
A Lower Bounds

In this section, we provide the proofs for Theorem 1 and 2.

A.1 Proof of Theorem 1

Without loss of generality, we assume algorithms to start from x(0) = 0. We denote the j-th
coordinate of a vector x ∈ Rd by [x]j for j = 1, . . . , d, and let prog(x) be

prog(x) :=

{
0 if x = 0;

max1≤j≤d{j : [x]j ̸= 0} otherwise.

Similarly, for a set of points X = {x1, x2, . . . }, we define prog(X) := maxx∈X prog(x). As
described in [16, 17], a zero chain function f satisfies

prog(∇f(x)) ≤ prog(x) + 1, ∀x ∈ Rd,

which implies that, starting from x = 0, a single gradient evaluation can only make at most one more
coordinate for the model parameter x be non-zero.

We prove the two terms of the lower bound in Theorem 1 separately by constructing two hard-to-
optimize examples. The construction of the example, for each term in (3), can be conducted in
three steps: 1) constructing local functions {fi}ni=1 by following the zero-chain function model
proposed by [16]; 2) constructing compressors {Ci}ni=1 ∈ Uω and oracles {Oi}ni=1 ⊆ Oσ2 that
hamper algorithms to increase the non-zero coordinates of the model parameters; 3) show a limitation
in terms of the non-zero coordinates of model parameters, for algorithms obeying the desired protocol
with T gradient queries and compressed communications on each worker, and translate the limitation
into the lower bound of convergence rate.

We first state some key zero-chain functions that will be used to facilitate the analysis.
Lemma 3 (Lemma 2 of [7]). Let [x]j denote the j-th coordinate of a vector x ∈ Rd, and define
function

h(x) := −ψ(1)ϕ([x]1) +
d−1∑
j=1

(
ψ(−[x]j)ϕ(−[x]j+1)− ψ([x]j)ϕ([x]j+1)

)
where for ∀ z ∈ R,

ψ(z) =

{
0 z ≤ 1/2;

exp
(
1− 1

(2z−1)2

)
z > 1/2,

ϕ(z) =
√
e

∫ z

−∞
e

1
2 t

2

dt.

Then h satisfy the following properties:

1. h(x)− infx h(x) ≤ δ0d, ∀x ∈ Rd with δ0 = 12.

2. h is ℓ0-smooth with ℓ0 = 152.

3. ∥∇h(x)∥∞ ≤ g∞, ∀x ∈ Rd with g∞ = 23.

4. ∥∇h(x)∥∞ ≥ 1 for any x ∈ Rd with [x]d = 0.

Lemma 4. Let functions

h1(x) := −2ψ(1)ϕ([x]1) + 2
∑

j even, 0<j<d

(
ψ(−[x]j)ϕ(−[x]j+1)− ψ([x]j)ϕ([x]j+1)

)
and

h2(x) := 2
∑

j odd, 0<j<d

(
ψ(−[x]j)ϕ(−[x]j+1)− ψ([x]j)ϕ([x]j+1)

)
.

Then h1 and h2 satisfy the following properties:

1. 1
2 (h1 + h2) = h, where h is defined in Lemma 3.

16

2. For any x ∈ Rd, if prog(x) is odd, then prog(∇h1(x)) ≤ prog(x); if prog(x) is even, then
prog(∇h2(x)) ≤ prog(x).

3. h1 and h2 are also ℓ0-smooth with ℓ0 = 152.

Proof of Lemma 4. The first property follows the definition of h1, h2, and h. The second property
follows Lemma 1 of [16] that ψ(m)(0) = 0 for any m ∈ N. Now we prove the third property. Note
that the Hessian of hk for k = 1, 2 is tridiagonal and symmetric. Consequently, by the Schur test, we
have for any x ∈ Rd and k = 1, 2

∥∇2hk(x)∥2 ≤
√
∥∇2hk(x)∥1∥∇2hk(x)∥∞ = ∥∇2hk(x)∥1. (6)

Furthermore, it is easy to verify that

∥∇2hk(x)∥1

≤2max

{
sup
z∈R

|ψ′′(z)| sup
z∈R

|ϕ(z)|, sup
z∈R

|ψ(z)| sup
z∈R

|ϕ′′(z)|
}
+ 2 sup

z∈R
|ψ′(z)| sup

z∈R
|ϕ′(z)| ≤ 152, (7)

where the last inequality follows Observation 2 of [7] that

0 ≤ ψ ≤ e, 0 ≤ ψ′ ≤
√

54/e, |ψ′′| ≤ 32.5, 0 ≤ ϕ ≤
√
2πe, 0 ≤ ϕ′ ≤

√
e and |ϕ′′| ≤ 1.

Combining (7) with (6), we know hk is ℓ0-smooth for k = 1, 2.

Given Lemmas 3 and 4, we now construct two examples that lead to the two terms in lower bound
(3), respectively.

Example 1. The proof of the first term Ω((∆Lσ2

nT)
1
2) essentially follows the first example in

proving Theorem 1 of [43]. We provide the proof for the sake of being self-contained.

(Step 1.) Let fi = Lλ2h(x/λ)/ℓ0, ∀ i = 1, . . . , n be homogeneous and hence f = Lλ2h(x/λ)/ℓ0
where h is defined in Lemma 3 and λ > 0 is to be specified. Since ∇2fi = L∇2h/ℓ0 and h is
ℓ0-smooth (Lemma 3), we know fi is L-smooth for any λ > 0. By Lemma 3, we have

f(0)− inf
x
f(x) =

Lλ2

ℓ20
(h(0)− inf

x
h(x))≤Lλ

2δ0d

ℓ0
.

Therefore, to ensure fi ∈ F∆,L, it suffices to let

Lλ2δ0d

ℓ0
≤ ∆, i.e., dλ2 ≤ ℓ0∆

Lδ0
. (8)

(Step 2.) We consider all compressors {Ci}ni=1 are identity, meaning that there is no compression
error in the optimization procedure. Then we naturally have {Ci}ni=1 ⊆ Uω for any ω ≥ 0. We
construct the stochastic gradient oracle Oi on worker i, ∀ i = 1, . . . , n as the following:

[Oi(x;Z)]j = [∇fi(x)]j
(
1 + 1{j > prog(x)}

(
Z

p
− 1

))
,∀x ∈ Rd, j = 1, . . . , d

with random variable Z ∼ Bernoulii(p) independent of x and fi, and p ∈ (0, 1) to be specified.
The oracle Oi has probability to make the entry [∇fi(x)]prog(x)+1 zero. Therefore algorithms are
hampered by the gradient oracle to achieve more non-zero coordinates for the model parameters. It is
easy to see Oi is an unbiased stochastic gradient oracle. Moreover, since fi is zero-chain, we have
prog(Oi(x;Z)) ≤ prog(∇fi(x)) ≤ prog(x) + 1 and hence

E[∥[Oi(x;Z)]−∇fi(x)∥2] = |[∇fi(x)]prog(x)+1|2E

[(
Z

p
− 1

)2
]
= |[∇fi(x)]prog(x)+1|2

1− p

p

≤ ∥∇fi(x)∥2∞
1− p

p
≤ L2λ2(1− p)

ℓ20p
∥∇h(x)∥2∞

Lemma 3
≤ L2λ2(1− p)g2∞

ℓ20p
.

17

Therefore, to ensure Oi ∈ Oσ2 , it suffices to let

p = min{L
2λ2g2∞
ℓ20σ

2
, 1}. (9)

(Step 3.) Let x(t)i , ∀ t = 0, . . . and 1 ≤ i ≤ n, be the t-th query point of worker i. Since algorithms
satisfy the zero-respecting property, as discussed in [16, 17, 43], within T gradient queries on each
worker, algorithms can only return model x̂ such that

x̂ ∈ span
({
x(0),∇fi(x(0)),

{
{x(t)i ,∇fi(x(t)i) : 0 ≤ t < T} : 1 ≤ i ≤ n

}})
,

which implies
prog(x̂) ≤ max

0≤t<T
max
1≤i≤n

prog(x
(t)
i) + 1. (10)

By Lemma 2 of [43], we have

P(prog(x̂) ≥ d) ≤ P(max
0≤t<T

max
1≤i≤n

prog(x
(t)
i) ≥ d− 1) ≤ e(e−1)npT−d+1. (11)

On the other hand, when prog(x̂) < d, by the fourth point in Lemma 3, it holds that

min
x̂∈span{{x(t)

i :1≤i≤n, 0≤t<T}}
∥∇f(x̂)∥ ≥ min

[x̂]d=0
∥∇f(x̂)∥ =

Lλ

ℓ0
min
[x̂]d=0

∥∇h(x̂)∥ ≥ Lλ

ℓ0
. (12)

Therefore, by combining (11) and (12), we have

E[∥∇f(x̂)∥2] ≥ P(prog(T) < d)E[∥∇f(x̂)∥2 | prog(T) < d] ≥ (1− e(e−1)npT−d+1)
L2λ2

ℓ20
. (13)

Let

λ =
ℓ0
L

(
∆Lσ2

3nTℓ0δ0g2∞

) 1
4

and d =

⌊(
3L∆nTg2∞
σ2ℓ0δ0

) 1
2

⌋
. (14)

Then (8) naturally holds and p = min{ g2
∞
σ2

(
∆Lσ2

3nTℓ0δ0g2
∞

) 1
2

, 1} by (9). Without loss of generality, we

assume d ≥ 2, which is guaranteed when T = Ω(σ2

nL∆). Then, using the definition of p, we have that

(e− 1)npT − d+ 1 ≤ (e− 1)nT
g2∞
σ2

(
∆Lσ2

3nTℓ0δ0g2∞

) 1
2

− d+ 1

=
e− 1

3

(
3L∆nTg2∞
σ2ℓ0δ0

) 1
2

− d+ 1 <
e− 1

3
(d+ 1)− d+ 1 ≤ 2− e < 0

which, combined with (13), further implies

E[∥∇f(x̂)∥2] = Ω

(
L2λ2

ℓ20

)
= Ω

((
∆Lσ2

3nTℓ0δ0g2∞

) 1
2

)
= Ω

((
∆Lσ2

nT

) 1
2

)
.

Example 2. Without loss of generality, we assume n is even, otherwise we can consider the lower
bound for the case of n− 1.

(Step 1.) Similar to the construction of Example 1, we let fi = Lλ2h1(x/λ)/ℓ0, ∀ 1 ≤ i ≤ n/2 and
fi = Lλ2h2(x/λ)/ℓ0, ∀n/2 < i ≤ n, where h1 and h2 are defined in Lemma 4, and λ > 0 will
be specified later. By the definitions of h1 and h2, we have that fi, ∀ 1 ≤ i ≤ n is zero-chain and
f(x) = 1

n

∑n
i=1 fi(x) = Lλ2/ℓ0h(x/λ). Since h1 and h2 are also ℓ0-smooth, to let f ∈ F∆,L, it

suffices to make (8) hold.

In the above construction, we essentially split a zero-chain function, i.e., h, into two different
components: the even component of the chain, i.e., h1 and the odd component of the chain, i.e., h2.
Recall the second property in Lemma 4 that for any x ∈ Rd, if prog(x) is odd, then prog(∇h1(x)) ≤
prog(x); if prog(x) is even, then prog(∇h2(x)) ≤ prog(x). Therefore, the workers, starting from

18

any point with any algorithm A ∈ AU
{Ci}n

i=1
, can only earn one more non-zero coordinate if they

do not synchronize (communicate) with the server; after that, the number of non-zero coordinates
of local models will not increase any more. That is to say, in order to proceed (i.e.,, achieve more
non-zero coordinates), the worker must synchronize the gradient information, via the server, between
the odd and even components.

(Step 2.) We consider a gradient oracle that can return the lossless full-batch gradient, i.e., Oi(x) =
∇fi(x), ∀x ∈ R, 1 ≤ i ≤ n. For the construction of ω-unbiased compressors, we consider {Ci}ni=1

to be the d
s×rand-s operators with shared randomness and s = ⌈d/(1 + ω)⌉, where the d

s -scaling
procedure is to ensure unbiasedness. Specifically, during a round of communication, all workers
randomly choose s coordinates from the full vector to be communicated, and then transmit the
d
s -scaled values at chosen coordinates. The chosen coordinate indexes are identical across all workers
due to the shared randomness and are sampled uniformly randomly per communication. Since for
any 1 ≤ k ≤ d, the index k has probability s/d to be chosen, we have for any x ∈ Rd

E[Ci(x)] = E

[(
d

s
xk1{k is chosen}

)
1≤k≤d

]
=

(
d

s
xiP(k is chosen)

)
1≤k≤d

= x,

and

E[∥Ci(x)− x∥2] =
d∑

k=1

E

[(
d

s
xk1{k is chosen} − xk

)2
]

=

d∑
k=1

x2k

((
d

s
− 1

)2

P(k is chosen) + P(k is not chosen)

)
=

d∑
k=1

x2k

(
d

s
− 1

)
≤ ω∥x∥2

where the last inequality follows the definition of s. Therefore, the above construction ensures
{Ci}ni=1 ⊆ Uω .

For any t = 0, 1, . . . and 1 ≤ i ≤ n, let v(t,⋆)i be the synchronized point that worker i wants to send
to the server at the t-th communication. Due to communication compression, the server can only
receive a compressed version Ci(v

(t,⋆)
i) instead, which we denote by v(t)i ≜ Ci(v

(t,⋆)
i). It is easy to

see that
prog(v

(t)
i) ≤ prog(v

(t,⋆)
i), ∀ v(t,⋆)i ∈ Rd. (15)

Furthermore, since the compressor Ci only takes s coordinates, v(t)i has probability 1−s/d ≈ ω
1+ω in

making the coordinate with index prog(v
(t,⋆)
i) zero, which implies P(prog(v(t)) < prog(v(t,⋆))) ≈

ω
1+ω . This is to say, each worker i has only probability ≈ (1 + ω)−1 to transmit its last non-zero
entry. Therefore, algorithms are hampered by the compressors to achieve more non-zero coordinates
for model parameters in synchronizing the gradient information from all workers.

(Step 3.) Since we only consider algorithms satisfying the zero-respecting property, as discussed in
[16, 17, 43], worker i, within T rounds of communication, can only return model x̂ such that

x̂ ∈ span
({
x(0),∇fi(x(0)),

{
{v(t)i ,∇fi(v(t)i) : 0 ≤ t < T} : 1 ≤ i ≤ n

}})
. (16)

Since fis are zero-chain functions, x̂i satisfies

prog(x̂) ≤ prog
({
x(0),∇fi(x(0)),

{
{v(t)i ,∇fi(v(t)i) : 0 ≤ t < T} : 1 ≤ i ≤ n

}})
≤ max

0≤t<T
max
1≤i≤n

prog(v
(t)
i) + 1. (17)

By Lemma 5, we have

P(max
0≤t<T

max
1≤i≤n

prog(v
(t)
i) ≥ d− 1) ≤ e(e−1)T⌈d/(1+ω)⌉/d+1−d. (18)

Combining (18) with (17) and (12), we have that

E[∥∇f(x̂)∥2] ≥ (1− e(e−1)T⌈d/(1+ω)⌉/d+1−d)
L2λ2

ℓ20
. (19)

19

Let

λ =
ℓ0
L

√
(1 + ω)∆L

5Tℓ0δ0
and d = ⌊5T/(1 + ω)⌋. (20)

Then (8) naturally holds. Since T is assumed to be no less than (1+ω)2, we have d = ⌊5T/(1+ω)⌋ ≥
5T/(1 + ω)− 1 ≥ 4T/(1 + ω) ≥ 4(1 + ω) ≥ 4. Then it is easy to verify

(e− 1)T

⌈
d

1 + ω

⌉
/d+ 1− d ≤ (e− 1)T

(
d

1 + ω
+ 1

)
/d+ 1− d

=(e− 1)
T

1 + ω
+ (e− 1)T/d+ 1− d ≤ (e− 1)

T

1 + ω
+ (e− 1)

T

4(1 + ω)
+ 1− 4T

1 + ω

=((e− 1)(1 +
1

4
)− 4)

T

1 + ω
+ 1 ≤ 5e− 17

4
< 0,

which, combined with (19), further implies

E[∥∇f(x̂)∥2] = Ω

(
L2λ2

ℓ20

)
= Ω

(
∆L

5δTℓ0δ0

)
= Ω

(
(1 + ω)∆L

T

)
.

Lemma 5. In Example 2 in the proof of Theorem 1, it holds that

P(max
0≤t<T

max
1≤i≤n

prog(v
(t)
i) ≥ d− 1) ≤ e(e−1)T⌈d/(1+ω)⌉/d−d

for any T ≥ 0.

Proof. Note that for any 0 ≤ t < T , at the (t + 1)-th round of communication, worker i can only
transmit vector v(t,⋆)i that is aggregated from local gradient descent and the vectors in the past
communication. Therefore, v(t,⋆)i satisfies

prog(v
(t,⋆)
i) ≤ prog

({
x(0),∇fi(x(0)),

{
{v(s)i ,∇fi(v(s)i) : 0 ≤ s < t} : 1 ≤ i ≤ n

}})
≤ max

0≤s<t
max
1≤i≤n

prog(v
(s)
i) + 1 ≜ B(t). (21)

We define B(0) = 1 additionally. By the definition of B(t) and that prog(v(t,⋆)) ≤ prog(v
(t,⋆)
i), it

naturally holds that

B(t) ≤ B(t+1) = max
0≤s<(t+1)

max
1≤i≤n

prog(v
(s)
i) + 1 = max

{
B(t), max

1≤i≤n
prog(v

(t)
i)

}
+ 1

≤max

{
B(t), max

1≤i≤n
prog(v

(t,⋆)
i)

}
+ 1

(21)
≤ B(t) + 1. (22)

Therefore, one round of communication can increase B(t) at most by 1.

From (22), we see that B(t+1) = B(t) + 1 only when max1≤i≤n prog(v
(t)
i) =

max1≤i≤n prog(v
(t,⋆)
i). Let k = max1≤i≤n prog(v

(t,⋆)
i). Recall that the compressors con-

structed in Example 2 are built on the shared randomness, therefore max1≤i≤n prog(v
(t)
i) =

max1≤i≤n prog(v
(t,⋆)
i) = k is equivalent to that the coordinate index k is chosen during the (t+ 1)-

round of communication compression, which is of probability s
d . Therefore, we have

P(B(t+1) = B(t) + 1) ≤ P(max
1≤i≤n

prog(v
(t)
i) = max

1≤i≤n
prog(v

(t,⋆)
i))

=P
(

the coordinate index max
1≤i≤n

prog(v
(t,⋆)
i) is chosen

)
=
s

d
. (23)

Let E(t+1) be the event {the coordinate index max1≤i≤n prog(v
(t,⋆)
i) is chosen during the (t +

1)-round of compression}. Since the compression is uniformly random, we have

20

1(E(1)), . . . ,1(E(T))
i.i.d.∼ Bernoulli(sd) where 1(·) is the indicator function. By the above

argument, we also have B(t+1) −B(t) ≤ 1(E(t+1)) for any 0 ≤ t < T . Therefore, we have

P(B(T) ≥ d) ≤ e−dE[eB
(T)

] = e−dE

[
exp

(
B(0) +

T−1∑
t=0

(B(t+1) −B(t))

)]

≤ e−(d−1)E

[
exp

(
T−1∑
t=0

1(E(t+1))

)]
= e−(d−1)

T−1∏
t=0

E
[
exp

(
1(E(t+1))

)]
= e−(d−1)

T−1∏
t=0

(
1 +

s

d
(e− 1)

)
≤ e−(d−1)

T−1∏
t=0

e(e−1)s/d = e(e−1)Ts/d−d+1,

which directly leads to the conclusion.

A.2 Proof of Theorem 2

Theorem 2 essentially follows the same analysis as in Theorem 1. The only difference is that we
shall construct compressors in proving Ω(∆L

δT) by using rand-s operators with shared randomness
and s = ⌈δd⌉. There is no scaling procedure in compression. We can easily check that

E[∥Ci(x)− x∥2] =
d∑

k=1

E
[
(xk1{k is chosen} − xk)

2
]

=

d∑
k=1

x2kP(k is not chosen) =
(
1− s

d

)
∥x∥2 ≤ δ∥x∥2.

where the last inequality follows the definition of s. Therefore, we have {Ci}ni=1 ⊆ Cδ . The scaling
procedure does not change prog, and thus makes no effect on the argument in terms of non-zero
coordinates. By considering ω = δ−1 − 1, i.e., 1 + ω = δ, we can easily adapt the proof of Theorem
1 to reach Theorem 2.

B Convergence of NEOLITHIC

B.1 Proof of Lemma 2

Let v(k,r) be the r-th intermediate point generated in FCC for any 0 ≤ r ≤ R. Since C is δ-
contractive, we have

E[∥v(k,R) − v(k,⋆)∥2] = E[∥v(k,R−1) + C(v(k,⋆) − v(k,R−1))− v(k,⋆)∥2]

= E
[
E[∥C(v(k,⋆) − v(k,R−1)) + v(k,R−1) − v(k,⋆)∥2 | v(k,R−1)]

]
≤ (1− δ)E[∥v(k,R−1) − v(k,⋆)∥2]
≤ (1− δ)2E[∥v(k,R−2) − v(k,⋆)∥2]
≤ (1− δ)RE[∥v(k,0) − v(k,⋆)∥2] = (1− δ)R∥v(k,⋆)∥2.

B.2 Proof of Theorem 3

In this subsection, we provide the convergence proof for NEOLITHIC with bidirectional compression
and contractive compressors. We first introduce some notations: Ω(k) := δ(k) + 1

n

∑n
i=1 δ

(k)
i ,

∀ k ≥ −1; y(k) := x(k) − γΩ(k−1), ∀ k ≥ 0; Ψ(k) := ∥δ(k)∥2 + 3
n

∑n
i=1 ∥δ

(k)
i ∥2, ∀ k ≥ −1. We

will use the following lemmas.
Lemma 6 (RECURSION FORMULA). For any k ≥ 0, it holds that

x(k+1) − x(k) = −γ
n

n∑
i=1

ĝ
(k)
i − γΩ(k−1) + γΩ(k).

21

Proof. It is observed from Algorithm 1 that the vector v(k,R) returned by the FCC operator satisfies

v(k,R) =

R−1∑
r=0

c(k,r) (or v(k,R)
i =

R−1∑
r=0

c
(k,r)
i if FCC is utilized in node i) (24)

With (24), the relation between g̃(k) and δ(k) (or between g̃(k)i and δ(k)i) in Algorithm 2 satisfies

g̃(k) − δ(k) =

R−1∑
r=0

c(k,r) and g̃
(k)
i − δ

(k)
i =

R−1∑
r=0

c
(k,r)
i , ∀ 1 ≤ i ≤ n. (25)

Therefore, we have for any k ≥ 0

x(k+1) − x(k) = −γ
R−1∑
r=0

c(k,r)
(25)
= −γ(g̃(k) − δ(k))

= −γ

(
δ(k−1) +

1

n

n∑
i=1

R−1∑
r=0

c
(k,r)
i − δ(k)

)
(26)

(25)
= −γ

(
δ(k−1) +

1

n

n∑
i=1

(
g̃
(k)
i − δ

(k)
i

)
− δ(k)

)

= −γ

(
δ(k−1) +

1

n

n∑
i=1

(
ĝ
(k)
i + δ

(k−1)
i − δ

(k)
i

)
− δ(k)

)
(27)

= −γ
n

n∑
i=1

ĝ
(k)
i − γΩ(k−1) + γΩ(k) (28)

where (26) and (27) follow the implementation of Algorithm 2, and we use the notation of Ω(k) in
(28).

Lemma 7 (DESCENT LEMMA). Let the auxiliary sequence be y(k) := x(k) − γΩ(k−1), ∀ k ≥ 0.
Under Assumption 1, if learning rate 0 < γ ≤ 1

2L , it holds that for any k ≥ 0,

E[f(y(k+1))] ≤ E[f(y(k))]− γ

4
E[∥∇f(x(k))∥2] + 2γ3L2E[∥Ω(k−1)∥2] + γ2Lσ2

2nR
. (29)

Proof. By Lemma 6 and the definition of y(k) for k ≥ 0, we directly have that

y(k+1) = y(k) − γ

n

n∑
i=1

ĝ
(k)
i .

Since f is L-smooth, we have

f(y(k+1)) ≤ f(y(k)) + ⟨∇f(y(k)), y(k+1) − y(k)⟩+ L

2
∥y(k+1) − y(k)∥2

= f(y(k))− γ

〈
∇f(y(k)), 1

n

n∑
i=1

ĝ
(k)
i

〉
+
γ2L

2

∥∥∥∥∥ 1n
n∑

i=1

ĝ
(k)
i

∥∥∥∥∥
2

. (30)

Since ĝ(k)i = 1
R

∑R
r=1Oi(x

(k); ζ
(k,r)
i) is a unbiased estimator of ∇fi(x(k)), and by Assumption 2,

we have

E

[
1

n

n∑
i=1

ĝ
(k)
i

]
=

1

n

n∑
i=1

∇fi(x(k)) = ∇f(x(k)) (31)

22

and

E

∥∥∥∥∥ 1n
n∑

i=1

ĝ
(k)
i

∥∥∥∥∥
2
 = ∥∇f(x(k))∥2 + E

∥∥∥∥∥ 1n
n∑

i=1

ĝ
(k)
i −∇f(x(k))

∥∥∥∥∥
2

= ∥∇f(x(k))∥2 + E

∥∥∥∥∥ 1

nR

n∑
i=1

R−1∑
r=0

(
Oi(x

(k); ζ
(k,r)
i)−∇fi(x(k))

)∥∥∥∥∥
2

≤ ∥∇f(x(k))∥2 + σ2

nR
. (32)

Taking global expectation over (30), and plugging (31) and (32) into it, we reach

E[f(y(k+1))]− E[f(y(k))]

≤− γE[⟨∇f(y(k)),∇f(x(k))⟩] + γ2L

2
E[∥∇f(x(k))∥2] + γ2Lσ2

2nR

=− γE[⟨∇f(y(k))−∇f(x(k)),∇f(x(k))⟩]−
(
γ − γ2L

2

)
E[∥∇f(x(k))∥2] + γ2Lσ2

2nR

≤2γE[∥∇f(y(k))−∇f(x(k))∥2] + γ

2
E[∥∇f(x(k))∥2]

−
(
γ − γ2L

2

)
E[∥∇f(x(k))∥2] + γ2Lσ2

2nR
(33)

≤2γL2E[∥y(k) − x(k)∥2]− γ(1− γL)

2
E[∥∇f(x(k))∥2] + γ2Lσ2

2nR
, (34)

where we use Young’s inequality in (33), and (34) holds by Assumption 1. Using y(k) − x(k) =
−γΩ(k−1) and that

0 < γ ≤ 1

2L
=⇒ γ(1− γL)

2
≥ γ

4

in (34), we reach the conclusion in this lemma.

Lemma 8 (VANISHING ERROR). Assume R is sufficiently large such that (1 − δ)R < 1
4 and let

Ψ(k) := ∥δ(k)∥2 + 3
n

∑n
i=1 ∥δ

(k)
i ∥2 for k ≥ −1. Under Assumptions 2, 4, 5 It holds that

E[Ψ(k)] ≤ 4(1− δ)R
(
E[Ψ(k−1)] + 5E[∥∇f(x(k))∥2] + 4

(
b2 +

σ2

R

))
.

Proof. By Lemma 2, it holds that

E[∥δ(k)∥2] = E[∥g̃(k) − FCC(g̃(k), C,R)∥2] ≤ (1− δ)RE[∥g̃(k)∥2].

Note that

g̃(k) = δ(k−1) +
1

n

n∑
i=1

R−1∑
r=0

c
(k,r)
i = δ(k−1) +

1

n

n∑
i=1

(
g̃
(k)
i − δ

(k)
i

)
= δ(k−1) +

1

n

n∑
i=1

(
ĝ
(k)
i + δ

(k−1)
i − δ

(k)
i

)
= δ(k−1) +

1

n

n∑
i=1

ĝ
(k)
i +

1

n

n∑
i=1

δ
(k−1)
i − 1

n

n∑
i=1

δ
(k)
i .

23

Therefore, by using Young’s inequality and (32), we have

E[∥δ(k)∥2] ≤ (1− δ)RE[∥g̃(k)∥2]

≤ (1− δ)R

(
4E[∥δ(k−1)∥2] + 4E

∥∥∥∥∥ 1n
n∑

i=1

ĝ
(k)
i

∥∥∥∥∥
2

+
4

n

n∑
i=1

E[∥δ(k)i ∥2] + 4

n

n∑
i=1

E[∥δ(k−1)
i ∥2]

)

≤ (1− δ)R

(
4E[∥δ(k−1)∥2] + 4E[∥∇f(x(k))∥2]

+
4

n

n∑
i=1

E[∥δ(k)i ∥2] + 4

n

n∑
i=1

E[∥δ(k−1)
i ∥2] + 4σ2

nR

)
. (35)

For any 1 ≤ i ≤ n, using the similar argument, we have that

E[∥δ(k)i ∥2] =E[∥g̃(k) − FCC(g̃(k)i , Ci, R)∥2] ≤ (1− δ)RE[∥g̃(k)i ∥2]

=(1− δ)RE[∥ĝ(k)i + δ
(k−1)
i ∥2]

≤(1− δ)R
(
2E[∥ĝ(k)i ∥2] + 2E[∥δ(k−1)

i ∥2]
)

=(1− δ)R
(
2E[∥∇fi(x(k))∥2] + 2E[∥δ(k−1)

i ∥2] + 2σ2

R

)
. (36)

Note that for any 1 ≤ i ≤ n,

E[∥∇fi(x(k))∥2] = E[∥∇fi(x(k))−∇f(x(k)) +∇f(x(k))∥2]
≤ 2E[∥∇fi(x(k))−∇f(x(k))∥2] + 2E[∥∇f(x(k))∥2]. (37)

Taking the average of (36) over all 1 ≤ i ≤ n, and using (37) and Assumption 5, we further have that

1

n

n∑
i=1

E[∥δ(k)i ∥2]

=(1− δ)R

(
4

n

n∑
i=1

E[∥∇fi(x(k))−∇f(x(k))∥2] + 4E[∥∇f(x(k))∥2]

+
2

n

n∑
i=1

E[∥δ(k−1)
i ∥2] + 2σ2

R

)

≤(1− δ)R

(
4E[∥∇f(x(k))∥2] + 2

n

n∑
i=1

E[∥δ(k−1)
i ∥2] + 4b2 +

2σ2

R

)
. (38)

Summing up (35) and plugging (38) into it, we obtain

E[∥δ(k)∥2] + 4

n

n∑
i=1

E[∥δ(k)i ∥2]

≤(1− δ)R

(
4E[∥δ(k−1)∥2] + 4E[∥∇f(x(k))∥2] + 4

n

n∑
i=1

E[∥δ(k)i ∥2] + 4

n

n∑
i=1

E[∥δ(k−1)
i ∥2]

+
4σ2

nR
+ 16E[∥∇f(x(k))∥2] + 8

n

n∑
i=1

E[∥δ(k−1)
i ∥2] + 16b2 +

8σ2

R

)

≤(1− δ)R

(
4E[∥δ(k−1)∥2] + 4

n

n∑
i=1

E[∥δ(k)i ∥2] + 12

n

n∑
i=1

E[∥δ(k−1)
i ∥2]

+ 20E[∥∇f(x(k))∥2] + 16b2 +
12σ2

R

)
.

24

We thus have

E[∥δ(k)∥2] + 4(1− (1− δ)R)

n

n∑
i=1

E[∥δ(k)i ∥2]

≤(1− δ)R

(
4E[∥δ(k−1)∥2] + 12

n

n∑
i=1

E[∥δ(k−1)
i ∥2] + 20E[∥∇f(x(k))∥2] + 16b2 +

12σ2

R

)
.

Since R is sufficiently large such that

(1− δ)R <
1

4
, (39)

we have that 4(1− (1− δ)R) ≥ 3 and hence

E[Ψ(k)] ≤ E[∥δ(k)∥2] + 4(1− (1− δ)R)

n

n∑
i=1

E[∥δ(k)i ∥2]

≤ 4(1− δ)R
(
E[Ψ(k−1)] + 5E[∥∇f(x(k))∥2] + 4

(
b2 +

σ2

R

))
.

With Lemma 8, we easily reach its ergodic version:
Lemma 9 (ERGODIC VANISHING ERROR). Suppose θ ≜ 4(1 − δ)R < 1. Then it holds that for
anyK ≥ 0,

1

K + 1

K∑
k=0

E[Ψ(k−1)] ≤ 1

K + 1

5θ

1− θ

K−1∑
ℓ=0

E[∥∇f(x(ℓ))∥2] + 4θ

1− θ

(
b2 +

σ2

R

)
.

Proof. Let θ = 4(1− δ)R, then by Lemma 8 and noting Ψ(−1) = 0, we have

E[Ψ(k)] ≤θ
(
E[Ψ(k−1)] + 5E[∥∇f(x(k))∥2] + 4

(
b2 +

σ2

R

))
≤θ

(
θ

(
E[Ψ(k−2)] + 5E[∥∇f(x(k−1))∥2] + 4

(
b2 +

σ2

R

))

+ 5E[∥∇f(x(k))∥2] + 4

(
b2 +

σ2

R

))

=θ2E[Ψ(k−2)] + 5

k∑
ℓ=k−1

θk+1−ℓE[∥∇f(x(ℓ))∥2] + 4

k∑
ℓ=k−1

θk+1−ℓ

(
b2 +

σ2

R

)
≤ · · ·

≤θk+1E[Ψ(−1)] + 5
k∑

ℓ=0

θk+1−ℓE[∥∇f(x(ℓ))∥2] + 4

k∑
ℓ=0

θk+1−ℓ

(
b2 +

σ2

R

)

=5

k∑
ℓ=0

θk+1−ℓE[∥∇f(x(ℓ))∥2] + 4

k∑
ℓ=0

θk+1−ℓ

(
b2 +

σ2

R

)
. (40)

Therefore, by taking the summation of (40) over k = 0, . . . ,K − 1 and using Ψ(−1) = 0 again, we
further have

1

K + 1

K∑
k=0

E[Ψ(k−1)] =
1

K + 1

K−1∑
k=0

E[Ψ(k)]

≤ 1

K + 1

K−1∑
k=0

(
5

k∑
ℓ=0

θk+1−ℓE[∥∇f(x(ℓ))∥2] + 4

k∑
ℓ=0

θk+1−ℓ

(
b2 +

σ2

R

))

=
1

K + 1

(
5

K−1∑
ℓ=0

E[∥∇f(x(ℓ))∥2]

(
K−1∑
k=ℓ

θk+1−ℓ

)
+ 4

(
b2 +

σ2

R

)K−1∑
ℓ=0

K−1∑
k=ℓ

θk+1−ℓ

)
,

25

where we change the summation order of indexes k and ℓ in the last identity. Since
∑K−1

k=ℓ θk+1−ℓ =
θ(1−θK−ℓ)

1−θ ≤ θ
1−θ , we thus have

1

K + 1

K∑
k=0

E[Ψ(k−1)]

≤ 1

K + 1

(
5

K−1∑
ℓ=0

E[∥∇f(x(ℓ))∥2] θ

1− θ
+ 4

(
b2 +

σ2

R

)
Kθ

1− θ

)

≤ 1

K + 1

5θ

1− θ

K−1∑
ℓ=0

E[∥∇f(x(ℓ))∥2] + 4θ

1− θ

(
b2 +

σ2

R

)
.

Given the above lemmas, now we prove the convergence rate of NEOLITHIC.

Theorem 4. Let the communication round be R =
⌈
ln(n/δ)+ln(4max{b2,δσ2})

δ

⌉
and learning rate be

as in (46). Then it holds that for any K ≥ 0,

1

K + 1

K∑
k=0

E[∥∇f(x(k))∥2] = Õ
((∆Lσ2

nT

) 1
2

+
∆L

δT

)
,

where T = KR is the total number of gradient queries (compressed communications) on each
worker.

Proof. Averaging (29) over k = 0, . . . ,K, and using the fact that y(0) = x(0) and f(y(K+1)) ≥ f⋆,
we have

1

K + 1

K∑
k=0

E[∥∇f(x(k))∥2]

≤4E[f(y(0))]− 4E[f(y(K+1))]

γ(K + 1)
+

8γ2L2

K + 1

K∑
k=0

E[∥Ω(k−1)∥2] + 2γLσ2

nR

≤4(f(x(0))− f⋆)

γ(K + 1)
+

8γ2L2

K + 1

K∑
k=0

E[∥Ω(k−1)∥2] + 2γLσ2

nR
. (41)

By the definition of Ω(k−1) and using the Cauhy-Schwarz inequality, it holds that

E[∥Ω(k−1)∥2] =E

∥∥∥∥∥δ(k−1) +
1

n

n∑
i=1

δ
(k−1)
i

∥∥∥∥∥
2

≤
(
1 +

1

3

)
E[∥δ(k−1)∥2] + (1 + 3)E

∥∥∥∥∥ 1n
n∑

i=1

δ
(k−1)
i

∥∥∥∥∥
2

≤4

3
E[∥δ(k−1)∥2] + 4

n

n∑
i=1

E[∥δ(k−1)
i ∥2] = 4

3
E[Ψ(k−1)].

Therefore, by Lemma 9, we reach

1

K + 1

K∑
k=0

E[∥Ω(k−1)∥2] ≤ 4

3(K + 1)

K∑
k=0

E[∥Ψ(k−1)∥2]

≤ 20θ

3(K + 1)(1− θ)

K−1∑
ℓ=0

E[∥∇f(x(ℓ))∥2] + 16θ

3(1− θ)

(
b2 +

σ2

R

)
. (42)

26

Plugging (42) into (41), we reach that

1

K + 1

K∑
k=0

E[∥∇f(x(k))∥2]

≤4(f(x(0))− f⋆)

γ(K + 1)
+

160γ2L2θ

3(1− θ)(K + 1)

K−1∑
ℓ=0

E[∥∇f(x(ℓ))∥2]

+
128γ2L2θ

3(1− θ)

(
b2 +

σ2

R

)
+

2γLσ2

nR
. (43)

Assume the learning rate γ is sufficiently small such that

γ ≤ 1

11L

√
1− θ

θ
=⇒ 160γ2L2θ

3(1− θ)
≤ 1

2
. (44)

then we can further bound (43) as

1

K + 1

K∑
k=0

E[∥∇f(x(k))∥2] ≤ 8∆

γ(K + 1)
+

4γLσ2

nR
+

256γ2L2θ

3(1− θ)

(
b2 +

σ2

R

)
. (45)

where we use the definition ∆ := f(x(0))− f⋆. By choosing

γ =
1

11L+ σ
(

(K+1)L
2nR∆

) 1
2

+
(

32(K+1)L2θ(b2+σ2/R)
3(1−θ)∆

) 1
3

, (46)

we have

1

K + 1

K∑
k=0

E[∥∇f(x(k))∥2]

≤ 16σ
√
L∆√

nR(K + 1)
+

36∆
2
3L

2
3 θ

1
3 (b2 + σ2/R)

1
3

(K + 1)
2
3 (1− θ)

1
3

+
88L∆

K + 1

=O
((∆Lσ2

nT

) 1
2

+
θ

1
3∆

2
3L

2
3 max{b 2

3 , σ
2
3 /R

1
3 }

(1− θ)
1
3K

2
3

+
∆L

K

)
(47)

where we bound f(x(0))− f⋆ by ∆ in the last equation.

Let

R =

max{ln

(
δT max{b2,σ2δ}

∆L

)
, ln(8)}

δ

 = Õ

(
1

δ

)
, (48)

then it holds that

θ =4(1− δ)R ≤ 4e−δR

≤4 exp
(
−max{ln(δT max{b2, σ2δ}/∆L), ln(8)}

)
= min

{
4∆L

δT max{b2, σ2δ}
,
1

2

}
, (49)

and hence 1 − θ = Ω(1) and γ satisfies (44). Plugging (48) and (49) into (47), and applying the
notation T = KR, we reach

1

K + 1

K∑
k=0

E[∥∇f(x(k))∥2] =O
((∆Lσ2

nT

) 1
2

+
θ

1
3R

2
3∆

2
3L

2
3 max{b 2

3 , σ
2
3 /R

1
3 }

T
2
3

+
R∆L

T

)
=Õ
((∆Lσ2

nT

) 1
2

+
θ

1
3∆

2
3L

2
3 max{b 2

3 , σ
2
3 δ

1
3 }

δ
2
3T

2
3

+
∆L

δT

)
=Õ
((∆Lσ2

nT

) 1
2

+
∆L

δT

)
. (50)

27

C Experiment Supplement

C.1 Synthetic Dataset

Linear regression. We consider the following least-square problem:

min
x∈Rd

1

2n

n∑
i=1

∥Aix− bi∥2.

Coefficient matrix Ai and measurement bi are associated with node i, and M is the size of local data.
We set d = 30, n = 32 and M = 1000, and generate data by letting each node i be associated with a
local solution x⋆i randomly generated by N (0, Id). Then we generate each element in Ai following
standard normal distribution, and measurement bi is generated by bi = Aix

⋆
i + si with white noise

si ∼ N (0, 0.01). At each query, every node will randomly sample a row in Ai and the corresponding
element in bi to evaluate the stochastic gradient. We adopt the rand-1 compressor and set the number
of rounds R = 4 for NEOLITHIC. We use stair-wise decaying learning rates in which the learning
rates are divided by every 2, 500 communication rounds. Each algorithm is averaged with 20 trials.
The result is shown in Figure 1 (left). It is observed that NEOLITHIC outperforms MEM-SGD and
Double-Squeeze in convergence rate, and it performs closely to P-SGD.

Logistic regression. We consider the following logistic regression problem:

min
x∈Rd

1

n

n∑
i=1

fi(x) where fi(x) =
1

M

M∑
m=1

ln
(
1 + exp

(
−yi,mh⊤i,mx

))
where {hi,m, yi,m}Mm=1 is the training dateset held by node i in which hi,m ∈ Rd with d = 30 is a
feature vector while yi,m ∈ {−1,+1} is the corresponding label. Similar to the least square, each
node i is associated with a local solution x⋆i . We generate each feature vector hi,m ∼ N (0, Id), and
label yi,m = 1 with probability 1/(1 + exp(−yi,mh⊤i,mx⋆i)); otherwise yi,m = −1. We adopt the
rand-1 compressor and set the number of rounds R = 4 for NEOLITHIC. We use stair-wise decaying
learning rates in which the learning rates are divided by every 800 communication rounds. Each
algorithm is averaged with 20 trials. The result is shown in Figure 2. It is observed that NEOLITHIC
outperforms MEM-SGD and Double-Squeeze in convergence rate, and it performs closely to P-SGD.

0 500 1000 1500 2000 2500 3000
communication rounds

10 1

100

er
ro

r

Logistic Regression, n = 32
P-SGD
MEM-SGD
Double Squeeze
NEOLITHIC

Figure 2: Convergence results on the synthetic logistic regression problem in terms of the mean-square error
E[∥∇f(x)∥2] versus communication rounds.

C.2 Deep Learning Tasks

Implementation details. We implement all compression algorithms with PyTorch[47] 1.8.2 using
NCCL 2.8.3 (CUDA 10.1) as the communication backend. For PSGD, we used PyTorch’s native
Distributed Data Parallel (DDP) module. All deep learning training scripts in this section run on a
server with 8 NVIDIA V100 GPUs in our cluster and each GPU is treated as one worker.

Image classification. We investigate the performance of the aforementioned methods with CIFAR-10
[37] dataset. For CIFAR-10 dataset, it consists of 50,000 training images and 10,000 validation
images categorized in 10 classes. We utilize two common variants of ResNet [27] model on CIFAR-
10 (ResNet-20 with roughly 0.27M parameters and ResNet-18 with 11.17M parameters). We train

28

0 50 100 150 200 250 300
Epoch

20

40

60

80

Ev
al

 T
op

-1
 A

cc
ur

ac
y

280 290

94.0

94.5 PSGD
MEM-SGD
DoubleSqueeze
EF21-SGD
NEOLITHIC

Figure 3: Convergence results on the CIFAR-10 in terms of validation accuracy.

Table 4: Accuracy comparison on CIFAR-10 with heterogeneous data (ResNet-20).

METHODS MEM-SGD DOUBLE-SQUEEZE EF21-SGD NEOLITHIC C-RATIO %

α = 1 85.42 ± 0.22 83.72 ± 0.17 38.5 ± 2.17 85.47 ± 0.12 1
α = 10 91.61 ± 0.19 91.25 ± 0.17 68.58 ± 0.13 91.76 ± 0.13 1
α = 1 86.43 ± 0.38 86.13 ± 0.21 72.65 ± 0.37 87.17 ± 0.24 5
α = 10 91.88 ± 0.23 91.66 ± 0.11 86.36 ± 0.15 92.14 ± 0.22 5

total 300 epochs and set the batch size to 128 on every worker. The learning rate is set to 5e-3 for
single worker and warmed up in the first 5 epochs and decayed by a factor of 10 at 150 and 250-th
epoch. All experiments were repeated three times with different seeds. For NEOLITHIC, we set
R = 2. Following previous works [62], we use top-k compressor with different compression ratio to
evaluate the performance of the aforementioned methods. As shown in Figure 1 (left), Figure 3, and
Table 2, NEOLITHIC consistently outperforms other compression methods and reach the similar
performance to PSGD. It is worth noting that EF21-SGD, while guaranteed to converge with milder
assumptions than ours, does not provide competitive performance in deep learning tasks listed in
Tables 2, 3, and 4. We find our reported result for EF21-SGD is consistent with Fig. 7 (the left plot)
in [24].

Performance with heterogeneous data. We simulate data heterogeneity among nodes via a Dirichlet
distribution-based partitioning with parameter α controlling the data heterogeneity. The training
data for a particular class tends to concentrate in a single node as α → 0, i.e. becoming more
heterogeneous, while the homogeneous data distribution is achieved as α→ ∞. We test α = 1 and
10 in Table 4 for all compared methods as corresponding to a setting with high/low heterogeneity.

Effects of accumulation rounds. We also empirically evaluate the performance of NEOLITHIC
with different choice of parameter R in deep learning tasks. NEOLITHIC have slightly performance
degradation in both compression scenarios as R scales up. We conjecture that the gradient accu-
mulation step, which amounts to using large-batch samples in gradient evaluation, can help in the
optimization and training stage as proved in this paper, but it may hurt the generalization performance.
We recommend using NEOLITHIC in applications that are friendly to large-batch training.

Table 5: Effects of round numbers for CIFAR-10 dataset with ResNet-18

ROUNDS 2 3 4 5

NEOLITHIC (5%) 94.63 ± 0.09 93.32 ± 0.08 92.55 ± 0.12 91.48 ± 0.18
NEOLITHIC (1%) 94.155 ± 0.10 93.15 ± 0.11 92.27 ± 0.08 91.32 ± 0.12

D More Details of Table 1

There exist mismatches between some rates listed in Table 1 and those established in literature. The
mismatches exist because

1. we have strengthened the vanilla rates by relaxing their restrictive assumptions (say, Double-
Squeeze) or uncovering the hidden terms (say, CSER);

29

2. we have extended the vanilla rates to the same setting as NEOLITHIC (say, extend MEM-
SGD to non-convex and smooth setting, or transform QSGD to the distributed setting).

With these modifications, these baseline algorithms can be compared with NEOLITHIC in a fair
manner. Next we clarify each modification one by one.

D.1 Q-SGD

There is a slight inconsistency between the original rate in [32] and the one listed Table 1 due to the
following reasons:

1. We noticed that the rate stated in [32, Corollary 3] is not optimal following [32, Theorem 2]
since the authors set the learning rate as θ

√
M/T where θ is a universal constant. The rate

in [32, Corollary 3] can be slightly improved in terms of σ2, b2, ∆ = f(x(0))−minx f(x)
by involving them into the learning rate. We manually optimize the learning rate by choosing
Θ((L+ (T (1 + ω)Lσ2/∆M)1/2 + (ωLTb2/n∆)1/2)−1).

2. M is the total mini-batch size on all workers in Q-SGD (see the paragraph of contribution,
page 2, [32]). For a fair comparison with other methods in Table 1, We set M = n to make
the number of total gradient queries per iteration equivalent in all algorithms.

D.2 CSER

While [68, Corollary 1] does not have a O(1/T) term in the convergence rate, it does impose another
condition T ≫ n to the convergence statement. If T ≫ n holds, then 1/

√
nT ≫ 1/T and hence the

1/T term is dominated by 1/
√
nT and thus hidden in the notation O(·). However, the condition does

not appear in the convergence theorem of NEOLITHIC. To conduct a fair comparison, we have to
remove condition T ≫ n from its convergence theorem, which thus incurs additional O(1/T) term
in the rate accordingly. The rate we provided in Table 1 is hence more precise than that in [68].

D.3 Double-Squeeze

The original rate of Double-Squeeze established in [62] is based on an unrealistic assumption that
accumulated compression errors are bounded by unknown ϵ (see [62, Assumption 1.3]). This makes
its rate incomparable with other methods. However, we can remove the unrealistic assumption
and easily derive a comparable bound where ϵ can be explicitly replaced with O(G/δ2). We plug
O(G/δ2) into [62, Corollary 2] to get the rate listed in our Table 1.

To this end, we follow the notations of [62] to derive explicit upper bounds for server/worker
compression errors E[∥δt∥] and E[∥δ(i)t ∥] which, combined with [62, Corollary 2], leads to the rate
in our Table 1. We consider compressors Q (in server) and Qi (in worker i) utilized are δ-contractive.
We use g

(i)
t to indicate local (stochastic) gradient.

Bound of local compression error: E[∥δ(i)t ∥] = O(G/δ). By δ-contraction and Young’s inequality,
we have for any ρ > 0 that

E[∥δ(i)t ∥2] =E[∥v(i)
t −Qi(v

(i)
t)∥2]

≤(1− δ)E[∥v(i)
t ∥2] = (1− δ)E[∥g(i)

t + δ
(i)
t−1∥2]

≤(1 + ρ)(1− δ)E[∥g(i)
t ∥2] + (1 + 1/ρ)(1− δ)E[∥δ(i)t−1∥2] (51)

Iterating (51) for t, t− 1, . . . , 0 and noting δ
(i)
0 = 0, we reach

E[∥δ(i)t ∥2] ≤(1 + ρ)(1− δ)

t∑
s=1

(1 + 1/ρ)t−s(1− δ)t−sE[∥g(i)
s ∥2]

≤ (1 + ρ)(1− δ)G2

1− (1 + 1/ρ)(1− δ)
(52)

30

where the last inequality holds because E[∥g(i)
s ∥2] ≤ G2 for all 1 ≤ s ≤ t. Here one must choose

ρ = Ω(1/δ) to avoid the explosion of the upper bound, which leads to E[∥δ(i)t ∥2] = O(G2/δ2).

Therefore, by Jessen’s inequality, we have E[∥δ(i)t ∥] ≤
√
E[∥δ(i)t ∥2] = O(G/δ).

Bound of global compression error: E[∥δt∥] = O(G/δ2). By δ-contraction and Young’s inequality,
we have for any ρ > 0 that

E[∥δt∥2] =E[∥vt −Q(vt)∥2]

≤(1− δ)E[∥vt∥2] = (1− δ)E

∥∥∥∥∥ 1n
n∑

i=1

Qi(v
(i)
t) + δt−1

∥∥∥∥∥
2

≤(1− δ)(1 + ρ)E

∥∥∥∥∥ 1n
n∑

i=1

Qi(v
(i)
t)

∥∥∥∥∥
2
+ (1 + 1/ρ)(1− δ)E[∥δt−1∥2]. (53)

Again by Young’s inequality and δ-contraction, we have

E

∥∥∥∥∥ 1n
n∑

i=1

Qi(v
(i)
t)

∥∥∥∥∥
2
 ≤2E

∥∥∥∥∥ 1n
n∑

i=1

Qi(v
(i)
t)− v

(i)
t

∥∥∥∥∥
2
+ 2E

∥∥∥∥∥ 1n
n∑

i=1

v
(i)
t

∥∥∥∥∥
2

≤2− δ

n

n∑
i=1

E[∥v(i)
t ∥2] = O(G2/δ2) (54)

where the last identity is because the upper bound of E[∥v(i)
t ∥2] can be obtained by following the

derivation in (51) and (52). Taking ρ = 2(1− δ)/δ = O(1/δ) in (53) and using (54), we reach an
inequality taking a form like

E[∥δt∥2] ≤ (1− δ/2)E[∥δt−1∥2] +O(G2/δ3). (55)

Iterating (55) similarly, we easily reach E[∥δt∥2] = O(G2/δ4) and thus E[∥δt∥] = O(G/δ2).

D.4 MEM-SGD

We notice that only the rate for strongly convex problems is established in the original MEM-SGD
paper [58]. To compare it fairly with NEOLITHIC, we derive its convergence rate in the non-convex
setting by ourselves.

The main recursion of MEM-SGD is

pi
t = η∇fi(xt, ξ

i
t) + eit, xt+1 = xt −

1

n

n∑
i=1

Qi(p
i
t), eit+1 = pi

t −Qi(p
i
t).

The key steps of our derivation are listed as follows.

1. Following the similar argument to (51) and (52), we can bound the compression error as
E[∥eit∥2] = O(η2G2/δ2). Note that here η2 appears since compression is conducted after
multiplying the learning rate η.

2. The recursion formula of MEM-SGD is yt+1 = yt − η
n

∑n
i=1 ∇fi(xt, ξ

i
t) with yt ≜

xt − 1
n

∑n
i=1 e

i
t. In fact, one can easily check that

xt+1 =xt −
1

n

n∑
i=1

Qi(p
i
t)

=xt −
1

n

n∑
i=1

(pi
t − eit+1) = xt −

1

n

n∑
i=1

(η∇fi(xt, ξ
i
t) + eit − eit+1)

=yt −
η

n

n∑
i=1

∇fi(xt, ξ
i
t) +

1

n

n∑
i=1

eit+1.

31

Table 6: Comparison between between Q-SGD [32], VR-MARINA [63], and SASHA-MVR [26]. To explicitly
clarify the influence of different compression strategies, we keep the stochastic gradient variance σ2, data hetero-
geneity bound b2 , mini-batch size B (used in [32, 26]), probability of conducting uncompressed communication
p (used in [63]), but omit smoothness constant L, and initialization gap f(x(0))− f⋆ in the below results.

Algorithm #Communication #Gradient Query per Worker

Q-SGD [32] O
(

1
nBϵ4

(
(1 + ω)σ2 + ωb2

))
B×#Communication

VR-MARINA [26] O

(
1
ϵ2

(
1 +

√
1−p
pn

(
ω + 1+ω

max{1, σ2

nϵ2
}

)))
max{1, σ2

nϵ2
}×#Communication

DASHA-MVR [63] O
(

1
ϵ2

(
1 + σ

nϵB3/2 + σ2

ϵ2B

))
B×#Communication

3. Following the derivation of (34), one can obtain

E[f(yt+1)]− E[f(yt)] ≤ 2ηL2E[∥yt − xt∥2]−
η(1− ηL)

2
E[∥∇f(xt)∥2] +

η2Lσ2

2n
.

(56)

Setting η ≤ 1
2L such that η(1−ηL)

2 ≥ η
4 and rearranging (56), we have

E[∥∇f(xt)∥2] ≤
4(E[f(yt)]− E[f(yt+1)])

η
+

2ηLσ2

n
+ 8L2E[∥yt − xt∥2]. (57)

4. By the definition of yt and step 1., we have

E[∥yt − xt∥2] ≤
1

n

n∑
i=1

E[∥eit∥2] = O(η2G2/δ2). (58)

Averaging (57) with (58) plugged into, we reach

1

T

T−1∑
t=0

E[∥∇f(yt)∥2] ≤O
(
E[f(x0)]− f⋆

η
+
ηLσ2

n
+
η2L2G2

δ2

)
. (59)

Setting the learning rate η = (2L+ (Lσ2

n∆)1/2 + (L
2G2

δ2∆)1/3)−1 in (59) leads to the rate we
listed in Table 1.

D.5 Comparison with More Algorithms

We supplement the comparison between Q-SGD [32], VR-MARINA [26], and DASHA-MVR [63]
in Table 6. The results are compared in terms of the communication/query complexity to reach
E[∥∇f(x)∥2] ≤ ϵ for a sufficiently small ϵ.

Several additional comments are as follows:

1. All three algorithms utilize unidirectional, unbiased, and independent compressors.
2. All algorithms conduct an imbalanced number of compressed communications and of

gradient queries. We therefore list the communication and gradient query complexity
separately in Table 6. The result of Q-SGD is slightly tuned by us, see the argument in
Appendix D.1.

3. MARINA (with O(1/ϵ2)) and SASHA (with O(1/ϵ3)) have better communication com-
plexity than QSGD (with O(1/ϵ4)) when ϵ is sufficiently small.

32

	Lower Bounds
	Proof of Theorem 1
	Proof of Theorem 2

	Convergence of NEOLITHIC
	Proof of Lemma 2
	Proof of Theorem 3

	Experiment Supplement
	Synthetic Dataset
	Deep Learning Tasks

	More Details of Table 1
	Q-SGD
	CSER
	Double-Squeeze
	MEM-SGD
	Comparison with More Algorithms

