A5: The epoch Tfrz that starts the progressive layer freezing stage for different target training
FLOPs reduction for ResNet50 on ImageNet.

Target FLOPs saving 7.5% 10% 15% 20% 22%

Tfrz 90 80 60 50 50

D Hyper-Parameter and More Experimental Results

Detailed Experiment Setup. Tab. A3 shows detailed hyper-parameters regarding the general training
and dynamic sparse training. In our work, we use the MEST-EM&S [1] as our base sparse training
algorithm. To make fair comparisons to the reference works, we also use the 2× widened version
ResNet-32 in our work, which is the same as all the baseline works shown in Tab. 2 and Tab. A6.
In our data sieving method, we remove the easiest p% training examples from the partial training
dataset every time we update our training dataset. In our experiments, we make the p% equals to
the 30% of the number of examples in the removed dataset. Tab. A4 and Tab. A5 show the epoch
Tfrz that starts the progressive layer freezing stage for different target training FLOPs reduction for
ResNet32 on CIFAR-10/100 and ResNet50 on ImageNet, respectively.

More Results on the CIFAR-10 Dataset. Tab. A6 shows the accuracy comparison of our SpFDE
and the most representative sparse training works using ResNet32 on the CIFAR-10 dataset. Our
SpFDE consistently achieves higher or similar accuracy on the CIFAR-10 dataset compared to the
most recent sparse training methods while considerably reducing the training FLOPs.

More Results on the ImageNet Dataset. Tab. A7 shows the accuracy comparison using ResNet50
on the ImageNet dataset at the 90% sparsity ratio. At the similar training FLOPs level (0.32 ∼
0.36× 1018), our SpFDE achieves 73.81% on top-1 accuracy, outperforming the best baseline work
MEST by 1.45%.

Table A6: Comparison of classification accuracy and training FLOPs (×e15) between the proposed
SpFDE and the most representative sparse training works using ResNet-32 on CIFAR-10 dataset.

Method \ Sparsity 90% 95% 98%

FLOPs (↓) Acc. (↑) FLOPs (↓) Acc. (↑) FLOPs (↓) Acc. (↑)

LTH [62] N/A 92.31 N/A 91.06 N/A 88.78

SNIP [2] 1.32 92.59 0.66 91.01 0.26 87.51
GraSP [3] 1.32 92.38 0.66 91.39 0.26 88.81

DeepR [53] 1.32 91.62 0.66 89.84 0.26 86.45
SET [19] 1.32 92.3 0.66 90.76 0.26 88.29
DSR [4] 1.32 92.97 0.66 91.61 0.26 88.46
MEST [1] 1.54 93.27 0.96 92.44 0.38 90.51

SpFDE10%+10% 1.42 93.24±0.22 0.88 92.45±0.27 0.35 90.33±0.30
SpFDE15%+15% 1.26 92.99±0.26 0.66 92.21±0.29 0.30 89.67±0.16
SpFDE20%+20% 1.12 92.50±0.08 0.58 91.82±0.17 0.26 89.51±0.14

19



Table A7: Accuracy comparison using ResNet-50 on ImageNet at 90% sparsity.
Method Training Inference Top-1

FLOPs (×e18) FLOPs (×e9) Accuracy

Dense 3.2 8.2 76.9

Sparsity ratio 90%

SNIP [2] 0.32 0.82 67.2
GraSP [3] 0.32 0.82 68.1

DeepR [53] n/a n/a 70.2
SNFS [54] n/a n/a 72.3
DSR [4] 0.96 2.46 71.6
SET [19] 0.32 0.82 70.4
RigL [5] 0.32 0.82 72.0
RigL-ITOP [6] 0.8 0.82 73.8
MEST0.5× 0.37 0.82 72.36
SpFDE22%+22% 0.36 0.82 73.81
SpFDE15%+15% 0.47 0.82 74.40
SpFDE10%+10% 0.52 0.82 74.93
MEST [1] 0.60 0.82 75.1
SpFDE7.5%+7.5% 0.55 0.82 75.14

E Ablation Study on Layer Freezing and Data Sieving

We also conduct ablation studies for the impact of layer-freezing and data sieving on accuracy by
themselves (Tab. A8 and Tab. A9). The results are obtained using ResNet-32 on the CIFAR-100 with
the sparsity of 60% and 90%. The accuracy results are the average value of 3 runs using random
seeds.

Table A8: Ablation analysis on different layer freezing ratios. The accuracy results are obtained
using ResNet-32 on the CIFAR-100 with the sparsity of 60% and 90%, respectively.

FLOPs reduction None 10% 15% 20% 25% 27.5% 30% 32.5% 35%

sparsity 60% 73.97 74.05 74.09 73.76 73.27 73.14 73.03 72.36 72.00
sparsity 90% 71.30 71.33 71.31 71.29 71.18 71.08 70.82 70.35 70.26

Table A9: Ablation analysis on different data sieving ratios. The accuracy results are obtained using
ResNet-32 on the CIFAR-100 with the sparsity of 60% and 90%, respectively.

FLOPs reduction None 10% 15% 20% 25% 27.5% 30% 32.5% 35%

sparsity 60% 73.97 73.98 73.94 73.88 73.66 73.68 73.58 73.55 73.20
sparsity 90% 71.3 71.36 71.30 71.33 71.11 71.09 70.98 70.86 70.59

From the experiments, we can further find some interesting observations:

• Under both sparsity of 60% and 90%, saving up to 15% training costs (FLOPs) via either
layer freezing or data sieving does not lead to any accuracy drop.

• When under a higher sparsity ratio (90% vs. 60%), sparse training can tolerate a higher
FLOPs reduction for both layer freezing and data sieving. For example, compared to the
non-freezing case (i.e., None in the second column), the layer freezing with a 20% FLOPs
reduction leads to a -0.01% and -0.21% accuracy drop for 90% sparsity and 60% sparsity,
respectively. As for the data sieving, compared to the non-freezing case, under a 20% FLOPs
reduction, there is a -0.19% and -0.31% accuracy drop for 90% sparsity and 60% sparsity,
respectively. The possiable reason is that, under a higher sparsity ratio, the upper bound

20



for model accuracy/generalization capability is decreased, mitigating the sensitivity to the
number of training data or layer freezing.

• With a relatively higher FLOPs reduction ratio (i.e., 30% 35%), data sieving preserves
higher accuracy than layer freezing under the same FLOPs reduction ratio. This inspires
that if people intend to pursue a more aggressive FLOPs reduction at the cost of accuracy
degradation, removing more data via the data sieving method is a more desirable choice
than freezing more layers.

Furthermore, in Tab. A10, we show a comparison between only using layer-freezing or data sieving,
or both of them to achieve similar FLOPs reductions.

Table A10: Analysis of layer freeze, data sieving, or both of them for similar FLOPs reduction.
The accuracy results are obtained using ResNet-32 on the CIFAR-100.

Freeze + Data Sieve Freeze only Data Sieve only

FLOPs reduction 27.75% (15%+15%) 27.50% 27.50%
Accuracy 71.35 71.08 71.09

FLOPs reduction 36% (20%+20%) 35.00% 35.00%
Accuracy 71.25 70.26 70.59

It can be observed that to achieve similar FLOPs reduction, using layer-freezing and data sieving
together achieves much higher accuracy than by only using one of them individually, showing the
importance of combining the two techniques.

Table A11: Training acceleration analysis on layer freezing by using ResNet32 on CIFAR-100.
FLOPs reduction baseline 10% 15% 20% 25%
(Layer freezing)

Epoch time (s) 46.94 42.75 40.53 38.10 35.83
Acceleration - 8.93% 13.66% 18.83% 23.67%

Table A12: Training acceleration analysis on data sieving by using ResNet32 on CIFAR-100.
FLOPs reduction baseline 10% 15% 20% 25%
(Partial dataset)

Epoch time (s) 46.94 42.65 40.19 37.98 35.49
Acceleration - 9.14% 14.38% 19.09% 24.39%

F Discussion on Acceleration

In our work, the reduction in training FLOPs comes from three sources: weight sparsity, frozen
layers, and shrunken dataset. It is well-known that the acceleration based on weight sparsity is heavily
affected by many different factors, such as the sparse computation support from a sparse matrix
multiplication library or the dedicated compiler optimizations [39]. Besides, the sparsity schemes
play an important role in the sparse computation acceleration. Currently, the actual acceleration by
leveraging weight sparsity is still limited even at a very high sparsity ratio [1].

We also evaluate the acceleration achieved by using our layer freezing and data sieving methods. We
measure the training time over 50 consecutive training epochs for each configuration and calculate
the average value.

Tab. A11 and Tab. A12 show the acceleration results by using our layer freezing and data sieving
methods, respectively. We compare the per epoch training latency with different FLOPs saving
configurations (i.e., 10%, 15%, 20%, and 25%) with the baseline result (i.e., using whole dataset
and without freezing). We can see that both methods achieve almost the linear training acceleration

21



according to the FLOPs reduction. This indicates that both methods only introduce negligible
overhead to the training process. Compared to the weight sparsity, this demonstrates the superiority
of layer freezing and data sieving methods in the acceleration efficiency when under the same FLOPs
reduction. Most importantly, the layer freezing and data sieving methods have a high degree of
practicality since the acceleration can be easily achieved using native PyTorch/TensorFlow without
additional support.

22


