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Abstract

Recent advances in distributed optimization and learning have shown that communi-
cation compression is one of the most effective means of reducing communication.
While there have been many results for convergence rates with compressed com-
munication, a lower bound is still missing.
Analyses of algorithms with communication compression have identified two ab-
stract properties that guarantee convergence: the unbiased property or the contrac-
tive property. They can be applied either unidirectionally (compressing messages
from worker to server) or bidirectionally. In the smooth and non-convex stochastic
regime, this paper establishes a lower bound for distributed algorithms whether
using unbiased or contractive compressors in unidirection or bidirection. To close
the gap between this lower bound and the best existing upper bound, we further
propose an algorithm, NEOLITHIC, that almost reaches our lower bound (except
for a logarithm factor) under mild conditions. Our results also show that using
contractive compressors in bidirection can yield iterative methods that converge as
fast as those using unbiased compressors unidirectionally. We report experimental
results that validate our findings.

1 Introduction

Large-scale optimization is a critical step in many machine learning applications. Millions or even
billions of data samples contribute to the excellent performance in tasks such as robotics, computer
vision, natural language processing, healthcare, and so on. However, such a scale of data samples
and model parameters leads to enormous communication that hampers the scalability of distributed
machine-learning training systems. We urgently need communication-reduction strategies. State-of-
the-art strategies include model and gradient compression [4, 12, 56], decentralized communication
[39, 9, 19], lazy communication [73, 57, 33, 18], and beyond. This article will focus on the former.

The most common method of distributed training is Parallel SGD (P-SGD) [15]. In P-SGD, the
stochastic gradients that workers transmit to a server cause significant communication overhead in
large-scale machine learning. To reduce this overhead, many recent works propose to compress the
messages sent unidirectionally from worker to server [5, 28, 4] or compress the messages between
them bidirectionally [62, 70]. The method of compression is either sparsification or quantization
[5, 28, 4] or their combination [28, 14]. The literature [58, 55, 62, 70] reveals that bidirectional
compression can save more communication, but leads to slower convergence rates.
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Table 1: Comparison between various distributed stochastic algorithms with communication compression
for non-convex loss functions. To explicitly clarify the influence of different compression strategies, we keep
the stochastic gradient variance σ2, data heterogeneity bound b2 , gradient square norm bound G2 (used in
[58, 62, 68], much larger than b2 and L) , but omit smoothness constant L, and initialization f(x(0))− f⋆ in the
below results. Moreover, notation Õ(·) hides all logarithmic terms. “LB” and “UB” indicate lower and upper
bound, respectively. Notation δ and ω are compressor-related parameters (see detailed discussions in Section 2).

Algorithm Convergence Rate Compressiona Trans. Compl.b

LB Theorem 1+Corollary 1 Ω
(

σ√
nT

+ 1
δT

) Uni/Bidirectional
Contractive Ω(n/δ2)

Theorem 2+Corollary 2 Ω
(

σ√
nT

+ 1+ω
T

) Uni/Bidirectional
Unbiased Ω

(
n(1 + ω)2

)

UB

Theorem 3 Õ
(

σ√
nT

+ 1
δT

) Uni/Bidirectional
Contractive Õ(n/δ2)

Corollary 3 Õ
(

σ√
nT

+ 1+ω
T

) Uni/Bidirectional
Unbiased Õ(n(1 + ω)2)

Q-SGD [32] O
(

(1+ω)1/2σ+ω1/2b√
nT

)†,⋄ Unidirectional
i.i.d, Unbiased −

MEM-SGD [58] O
(

σ√
nT

+ G2/3

δ2/3T2/3 + 1
T

)⋄ Unidirectional
Contractive O(n3/δ4)

Double-Squeeze [62] O
(

1√
nT

+ G2/3

δ4/3T2/3 + 1
T

)⋄ Unidirectional
Contractive O(n3/δ8)

CSER [68] O
(

σ√
nT

+ G2/3

δ2/3T2/3 + 1
T

)⋄ Unidirectional
Contractive O(n3/δ4)

EF21-SGD [24] O
(

σ√
δ3T

+ 1
δT

)∗ Unidirectional
Contractive −

a This column indicates the type of the compressor and in what direction the compression is applied.
b This column indicates the transient complexity, i.e., the number of gradient queries (or communication

rounds) the algorithm has to experience before reaching the linear-speedup stage, i.e., O( σ√
nT

).
† This convergence rate is valid only for T = Ω(n(1 + ω

n
)2). Since the rate (1+ω)1/2σ+ω1/2b√

nT
is always

worse than σ√
nT

, the transient complexity is not available.
∗ Since the convergence rate does not show linear-speedup, the transient complexity are not available.
⋄ The rates are either strengthened by relaxing the original restrictive assumptions or extended to the same

setting as NEOLITHIC for a fair comparison, see more details in Appendix D.

Although there are many specific compression methods, their convergence analyses are mainly built
on unbiased compressibility or contractive compressibility. The literature [14, 54, 71] summarizes
these two properties and how they appear in the analyses. An unbiased compressor compresses a
long vector x into a short vector C(x) and satisfies E[C(x)] = x, i.e., no bias is introduced. The
contractive compressor may introduce bias, but its compression introduces much less variance. We
give their definitions below. Although the contractive compressor can empirically work better, the
analysis of the unbiased compressor yields faster convergence due to unbiasedness [14, 44, 29, 26].

Despite the quick progress made in compression techniques and their convergence, we do not yet
understand the limits of algorithms with communication compression. Since unbiased and contractive
compressibilities are the two representative characteristics of various compressors, we use them to
theorize two types of compression methods. For each type, we intend to answer:

What is the optimal convergence rate that a distributed algorithm can achieve when using any of the
compression methods of this type?

Here, we assume that only unbiased compressibility or contractive compressibility can be used, not
considering any additional special compressor design; after all, any special design in the literature
has been heuristic, whose effectiveness can be explained at best and not proved or quantified. So, we
further clarify our question: Given a class of optimization problems (specified below) and a class
of compression methods of the same type, if we choose the worst combination of them to defeat
an algorithm, what will the convergence rate that the best-defending algorithm can reach? To our
knowledge, they are fundamental questions not addressed yet.

2



1.1 Main Results

This paper clarifies these open questions by providing lower bounds under the non-convex smooth
stochastic optimization setting, and developing effective algorithms that match the lower bounds up
to logarithm factors. In particular, our contributions are:

• We establish convergence lower bounds for distributed algorithms with communication compres-
sion in the stochastic non-convex regime. Our lower bounds apply to any algorithm conducting
unidirectional or bidirectional compression and using unbiased or contractive compressors. We
find a clear gap between the established lower bounds and the existing convergence rates.

• We propose a novel nearly optimal algorithm with compression (NEOLITHIC) to fill in this
gap. NEOLITHIC can adopt either unidirectional or bidirectional compression, and is compatible
with both unbiased and contractive compressors. Using any combination, NEOLITHIC provably
matches the above lower bound, under an additional mild assumption and up to logarithmic factors.

• The convergence results of NEOLITHIC also imply that, for non-convex problems, algorithms
using biased contractive compressors bidirectionally can theoretically converge as fast as those
with unbiased compressors used unidirectionally. Before out work, it is only established in [48]
that, for convex problems and unbiased compressors, algorithms with bidirectional compression
can match with the counterparts with unidirectional compression.

• We provide extensive experimental results to validate our theories.

All established results in this paper as well as convergence rates of existing state-of-the-art distributed
algorithms with communication compression are listed in Table 1. The transient complexity, which
measures how sensitive the algorithm is to the compression strategy (see Section 3), is also listed in
the table. The smaller the transient complexity is, the faster the algorithm converges.

1.2 Related Works

Distributed learning. Distributed learning has been increasingly useful in training large-scale
machine learning models [21]. It typically follows a centralized or decentralized setup. Centralized
approaches [2, 38], with P-SGD as the representative, require all workers to synchronize with a central
server per iteration. Decentralized approaches, however, are based on partial averaging in which
each worker only needs to synchronize with its immediate neighbors. Well-known decentralized
algorithms include decentralized SGD [45, 77, 76, 39], D2[61, 74], stochastic gradient tracking
[69, 36, 3, 30], and their momentum variants [40, 75]. The lazy communication [73, 57, 18] is also
utilized to reduce communication overheads in which workers conducts multiple local updates before
sending messages.

Communication compression. To alleviate the communication overhead in distributed learning,
researchers have proposed two mainstream communication compression methods: quantization and
sparsification. Quantization [32, 60, 80] is essentially an unbiased operator with random noise. For
example, [56] develops Sign-SGD by using only 1 bit for each entry whose convergence is studied in
[12, 13, 66]. Q-SGD [4] compresses each entry with more flexible bits and enables a trade-off between
convergence rates and communication costs. Sparsification, on the other hand, amounts to a biased but
contractive operator. [65, 58] propose to transmit a small number of entries, randomly or by taking the
largest ones, to achieve sparsity in communication. The theories behind contractive compressors are
limited to those in [64, 41, 59] due to analysis challenges, and they are established with assumptions
such as bounded gradients [82, 34] or quadratic loss functions [67]. More discussions on unbiased
and biased compressors can be found in [14, 54, 53]. Communication compression can also be
combined with other communication-saving techniques such as decentralization [42, 81].

Error compensation. The error compensation (feedback) mechanism is introduced by [56] to
mitigate the error caused by 1-bit quantization. [67] studies SGD with error-compensated quantization
for quadratic functions with convergence guarantees. [58] shows that error compensation can reduce
quantization-incurred errors for strongly convex loss functions in the single-node setting. Error-
compensated SGD is studied in [5] for non-convex loss functions with no establishment of an
improved convergence rate. The algorithm EF21 [52] applies to the deterministic setting, using
contractive compressors unidirectionally. It can converge under very mild assumptions. It has been
recently extended to the stochastic setting [24] yet no linear-speedup rate is achieved.
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Lower bounds in optimization. Lower bounds are well studied in convex optimization [23, 1, 22,
20] especially when there is no gradient noise [8, 78, 10, 6, 25]. In non-convex optimization, [16, 17]
propose a zero-chain model and show a tight bound for first-order methods. By splitting the zero-chain
model into multiple components, the authors of [83, 7] extend the analysis technique to finite sum and
stochastic problems. Recently, [43, 76] also show the lower bounds in the decentralized stochastic
setting based on a similar approach. For distributed learning with communication compression, a
useful work [49] establishes a lower bound for unidirectional/bidirectional compression for strongly
convex problems with fixed learning rates and unbiased compressors. There are limited studies on
lower bounds for non-convex distributed learning with unbiased/contractive compressions.

2 Problem Setup

We consider standard distributed learning with n parallel workers. The data samples in each worker
i follow a local distribution Di, which can be heterogeneous among all workers. These workers,
together with a central parameter server, collaborate to train a model by solving

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x) with fi(x) = Eξi∼Di [F (x; ξi)], (1)

where F (x; ξ) is the loss function evaluated at parameter x with sample ξ. Since the objective f
can be non-convex, finding a global minimum of (1) is generally intractable. Therefore, we turn
to seeking a model x̂ with a small gradient magnitude in expectation, i.e., E[∥∇f(x̂)∥2]. Next we
introduce the setup under which we perform a convergence analysis.

2.1 Function Class

We let the function class F∆,L denote the set of all functions satisfying Assumption 1 for any
underlying dimension d ∈ N+ and a given initialization point x(0) ∈ Rd.
Assumption 1 (Smoothness). We assume each local objective fi has L-Lipschitz gradient, i.e.,

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥
for any i ∈ {1, . . . , n}, x, y ∈ Rd, and f(x(0))− infx∈Rd f(x) ≤ ∆ with f = 1

n

∑n
i=1 fi.

2.2 Gradient Oracle Class

We assume each worker i has access to its local gradient ∇fi(x) via a stochastic gradient oracle
Oi(x; ζi) subject to randomness ζi, e.g., the mini-batch sampling ζi ≜ ξi ∼ Di. We further assume
that the output Oi(x, ζi) is a time-independent and unbiased estimator of the full-batch gradient
∇fi(x) with a bounded variance. Formally, we let the stochastic gradient oracle class Oσ2 denote
the set of all oracles Oi satisfying Assumption 2.
Assumption 2 (Gradient noise). For any x ∈ Rd and i ∈ {1, . . . , n}, the oracle Oi satisfies

Eζi [Oi(x; ζi)] = ∇fi(x) and Eζi [∥Oi(x; ζi)−∇fi(x)∥2] ≤ σ2.

2.3 Compressor Class

The two classes of widely-used compressors are i) the ω-unbiased compressor, described by Assump-
tion 3, e.g., the stochastic quantization operator [4], and ii) the δ-contractive compressor, described
by Assumption 4, e.g., the rand-K and top-K operators [58, 51].
Assumption 3 (Unbiased compressor). For a (possibly random) compression operator C : Rd →
Rd, we assume there exists a constant ω ≥ 0 such that

E[C(x)] = x, E[∥C(x)− x∥2] ≤ ω∥x∥2, ∀x ∈ Rd,

where the expectation is taken over the randomness of the compression operator C.
Assumption 4 (Contractive compressor). For a (possibly random) compression operator C : Rd →
Rd, we assume there exists a constant δ ∈ (0, 1] such that

E[∥C(x)− x∥2] ≤ (1− δ)∥x∥2, ∀x ∈ Rd,

where the expectation is over the randomness of the compression operator C.
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Formally, we let the compressor classes Uω and Cδ denote the set of all ω-unbiased compressors
and δ-contractive compressors satisfying Assumptions 3 and 4, respectively. Note that the identity
operator I satisfies I ∈ Uω for any ω ≥ 0 and I ∈ Cδ for any δ ∈ (0, 1]. Generally, an ω-unbiased
compressor is not necessarily contractive when ω is larger than 1. However, since C ∈ Uω implies
(1 + ω)−1C ∈ C(1+ω)−1 , the scaled unbiased compressor is also contractive though the converse
does not hold. Hence, the class of contractive compressors is strictly more general since it contains
all unbiased compressors through scaling.

2.4 Algorithm Class

We consider a centralized and synchronous algorithm A in which i) workers are allowed to com-
municate only directly with the central server but not between one another; ii) all iterations are
synchronized so that all workers start each of their iterations simultaneously. Each worker i holds a
local copy of the model, denoted by x(t)i , at iteration t. The output x̂(t) of A after t iterations can be
any linear combination of all previous local models, namely,

x̂(t) ∈ span
(
{x(s)i : 0 ≤ s ≤ t, 1 ≤ i ≤ n}

)
.

We further require algorithms A to satisfy the so-called “zero-respecting” property, which appears
in [16, 17, 43]. Intuitively, this property implies that the number of non-zero entries of the local
model of a worker can be increased only by conducting local stochastic gradient descent with its own
samples or synchronizing with the server. The zero-respecting property holds in all algorithms in
Table 1 and most first-order methods based on SGD [46, 35, 31, 79]. In addition to these properties,
the algorithm A has to admit communication compression. Specifically, we endow the server with
a compressor C0 and each worker i ∈ {1, · · · , n} with a compressor Ci. If Ci = I for some
i ∈ {0, · · · , n}, then worker i (or the server if i = 0) conducts lossless communication. When
Ci ̸= I for any i ∈ {0, · · · , n}, algorithm A conducts bidirectional compression. When C0 = I ,
algorithm A conducts unidirectional compression on messages from workers to server. The formal
definition of the algorithm class with bidirectional/unidirectional compression is as follows.

Definition 1 (Algorithm class). Given compressors {C0, C1, . . . , Cn}, write AB
{Ci}n

i=0
for the set of

all centralized, synchronous, zero-respecting algorithms admitting bidirectional compression in which
i) compressor Ci, ∀ 1 ≤ i ≤ n, is applied to messages from worker i to the server, and ii) compressor
C0 is applied to messages from the server to all workers. When C0 = I , we write AB

{C0=I}∪{Ci}n
i=1

,
or AU

{Ci}n
i=1

for short, for the set of algorithms admitting unidirectional compression. The superscript
B or U indicates “bidirectional” or “unidirectional”, respectively.

3 Lower Bounds

With all interested classes introduced above, we now define the lower bound measure. Given local
loss functions {fi}ni=1 ⊆ F∆,L, stochastic gradient oracles {Oi}ni=1 ⊆ Oσ2 (with Oi for worker i),
compressors {Ci}ni=0 ⊆ C (C can be Uω or Cδ), and an algorithm A ∈ A to solve problem (1) (A
can be AB

{Ci}n
i=0

or AU
{Ci}n

i=1
), we let x̂A,{fi}n

i=1,{Oi}n
i=1,{Ci}n

i=0,T
denote the output of algorithm A

using no more than T gradient queries and rounds of communication by each worker node. We define
the minimax measure

inf
A∈A

sup
{Ci}n

i=0⊆C
sup

{Oi}n
i=1⊆Oσ2

sup
{fi}n

i=1⊆F∆,L

E[∥∇f(x̂A,{fi}n
i=1,{Oi}n

i=1,{Ci}n
i=0,T

)∥2]. (2)

In (2), we do not require the compressors {Ci}ni=0 to be distinct or independent. When C is Uω or Cδ ,
we allow the compressor parameter ω or δ to be accessible by algorithm A.

3.1 Unidirectional Unbiased Compression

Our first result is for algorithms that admit unidirectional compression and ω-unbiased compressors.

Theorem 1 (Unidirectional unbiased compression). For every ∆, L > 0, n ≥ 2, ω ≥ 0, σ > 0,
T ≥ (1 + ω)2, there exists a set of local loss functions {fi}ni=1 ⊆ F∆,L, stochastic gradient oracles
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{Oi}ni=1 ⊆ Oσ2 , ω-unbiased compressors {Ci}ni=0 ⊆ Uω with C0 = I , such that for any algorithm
A ∈ AU

{Ci}n
i=1

starting from a given constant x(0), it holds that

E[∥∇f(x̂A,{fi}n
i=1,{Oi}n

i=1,{Ci}n
i=0,T

)∥2] = Ω

((
∆Lσ2

nT

) 1
2

+
(1 + ω)∆L

T

)
. (3)

Consistency with previous works. The bound in (3) is consistent with best-known lower bounds in
different settings. When ω = 0, our result reduces to the tight bounds for distributed training without
compression [7]. When n = 1 and ω = 0, our result reduces to the lower bound established in [7]
under the single-node non-convex stochastic setting. When n = 1, ω = 0 and σ2 = 0, our result
recovers the tight bound for deterministic non-convex optimization [16].

Linear-speedup. When T is sufficiently large, the first term 1/
√
nT dominates the lower bound

(3). If an algorithm achieves an O(1/
√
nT ) rate, it will require T = O(1/(nϵ2)) gradient queries to

reach a desired accuracy ϵ, which is inversely proportional to n. Therefore, an algorithm achieves
linear-speedup at T th iteration if, for this T , the term involving nT is dominating the rate.

Transient complexity. Due to the compression-incurred overhead in convergence rate, a distributed
stochastic algorithm with communication compression has to experience a transient stage to achieve
its linear-speedup stage. Transient complexity are referred to the number of gradient queries (or
communication rounds) when T is relatively small so non-nT terms still dominate the rate. The
smaller the transient complexity is, the less gradient queries or communication rounds the algorithm
requires to achieve the linear-speedup stage. For example, if an algorithm can achieve the lower bound
established in (3), it requires (∆Lσ2

nT )
1
2 ≥ (1+ω)∆L

T , i.e., T = Ω(n(1+ω)2) transient gradient queries
(or communication rounds) to achieve linear-speedup, which is proportional to the compression-
related terms (1 + ω)2. Transient complexity is an important metric to evaluate how sensitive the
algorithm is to compression errors. It was widely used in decentralized learning [50, 72] to gauge
how the network topology can influence the convergence rate.

3.2 Bidirectional Unbiased Compression

Theorem 1 applies to unidirectional compression where C0 = I . We next consider the bidirectional
compression with C0 ∈ Uω. Since {Ci}ni=1 ⊆ Uω with C0 = I is a special case of {Ci}ni=0 ⊆ Uω,
the lower bound for algorithms that admit bidirectional compression is greater than or equal to that
with unidirectional compression due to definition in (2).

Corollary 1 (Bidirectional unbiased compression). Under the same setting as in Theorem 1,
there exists a set of local objectives {fi}ni=1 ⊆ F∆,L, stochastic gradient oracles {Oi}ni=1 ⊆ Oσ2 ,
ω-unbiased compressors {Ci}ni=0 ⊆ Uω such that for any algorithm A ∈ AB

{Ci}n
i=0

starting from

x(0), the lower bound in (3) is also valid.

Theorem 1 and Corollary 1 indicate that distributed learning with both unidirectional and bidirec-
tional communication compression share the same lower bound. It is intuitive since unidirectional
compression is just a special case of bidirectional compression by letting C0 = I .

3.3 Unidirectional Contractive Compression

To obtain the lower bounds for communication compression with contractive compressors, we need
the following lemma [54, Lemma 1].

Lemma 1 (Compressor relation). It holds that δ Uδ−1−1 ≜ {δ C : C ∈ Uδ−1−1} ⊆ Cδ .

The above Lemma reveals that any (δ−1 − 1)-unbiased compressor is δ-contractive when scaled by δ.
Therefore, if an algorithm A admits all δ-contractive compressors, it will also admits all compressors
in δ Uδ−1−1 due to Lemma 1. This relation, together with Theorem 1, helps us achieve the following
lower bound with respect to δ-contractive compressors.

Theorem 2 (Unidirectional contractive compression). For every ∆, L > 0, n ≥ 2, 0 < δ ≤ 1,
σ > 0, T ≥ δ−2, there exists a set of loss objectives {fi}ni=1 ⊆ F∆,L, a set of stochastic gradient
oracles {Oi}ni=1 ⊆ Oσ2 , a set of δ-contractive compressors {Ci}ni=1 ⊆ Cδ with C0 = I , such that
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Algorithm 1 Fast Compressed Communication: v(k,R) = FCC(v(k,⋆), C,R, target receiver(s))

Input: The original vector v(k,⋆) to communicate at iteration k; a compressor C
rounds R; initial vector v(k,0) = 0; target receiver(s);

for r = 0, · · · , R− 1 do
Compress v(k,⋆) − v(k,r) into c(k,r) = C(v(k,⋆) − v(k,r))
Send c(k,r) to the target receiver(s)
Update v(k,r+1) = v(k,r) + c(k,r)

end for ▷ The set {c(k,r)}R−1
r=0 will be sent to the receiver during the for-loop

return Variable v(k,R). ▷ It holds that v(k,R) =
∑R−1

r=0 c(k,r)

for any algorithm A ∈ AU
{Ci}n

i=0
starting from x(0), it holds that

E[∥∇f(x̂A,{fi}n
i=1,{Oi}n

i=1,{Ci}n
i=0,T

)∥2] = Ω

((
∆Lσ2

nT

) 1
2

+
∆L

δT

)
. (4)

Transient complexity. With the discussion on transient complexity in Section 3.1, it is easy to derive
the transient iteration complexity as Ω(n/δ2) for the lower bound with δ-contractive compressor.

3.4 Bidirectional Contractive Compression.

Noting that {Ci}ni=1 ⊆ Cδ with C0 = I is a special case of {Ci}ni=0 ⊆ Cδ , we can also establish the
lower bound for algorithms that admit bidirectional compression and contractive compressions.
Corollary 2 (Bidirectional contractive compression). Under the same settings as in Theorem 2,
there exists a set of loss objectives {fi}ni=1 ⊆ F∆,L, a set of stochastic gradient oracles {Oi}ni=1 ⊆
Oσ2 , a set of δ-contractive compressors {Ci}ni=1 ⊆ Cδ, such that for any algorithm A ∈ AB

{Ci}n
i=0

starting form x(0), the lower bound (4) is also valid.

4 NEOLITHIC: A nearly optimal algorithm

Comparing the best-known upper bounds listed in Table 1 with the established lower bounds in (3)
and (4), we find existing algorithms may not be optimal. There exists a clear gap between their
convergence rates and our established lower bounds. In this section, we propose NEOLITHIC to fill
in this gap. Its rate will match the lower bounds established in (3) and (4) up to logarithm factors.
NEOLITHIC can work with both unidirectional and bidirectional compression, and it is compatible
with both unbiased and contractive compressors. NEOLITHIC will be discussed in detail with
bidirectional contractive compression in this section. It is easy to be adapted to other settings by
simply removing the server-to-worker compression or utilizing the scaled unbiased compressor.

4.1 Fast Compressed Communication

NEOLITHIC is built on a compression communication protocol listed in Algorithm 1, which we
call fast compressed communication (FCC). Given an input vector v(k,⋆) to communicate in the
k-th iteration, FCC will first initialize v(k,0) = 0 and then recursively compresses the residual with
c(k,r) ≜ C(v(k,⋆) − v(k,r)) and sends it to the receiver for R consecutive rounds, see the main
recursion in Algorithm 1. When FCC operation finishes, the sender will transmit a set of compressed
variables {c(k,r)}R−1

r=0 to the receiver, and return v(k,R) =
∑R−1

r=0 c
(k,r) to itself. Quantity v(k,R) can

be regarded as a compressed vector of the original input v(k,⋆) after the FCC protocol.

The FCC protocol can be conducted by the server (for which all variables in FCC are without any
subscripts, e.g., c(k,r) and v(k,r)) or by any worker i (for which all variables are with a subscript i,
e.g., c(k,r)i and v(k,r)i ). When R = 1, FCC reduces to the standard compression utilized in existing
literature [62, 58, 24, 68, 32]. While FCC requires R rounds of communication per iteration, the
following lemma establishes that the compression error will be exponentially decreased with the
number of communication rounds R.
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Algorithm 2 NEOLITHIC

Input: Initialize x(0); learning rate γ; compression round R; δ(−1) = δ
(−1)
i = 0, ∀ i ∈ [n]

for k = 0, 1, · · · ,K do
On all workers in parallel:

Query stochastic gradients ĝ(k)i = 1
R

∑R−1
r=0 Oi(x

(k); ζ
(k,r)
i ) ▷ Gradient accumulation

Error compensate g̃(k)i = ĝ
(k)
i + δ

(k−1)
i

Update error δ(k)i = g̃
(k)
i − FCC(g̃(k)i , Ci, R, server) ▷ Worker sends {c(k,r)i } to server

On server:
Error compensate g̃(k) = δ(k−1) + 1

n

∑n
i=1

∑R−1
r=0 c

(k,r)
i ▷ {c(k,r)i } received from workers

Update error δ(k) = g̃(k) − FCC(g̃(k), C0, R, all workers) ▷ Server sends {c(k,r)} to workers
On all workers in parallel:

Update model parameter x(k+1) = x(k) − γ
∑R−1

r=0 c
(k,r) ▷ {c(k,r)} received from server

end for

Lemma 2 (FCC property). Let C be a δ-contractive compressor and v(k,R) = FCC(v(k,⋆), C,R).
It holds for any R ≥ 1 and v(k,⋆) ∈ Rd that (proof is in Appendix B)

E[∥v(k,R) − v(k,⋆)∥2] ≤ (1− δ)R∥v(k,⋆)∥2, ∀k = 0, 1, 2, · · · . (5)

When R = 1, the above FCC property (5) reduces to Assumption 4 for standard contractive com-
pressors. When R is large, FCC can output v(k,R) endowed with very small compression errors. The
FCC protocol is also closely related to EF21 compression strategy [52]2. However, the major novelty
of FCC is to utilize multiple such compression rounds to help develop algorithms that can nearly
match the established lower bounds.

4.2 NEOLITHIC Algorithm

NEOLITHIC is described in Algorithm 2. The FCC protocol in NEOLITHIC communicates R
rounds per iteration. To balance the gradient queries and communication rounds, NEOLITHIC
will query R stochastic gradients per iteration, see the gradient accumulation step in Algorithm
2. Compared to other algorithms listed in Table 1, the proposed NEOLITHIC takes R times more
gradient queries and communication rounds than them per iteration. Given the same budgets to query
stochastic gradients and conduct communications as the other standard compression algorithms, we
shall consider K = T/R iterations in NEOLITHIC for fair comparison.

We introduce the following assumption to establish the convergence rates of NEOLITHIC.
Assumption 5 (Gradient dissimilarity). There exists some b2 ≥ 0 such that

1

n

n∑
i=1

∥∇fi(x)−∇f(x)∥2 ≤ b2, ∀x ∈ Rd.

When local distributions Di are equivalent across all nodes i, we have fi(x) = f(x) and the
above assumption will always hold. We first establish the convergence rate of NEOLITHIC with
bidirectional and contractive compressors.
Theorem 3 (NEOLITHIC with contractive compressors). Given constants n ≥ 1,
δ ∈ (0, 1] and Assumption 5, and let x(k) be generated by Algorithm 2. If R =
⌈max{ln

(
δT max{b2, σ2δ}/∆L

)
, ln(8)}/δ⌉ and learning rate is set as in Appendix B, it holds

for any K ≥ 0 and compressors {Ci}ni=0 ⊆ Cδ that

1

K + 1

K∑
k=0

E[∥∇f(x(k))∥2] = Õ

((
∆Lσ2

nT

) 1
2

+
∆L

δT

)
,

where T = KR is the total number of gradient query/communication rounds on each worker and
notation Õ(·) hides logarithmic factors. The above rate implies a transient complexity of Õ(nδ−2).

2If the roles of v and v⋆ in Eq. (8) of [52] are switched, we can get the single round of FCC recursions.
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Figure 1: Left: Convergence on the synthetic least square problem in terms of E[∥∇f(x)∥2] versus communi-
cation rounds. Right: Convergence on the CIFAR-10 in terms of training loss versus communication cost.

When the compressor C is replaced with ω-unbiased compressors, we utilize the fact that (1+ω)−1C
is (1 + ω)−1-contractive to derive that
Corollary 3 (NEOLITHIC with unbiased compressors). Under the same assumptions as in
Theorem 3, it holds for any K ≥ 0 and compressors {Ci}ni=0 ⊆ Uω that

1

K + 1

K∑
k=0

E[∥∇f(x(k))∥2] = Õ

((
∆Lσ2

nT

) 1
2

+
(1 + ω)∆L

T

)
.

This further leads to a transient complexity of Õ
(
n(1 + ω)2

)
.

Remark 1. The convergence rates established in Theorem 3 and Corollary 3 are also valid for
unidirectional compression when C0 = I . They can match the lower bounds established in Section 3
up to logarithm factors. Moreover, these rates are faster than other algorithms listed in Table 1.
Remark 2. The results in Theorem 3 and Corollary 3 also imply that NEOLITHIC with bidirectional
compression can perform as fast as its counterpart with unidirectional compression. In other
words, imposing bidirectional compression can save communications in NEOLITHIC without hurting
convergence rates. Before our work, it is established in literature [58, 55, 62, 70, 14] that bidirectional
compression leads to slower convergence than unidirectional compression for non-convex problems.
Remark 3. We remark that Assumption 5 is not required to obtain the lower bounds in Section 3.
It is not known whether the lower bounds established in Section 3 can be achieved by NEOLITHIC
when Assumption 5 does not hold. However, it is worth noting that Assumption 5 is milder than those
made in most works [82, 34, 58, 68, 62, 11] such as bounded gradients. To our best knowledge, only
EF21-SGD [24] is guaranteed to converge without Assumption 5, which, however, leads to a fairly
loose convergence rate (see Table 1) that cannot show linear-speedup O(1/

√
nT ).

Remark 4. In the deterministic scenario, i.e., σ2 = 0, NEOLITHIC produces rate Õ((1+ω)∆L/T ).
There exist literature (e.g., [26, 63]) that can achieve rate Õ((1 + ω/n)∆L/T ) which outperforms
NEOLITHIC especially when ω and n are sufficiently large. However, this improvement is built
upon an additional assumption that all local compressors {Ci}ni=0 are independent of each other
and cannot share the same randomness. On the contrary, NEOLITHIC does not impose such an
assumption and can be applied to both dependent and independent compressors.

5 Experiments

This section empirically investigates the performance of different compression algorithms with both
synthetic simulation and deep learning tasks. We compare NEOLITHIC with PSGD and its variants
with communication compression: MEM-SGD, Double-Squeeze, and EF21-SGD. Implementation
details and more experiments are provided in Appendix C.

Linear regression. We solve a synthetic least-square problem with all aforementioned algorithms.
We set d = 30, n = 32, R = 4 (for NEOLITHIC) and utilize the rand-1 compressor. It is observed
in Figure 1 (left) that NEOLITHIC beats MEM-SGD and Double-Squeeze with performance close
to P-SGD. It implies that algorithms with bidirectional compression can converge as fast as the
counterparts with unidirectional compression, which is consistent with results in Remark 1.
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Table 2: Accuracy comparison with different algorithms on CIFAR-10 (8 workers, 5% compression ratio).

METHODS RESNET18 RESNET20

PSGD 93.99 ± 0.52 91.62 ± 0.13
MEM-SGD 94.35 ± 0.01 91.27 ± 0.08

DOUBLE-SQUEEZE 94.11 ± 0.14 90.73 ± 0.02
EF-21 87.37 ± 0.49 65.82 ± 4.86

NEOLITHIC 94.63 ± 0.09 91.43 ± 0.10

Table 3: Accuracy comparison with different algorithms on CIFAR-10 (8 workers, 1% compression ratio).

METHODS RESNET18 RESNET20

MEM-SGD 93.99 ± 0.11 89.68 ± 0.17
DOUBLE-SQUEEZE 93.54 ± 0.17 89.35 ± 0.04

EF-21 67.78 ± 2.14 56.0 ± 2.257
NEOLITHIC 94.155 ± 0.10 89.82 ± 0.37

Image classification. We investigate the performance on two common ResNet models [27] with
CIFAR-10 [37] dataset. We train total 300 epochs and set the batch size to 128 on every worker. All
experiments were repeated three times with different seeds. For NEOLITHIC, we set R = 2. We
utilize top-k compressor [62] with different compression ratios. As shown in Figure 1 (right) and
Table 2, NEOLITHIC consistently outperforms other compression methods and reach the similar
performance to PSGD.

The effect of compression ratio. We also investigate the influence of different compression ratios.
Table 3 used a compression ratio of 1%, which indicates a more harsh setting for compression
methods. NEOLITHIC still outperforms other compression methods.

6 Conclusion

This paper provides lower bounds for distributed algorithms with communication compression,
whether the compression is unidirectional or bidirectional and unbiased or contractive. An algorithm
called NEOLITHIC is introduced to match the lower bounds under the assumption of bounded gradi-
ent dissimilarity. Future directions include developing optimal algorithms without the assumption, as
well as discovering additional compression properties that might produce a better lower bound.
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