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Abstract

Predicting energetically favorable 3-dimensional conformations of organic
molecules from molecular graph plays a fundamental role in computer-aided
drug discovery research. However, effectively exploring the high-dimensional
conformation space to identify (meta)stable conformers is anything but trivial. In
this work, we introduce RMCF, a novel framework to generate a diverse set of low-
energy molecular conformations through sampling from a regularized molecular
conformation field. We develop a data-driven molecular segmentation algorithm
to automatically partition each molecule into several structural building blocks to
reduce the modeling degrees of freedom. Then, we employ a Markov Random
Field to learn the joint probability distribution of fragment configurations and inter-
fragment dihedral angles, which enables us to sample from different low-energy
regions of a conformation space. Our model constantly outperforms state-of-the-art
models for the conformation generation task on the GEOM-Drugs dataset. We at-
tribute the success of RMCF to modeling in a regularized feature space and learning
a global fragment configuration distribution for effective sampling. The proposed
method could be generalized to deal with larger biomolecular systems.2

1 Introduction

The spatial arrangement of atoms within a molecule, also known as molecular conformation, de-
termines the molecular physico-chemical properties, which plays an essential role in downstream
computer-aided drug discovery tasks. However, the high-dimensional conformation space spanned
by all atomic degrees of freedom (DoF) makes it a great challenge to identify the local minima of
the associated potential energy surface (PES) of a molecule. Recently, many machine learning (ML)
models have achieved remarkable success in molecular conformation generation tasks [Mansimov
et al., 2019, Simm and Hernandez-Lobato, 2020, Xu et al., 2021a, Ganea et al., 2021, Xu et al., 2022],
exhibiting orders of magnitude faster conformation prediction speed than traditional computational
simulation approaches. This makes ML generative models a powerful tool for high-throughput
screening in drug discovery, especially large molecules.

To fully exploit the power of ML in molecular conformation generation, we need to tackle a few key
challenges. First, a molecule exhibits invariance under SE(3) transformations (i.e., translation and
rotation) in 3-dimensional (3D) Euclidean space. In other words, each molecular conformation is
uniquely defined up to rigid motion. Hence a single molecule can adopt an infinite set of possible
poses. Second, molecules exhibit a variety of dynamics under ambient conditions (e.g., bond rotation,
vibration, etc.), leading to a possibly complex PES landscape of high dimension. This makes
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it particularly challenging for ML models to identify local minima within this space to generate
energetically favorable conformations effectively.

Some recently developed ML models tried to solve these problems from different perspectives.
For instance, GraphDG [Simm and Hernandez-Lobato, 2020] and CGCF [Xu et al., 2021a] used
distance geometry as invariant features for molecular representation learning. The drawbacks of
such representations are that these invariant variables are potentially redundant and exhibit mutual
dependency, which may cause numerical instability during training. One can also design equivariant
networks to hard-code the invariance/equivariance condition into the model [Satorras et al., 2021, Xu
et al., 2022]. These models circumvent using intermediate invariant features, but instead directly learn
from the spatial arrangement of atoms. However, some studies [Cohen et al., 2018, Li et al., 2021]
have suggested that the specialized equivariant layers may cause some loss in the expressiveness
of the neural network. On the other hand, GeoMol [Ganea et al., 2021] predicts a local structure
for each atom, followed by assembling these atom-based building blocks to form the molecular
conformation. These models have difficulty dealing with cyclic graphs (e.g., benzyl group) and may
lead to unreasonable conformation predictions.
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Figure 1: Schematic of the potential energy
diagram of an ethane molecule. The upper
panel shows the Newman projection of three
degenerate eclipsed conformations, the lower
panel shows two energetically-favorable stag-
gered conformations. The H-C-C-H dihedral
angle alone is sufficient to describe the poten-
tial energy change.

In the meantime, we realize that the high-dimensional
PES could be described in a reduced basis by consid-
ering only a few significant DoF that contribute to the
low-energy conformations. Specifically, consider the
well-known example of the potential energy diagram
of ethane molecule as shown in Figure 1. While the
molecule exhibits a total of 18 DoF, we could capture
the most significant dynamics using a single variable,
i.e., the rotation w.r.t. the carbon-carbon bond, quan-
tified by the H-C-C-H dihedral angle. Other DoF in
the ethane molecule, e.g., the stretching and bending
of other bonds, do not have a significant impact on
the potential energy landscape, such that they can be
treated as small perturbations to the molecular con-
formation within a potential well. In other words, to
serve the purpose of effectively sampling local min-
ima for low-energy conformations, we could reduce
the dimension of the conformation space by tracking
only a few significant DoF, as long as they adequately
shape the corresponding energy landscape (e.g., the
“!” shape in Figure 1). It then follows naturally to
generate new conformers by sampling from the low-dimensional conformation space, which is also
physically meaningful. In fact, a similar approach has been widely adopted by the molecular docking
community, i.e., incremental construction [Meng et al., 2011], where a ligand molecule is partitioned
into multiple fragments connected by rotatable covalent bonds. One may then gradually add ligand
fragments with appropriate orientations to fit the ligand into the receptor pocket.

This paper presents Regularized Molecular Conformation Fields (RMCF), a novel framework for
3D molecular conformation generation. The novelty of this work lies in (1) developing a data-
driven molecular segmentation algorithm to partition each molecule into fragments with low internal
flexibility, which serves as a regularization term for our framework, and (2) employing a Markov
Random Field (MRF [Murphy, 2012, Cotta et al., 2020]) to capture the joint probability distribution
of fragment configurations and inter-fragment dihedral angles. Our work is partly inspired by the
Ising model [Cipra, 1987] for simulating quantum spin systems, where we make an analogy between
the spin state (i.e., spin up or down) and the configuration of each molecular fragment (e.g., chair
or boat conformation of cyclohexane). The introduction of molecular fragments effectively reduces
the dimension of the conformation space, where we only keep the most significant components
(i.e., fragment configuration and inter-fragment dihedral angle) for conformation generation. This
molecular segmentation serves as a regularization term for our framework, which is data-driven and
has the effect of reducing feature dimensions. Then, we employ MRF as a generalized setting of the
Ising model (with more spin states and more coupling terms) to capture the relationship between
adjacent fragments and model the uncertainty of conformations. By estimating the parameters of the
MRF, we can obtain a potential energy surface associated with different conformations. Therefore,
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we can later sample from the low-energy region of PES, which is implicitly learned by the MRF, to
obtain energetically favorable molecular conformations.

We demonstrate the effectiveness of RMCF using the GEOM-QM9 and GEOM-Drugs dataset[Axelrod
and Gomez-Bombarelli, 2022], where results show that RMCF significantly outperforms state-of-
the-art ML models. Specifically, our model can generate a diverse set of low-energy conformations
located at distinct local minima of the underlying PES. We attribute the success of our model to
the automatic construction of low-dimensional conformation space and learning a joint probability
distribution using MRF to achieve effective sampling of new conformations. We argue that capturing
the governing dynamics of molecular systems could significantly improve the performance of learning
models for generative purposes.

2 Related Work

Recently, various machine learning models have been proposed for molecular conformation genera-
tion. CVGAE [Mansimov et al., 2019] first used a variational autoencoder (VAE) model to generate
conformation with atomic coordinates. The model suffers from multi-modality problems due to
invariance under SE(3) transformations. Some studies tried to address this problem using two main
types of approaches. The first type of approach use intermediate invariant features, such as atomic
distance, to encode the system, then leverage geometric algorithms to solve a set of atomic coordinates
that match the invariant quantities. For example, GraphDG [Simm and Hernandez-Lobato, 2020]
and CGCF [Xu et al., 2021a] proposed to predict the distance matrix by VAE and Flow, respectively,
and solve the geometry through the Distance Geometry (DG) method [Liberti et al., 2014]. However,
these invariant features are potentially redundant and could exhibit mutual dependency, which makes
these methods numerically unstable and could predict unreasonable conformations. Some studies
suggest that inconsistencies between training and test are responsible for the poor performance of the
models [Shi et al., 2021, Xu et al., 2021b]. ConfGF [Shi et al., 2021] passed the gradient of loss
to coordinates and ConfVAE [Xu et al., 2021b] used a bilevel optimization to alleviate the incon-
sistencies. GeoMol [Ganea et al., 2021] defined another set of invariants, which are bond lengths,
bond angles, and dihedral angles. Zhu et al. [2022] proposed a model invariant to roto-translation of
coordinates of conformations and permutation of symmetric atoms in molecules. Geomol generated
multiple conformations by adding noise to the input, which did not learn a global energy function
from which to sample the low-energy conformations.

Another type of approach applies equivariant networks or kernels, such that after the input is rotated
and translated, the output will be transformed accordingly. Satorras et al. [2021] proposed an
equivariant normalizing flow, E(n)-flow, and Xu et al. [2022] proposed GeoDiff, which is a diffusion
model [Song and Ermon, 2019] with equivariant Markov kernels. Guan et al. [2021] proposed a
variant of SE(3)-equivariant neural networks to learn the gradient fields of an implicit conformational
energy landscape. Equivariant methods circumvent intermediate invariants and model the coordinates
directly, but require the design of specialized equivariant layers, which some studies have suggested
would lose the expressive power of the network [Li et al., 2021].

In addtion, some software for conformation generation are widely used in biochemical research. For
instance, RDKit [Riniker and Landrum, 2015] is a popular open-source software which generates
conformations using ETKDG distance geometry, and OMEGA is a commercial software which
assembles the fragments with knowledge-based rules to generate conformations.

3 RMCF: Generating in Regularized Conformation Space

In this section, we present the regularized molecular conformation field (RMCF) in detail. Intuitively,
RMCF partitions the original molecular graph into multiple molecular fragments, where adjacent
fragments in the graph are connected with associated dihedral angles. In such a case, the molec-
ular conformation generation problem can be decomposed into a) generating the conformation of
molecular fragments, and b) determining the specific dihedral angles between connected fragments.
The RMCF learns the potential energy landscape of molecular conformations by modeling a joint
probability distribution of fragment conformation and dihedral angles, from which we can perform
inference to draw diverse samples.
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3.1 Overview of RMCF

Molecule RMCF Configuration Conformation
partition inference assemble

Figure 2: The workflow of RMCF. Starting from a 2D molecular graph, we partition the molecule into
fragments with least intra-fragment DoF. Blue and red circles denote fragment and dihedral angle configurations,
respectively, while the black squares denotes the interaction between neighboring configurations. We then
use MRF to model the joint probability distribution of fragment and dihedral configurations. The last step is
to assemble the predicted molecular conformation according to the predicted dihedral angles and fragment
conformations.

We start with an overview of the our proposed RMCF model. Generally, as shown in Figure 2, given a
molecular graph G, to obtain a generated 3D conformation C, RMCF mainly takes three steps:

G
1�! G 2�! X 3�! C

1. G �! G (Section 3.2): The main idea of our proposed model is to build a conformation
distribution within a regularized molecular conformation space, which is achieved by partitioning
the molecular graph G into multiple molecular fragments F connected by dihedral angles D.
Notably, the graph partition should satisfy the least intra-fragment DoF principle (introduced in
Section 3.2), which is crucial for reducing the dimension of the molecular conformation space.
The resulting graph after partitioning (including F and D) could be jointly modeled with a Markov
random field (also called undirected graphical model). Since it is regularized with reduced total
DoF, we name our model Regularized Molecular Conformation Fields.
Formally, a regularized conformation field G = (F,D,E) is an undirected graph formed by a
collection of fragment vertices F = (f1, f2, · · · , fNF ), a collection of dihedral vertices D =

(d1, d2, · · · , dND ), and a collection of edges E = (e1, e2, · · · , eNE ) ⇢ F ⇥D (edges between
fragments and dihedral angles in the graph), where NF , ND, NE are the size of F , D, E,
respectively [Wainwright et al., 2008]. Each edge consists of a pair of vertices f 2 F and d 2 D.
We associate with each vertex f 2 F a random variable Xf taking values from a set of fragment
conformations Cf (see Section 3.2), each vertex d 2 D a random variable Xd, representing the
value of dihedral angles.

2. G �! X (Section 3.3 and 3.4): Given G, the conformation generation problem turns into
generating the conformation of molecular fragments and determining the dihedral angles between
them, namely inferring a configuration X from G. A configuration X = (Xf ,Xd) of the RMCF
contains a set of fragment conformation Xf = {xfi |i = 1, 2, · · · , NF } and a set of dihedral angle
values Xd = {xdi |i = 1, 2, · · · , ND}, which could be assembled into the 3D conformation of a
molecule. X could be obtained by maximizing the probability modeled by RMCF:

P (xf1 , · · · , xfNF
, xd1 , · · · , xdNd

) =
1

Z

8
<

:
Y

fi2F

 (xfi) ·
Y

di2D

 (xdi) ·
Y

(fi,dj)2E

 (xfi , xdj )

9
=

; (1)

where Z is the normalizing factor,  is the compatibility functions, which will be further described
in Section 3.3.

3. X �! C (Section 3.5): Given the configuration X , we assemble the predicted fragment confor-
mation and dihedral angle values into the corresponding molecular conformation C.
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3.2 Graph Construction with Least DoF Principle

In this section, we elaborate more about the molecular graph partition with least DoF principle used in
our proposed RMCF. This is a crucial step to our model since it builds the foundation of the following
probabilistic modeling. The entire graph construction process has three main components, namely a)
constructing the fragment library with BRICS, b) obtaining fragment conformation vocabulary with
clustering, and c) yielding final fragment partition by minimizing the intra-fragement DoF.

Specifically,We use BRICS, a decomposition method based on molecular functional groups, to pre-cut
all molecular graphs and their 3D conformations and collect each fragment conformation into a
set Cf 3. A sufficient number (i.e., 1,000) of fragment conformations are sampled from Cf for the
following clustering steps.

Then, we use the K-Medoids clustering algorithm and use the root-mean-square deviation (RMSD)
of two fragment conformations as the distance metric between two fragments, which takes rotation
and translation invariance into consideration. We adjust the number of cluster centers k from 1 to 10
and use the Silhouette Coefficient[Rousseeuw, 1987] to measure the goodness of these clusters and
choose the optimal hyper-parameter k with clusters having the highest Silhouette Coefficient value.
Cluster centroid elements are collected into conformation vocabulary Cf .

Although BRICS presents a solution to partition the molecular graph, it cannot guarantee a small
DoF within the fragments. Therefore, we define a metric to quantify the intra-fragment DoF and
design an algorithm to re-fragment the molecules to minimize this quantity. We define the fragment
DoF as the conformation variance Var(Cf ) which is the sum of the squares of root-mean-square
deviation(RMSD) between fragment conformations Cf and their cluster centers Cf , and the total DoF
of a partitioned molecule as the mean of its fragment DoF. The best partition strategy P⇤ should have
the least DoF F(P):

F(P) =
1

|P|
X

f2P

Var(Cf ) =
1

|P|
X

f2P

1

|Cf |
X

Cf

RMSD(Cf , Cf )
2 (2)

P⇤
= argmin

P
F(P) (3)

We could employ graph dynamic programming to search for the optimal solution and the detailed
algorithm is in Appendix B.

After partition, we can get the fragment set F = (f1, f2, · · · , fNF ) and insert the dihedral vertices
between connected fragments to establish the RMCF G on the molecular graph G as shown in the
Figure 2.

3.3 Approximated Training of RMCF

Training Objective Training in RMCF is intractable, especially when it contains loops [Murphy,
2012]. It is difficult to estimate the normalization factor Z in the objective (Eq. 1),which means we
have to marginalize all possible conformations. We approximate the likelihood through piece-wise
training, which has been proven efficient in training graphical models [Sutton and McCallum, 2009,
2012, Lin et al., 2016, Qu et al., 2022]. The key idea is to train each node and edge independently.

L = � logP (xf1 , · · · , xfNF
, xd1 , · · · , xdNd

)

⇡
X

fi2F

� log
 (xfi)

Zf

,Ln(f)

+

X

di2D

� log
 (xdi)

Zd

,Ln(d)

+

X

(fi,dj)2E

� log
 (xfi , xdj )

Ze

,Le(f,d)

(4)

where Ln and Le denote the node-wise and edge-wise negative log-likelihood. Especially, Le(f, d)
measures how probable a fragment f and a dihedral d appear at the same time.

More concretely, for a pair of nodes in the field e = (f, d) 2 G, let |f | and |g| denote the cardinality
of the state space, |h| denotes the hidden dimension, yf and yd are the ground truth of fragment
conformation f and dihedral angle value d , which will introduced calculation in the next paragraph.
We calculate the representations from the graph neural networks: Let h0

f = emb(f) and h0
d = emb(d)

3On the base of BRICS, we further cut the links of rings and side chains to prevent the combinatorial
explosion
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denote the fragment embedding and the dihedral embedding (which is a “dummy” embedding) as
the network input, we compute the contextualized fragment representations h`+1

f and dihedral
representations h`+1

d by:

h`+1
f = g

✓
h`
f ,
n
h`
d

o

d2Nf

◆
, h`+1

d = g

✓
h`
d,
n
h`
f

o

f2Nd

◆
(5)

where ` denotes the layer index, g denotes the massage-passing function of GNN, Nf and Nd denotes
the neighborhoods of fragment and dihedral respectively. The node-wise negative log-likelihood is
defined as:

Ln(f) = � log softmax (out(hf )) [yf ], Ln(d) = � log softmax (out(hd)) [yd] (6)

where out(·) : R|h| ! R
|f | is an operator parameterized by a linear layer. The edge-wise negative

log-likelihood is defined as:

Le(f, d) = � log softmax

⇣
EfWeE

T
d

⌘
[yf , yd] (7)

where Ef 2 R
|f |⇥|h| and Ed 2 R

|d|⇥|h| are the representations of a set of node states, We 2
R

|h|⇥|h| is a matrix carrying the global information between two nodes, parameterized by a neural
network We = MLP(hf ,hd) [Sun et al., 2019].

Obtaining ground truth The oracle configuration Y = (Yf ,Yd) contains a set of ground truth
fragment conformations indexes Yf = {yfi |i = 1, 2, · · · , NF } and a set of dihedral angle indexes
Yd = {ydi |i = 1, 2, · · · , ND} denote the choices of fragments conformations and dihedral angles,
respectively. For a given fragment f , we pick the configuration s whose corresponding fragment
conformation Cs in vocabulary Cf , has the minimal RMSD to the actual fragment conformation C, as
the ground truth yf .

yf = argmin
s

RMSD(C, Cs), Cs 2 Cf (8)

!"[−%, %] (!

("
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Figure 3: Dihedral angle

The dihedral angle ' is defined as the angle between half-planes of two
connected 3D fragments. Since the dihedral angle depends on the set of
the atoms involved in the calculation, for the same type of fragments, we
should keep the same set of atoms to calculate.

For a system where two fragments contain four consecutively-bonded
atoms, two half-planes intersect on a rotatable bond. The angle between
them is the dihedral angle. If the connected points are sequentially
numbered and located at positions p1, p2, p3, p4 and the corresponding
bond vectors are defined as u1 = p2 � p1,u2 = p3 � p2,u3 = p4 � p3.
Then we have:

'(u1,u2,u3) = atan2 (|u2|u1 · (u2 ⇥ u3) , (u1 ⇥ u2) · (u2 ⇥ u3)) (9)

In practice, we quantize the dihedral angles ' into a number of evenly divided bins which has interval
length L to discretize the continuous angle values

yd = b180'
⇡L

c (10)

3.4 Inference & Sampling

In this section, we give a brief overview of how we perform inference and sampling in RMCF.

Inference If a RMCF is acyclic (linear- or tree-structured), the max-a-posterior decoding can be
done via dynamic programming [Forney, 1973]. Cases are a bit complicated when loops occur in the
RMCF. We adopt a more generalized algorithm, namely loopy belief propagation (LBP) [Murphy
et al., 2013], to overcome such obstacles. We refer the reader to textbooks for more details about the
LBP algorithm [Murphy, 2012]. It is worth noting that LBP is used only during inference time. We
do not perform any inference during training due to the issue of training stability [Qu et al., 2022].

Sampling Markov Chain Monte Carlo is popular in sampling from graphical models [Andrieu et al.,
2003]. We employ a simple variant of it, i.e., Gibbs sampling [George and McCulloch, 1993], to draw
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samples from RMCF. Specifically, we resample each fragment or dihedral individually, keeping all
other nodes fixed in each iteration [Murphy, 2012]. The detailed algorithm can be found in Appendix
C.

Clustering Once the Markov chain achieves detailed balance, we randomly draw 10, 000 samples
from it. However, these samples can be governed by a few conformations, which means most of them
are similar. We measure the distance between two configurations X (1) and X (2) by:

d(X (1),X (2)
) = kX (1)

d � X (2)
d k22 +H(X (1)

f ,X (2)
f ) (11)

where k · k2 is the Euclidean norm measuring the difference between dihedrals, H is the Hamming
distance [Hamming, 1950] counting the number of different fragment configurations. We further run
K-means clustering [MacQueen et al., 1967] based on the pair-wise distance to partition all samples
into a fixed number of clusters and randomly sample an element from each cluster.

3.5 Assembling

!
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Figure 4: Transformations for As-
sembling

Once we have predicted the dihedral angle x̂d between two
fragments, we need to compute the transformation matrix T
to align the two fragments in arbitrary position and make their
dihedral angle equal to the predicted angle and repeat these
steps until the whole conformation is assembled.

Given two fragments with six points, located at p1, p2, p3, p4,
p5, p6, the bond vectors are u1 = p2�p1,u2 = p3�p2,v1 =

p5 � p4, v2 = p6 � p5. u2 and v1 are the same bond after
assembling, so we have |u2| = |v1|.
First we need to rotate the second fragment around some axis
so that u2 and v1 will be parallel. This axis is the unit normal
vector n towards the plane of u2 and v1, and the rotate angle is
equal to the cross angle ✓.

cos ✓ =
u2 · v1

|u2| |v1|
, n =

u2 ⇥ v1

|u2 ⇥ v1|
(12)

By using the Rodrigues’ rotation formula, we can obtain the rotation matrix with unit normal vector
n and rotation angle ✓. Next, we rotate the second fragment around u2 to match with the target
dihedral angle. Finally we align the anchor points by calculating the final transformation matrix T as
a composite matrix of two rotations and one translation.

R(n, ✓) = I cos ✓ + (1� cos ✓)

0

@
nx

ny

nz

1

A (nx, ny, nz) + sin ✓

0

@
0 �nz ny

nz 0 �nx

�ny nx 0

1

A (13)

R0
= R(u2,

⇡Lx̂d

180
� '(u1,u2,R(n, ✓)v2)), t = (p1 �R0Rp4)

T (14)

T =

✓
R0R t
0T

1

◆
(15)

4 Experiment

We now demonstrate the effectiveness of RMCF on the conformation generation task for drug-like
molecules.

4.1 Dataset and Baseline
Following previous work on conformation generation, we benchmark our model performance using
the GEOM-QM9 and GEOM-Drugs dataset, which contains small and mid-sized organic molecules
with high quality conformations. Considering the small size of molecules in QM9, we put the
model performance in Appendix D, and mainly focus on discussing GEOM-Drugs results hereafter.
We use the same test set as that in GeoDiff, where the remaining molecules are used for training
and validation with a 9:1 ratio. The final training/validation/test set contains 271,539/30,171/1,034
molecules, respectively.
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Our molecular segmentation algorithm eventually returned a vocabulary of 9,081 types of 2D
fragments and 30,408 types of 3D fragments for the GEOM-Drugs dataset. As for the angular
discretization of dihedral angles, the 360 degree interval is evenly divided into 72 bins. We adopt the
Message-Passing Neural Network (MPNN) [Gilmer et al., 2017] as the framework for implementing
our graph neural network. Other implementation details are provided in Appendix A.

4.2 Evaluation Metrics
To quantitatively measure the quality and diversity of generated molecular conformations, we use
the same evaluation metrics as defined in Ganea et al. [2021] and Xu et al. [2022]. Let Sg and Sr

denote the set of generated and reference conformations, respectively. The coverage score (COV)
and matching score (MAT) following the conventional Recall measurement can be defined as:

COV-R (Sg, Sr) =
1

|Sr|

���
n
C 2 Sr | RMSD(C, Ĉ)  �, Ĉ 2 Sg

o���

MAT-R (Sg, Sr) =
1

|Sr|
X

C2Sr

min
Ĉ2Sg

RMSD(C, Ĉ)
(16)

where the threshold � in coverage score is set as 1.25Å for the GEOM-Drugs dataset in our work.
The corresponding prediction precision metrics, i.e., COV-P and MAT-P, are defined in a similar
manner, where the set of generated and reference conformations are swapped in the above definition.
We set Sg as twice the size of Sr for each molecule for fair comparison with previous work [Ganea
et al., 2021, Xu et al., 2022]. The precision-associated metrics focus more on generating accurate
conformations that match those in the reference dataset, while the recall-associated metrics emphasize
the structural diversity of generated conformations.

Table 1: Results on the GEOM-Drugs dataset, without FF optimization.

COV-R (%) " MAT-R (Å) # COV-P (%) " MAT-P (Å) #
Models Mean Median Mean Median Mean Median Mean Median

CVGAE 0.00 0.00 3.070 2.994 - - - -
GraphDG 8.27 0.00 1.972 1.985 2.08 0.00 2.434 2.410
CGCF 53.96 57.06 1.249 1.225 21.68 13.72 1.857 1.807
ConfVAE 55.20 59.43 1.238 1.142 22.96 14.05 1.829 1.816
GeoMol⇤ 67.16 71.71 1.088 1.059 - - - -
ConfGF 62.15 70.93 1.163 1.160 23.42 15.52 1.722 1.686
GeoDiff 89.13 97.88 0.863 0.853 61.47 64.55 1.171 1.123
DMCG 96.69 100.0 0.722 0.724 - - - -

RDKit 60.19 64.28 1.219 1.133 69.23 87.63 1.113 0.963
OMEGA 81.64 97.25 0.851 0.771 77.18 96.15 0.951 0.854

RMCF-R 82.25 90.77 0.839 0.789 83.02 98.50 0.812 0.722
RMCF-C 87.12 96.26 0.749 0.709 82.01 95.91 0.835 0.754

* We follow the results reported by Zhu et al. [2022], Xu et al. [2022], which use the
same data splits as us. GeoMol achieves higher scores in Ganea et al. [2021]’s data splits.
COV-R: 82.43/95.10, MAT-R 0.862/0.837, COV-P 78.52/94.40, MAT-P 0.933/0.856

4.3 Results and Discussions
The main results are presented in Table 1. We generated conformations by sampling on the RMCF
with two strategies: (1) directly sample a specific number of conformations (i.e., Sg), and (2) first
generate a sufficient number of conformations (we generate 10,000 conformations in this work), then
cluster them into Sg clusters and sample one conformation from each cluster. The model performance
associated with the above two strategies are named RMCF-R and RMCF-C, respectively. As shown in
Table 1, RMCF significantly outperforms all other models in precision metrics which means RMCF
can generate more accurate and high quality conformations. We also achieve comparable performance
in recall metrics with DMCG [Zhu et al., 2022] model, which is the current state-of-the-art model on
recall metrics. We think RMCF and DMCG improve the conformation generation in different aspects.
Generally, modeling more freedom in the conformation generation process enables the model to
generate diverse outputs (e.g., DMCG), which benefits the recall metric, while reducing modeling
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freedom will help to generate conformations more accurately, leading to better precision metric (e.g.,
RMCF).

In addition, we find that the clustering-after-sampling strategy leads to a boost in the structural
diversity, while keeping a good quality (i.e., energetically favorable conformations) of the generated
conformations.

Since we employ a discretized treatment for the continuous dihedral angle as well as the fragment 3D
conformation, the model performance will inevitably have some discrepancy between the predicted
and ground truth conformations. To that end, we investigate the upper and lower bound of our model
performance to have a better understanding of its predicting power, as shown in Table 2. Specifically,
we discretize the ground truth conformations using the molecular segmentation algorithm to obtain the
fragment configurations (“gold Xf”) and inter-fragment dihedral angles (“gold Xd”), then evaluate the
corresponding metrics. On the other hand, we randomly sample some Xf and Xd, whose evaluation
results should indicate the performance lower bound using our fragment representation. Surprisingly,
we find that although using randomly sampled Xf and Xd, we can still outperform some previous
models. This is an advantage of using molecular fragment as building blocks for conformation
generation, since we bypass the need to generate many insignificant variables which may degrade
the model performance. We also learn that having accurate dihedral angle predictions (i.e., Xd) is
more significant than good fragment configuration predictions (i.e., Xf ). These experimental results
support our claim that capturing a few significant DoF within a molecule is adequate for generating a
diverse set of low-energy conformations, while other DoF could be safely ignored during modeling.
Table 2: The empirical upper and lower bound of RMCF performance on the GEOM-Drugs dataset.

COV-R (%) " MAT-R (Å) # COV-P (%) " MAT-P (Å) #
RMCF Settings Mean Median Mean Median Mean Median Mean Median

gold Xf ,gold Xd 99.16 100.0 0.302 0.242 99.37 100.0 0.290 0.235
rand Xf ,gold Xd 96.74 100.0 0.511 0.464 88.93 100.0 0.634 0.561
gold Xf ,rand Xd 66.21 77.42 1.125 1.092 40.30 34.25 1.429 1.397
rand Xf ,rand Xd 63.60 72.22 1.156 1.135 37.68 31.25 1.463 1.429

* Xf denotes the fragment configuration set, Xd denotes the inter-fragment dihedral angle set
* “gold” refers to the ground truth distribution, “rand” refers to a randomly sampled distribution.

At last, we showcase the generated conformations of two example molecules in Figure 5. For
each molecule, we take the first three predicted conformations, and align the non-rigid parts for
visualization purposes. From Figure 5(a), we observe a diverse set of conformations mainly driven
by the rotation of two single bonds without causing too much steric effect. For the amide bond
regions, the model correctly predicts the corresponding dihedral angles to form planar conjugate
systems. Meanwhile, for Figure 5(b) we see a large planar conjugate system on the left side and a
cyclooctane ring on the right. Again, the model accurately captures the conjugate system and only
makes variations in the cyclooctane conformations. Interestingly, the segmentation algorithm tends
to only preserve the cyclic groups (e.g., benzyl and furan groups), and even cuts through the amide
bonds and other acyclic conjugate systems. This behavior is a direct consequence of balancing the
vocabulary size and the variety of local chemical environment.

(a) (b)

Figure 5: The first three generated conformations of two example molecules. The upper panel shows the 3D
atomic arrangement, where the non-rigid fragments are aligned to help visualization. The lower panel shows
where the segmentation has been made for each molecule, as indicated by the scissors.
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We show that our model performs reasonable segmentation of drug-like molecules into small func-
tional groups with limited internal DoF, and could correctly predict planar conjugate systems. There-
fore, we believe that our generative process is essentially sampling from the local-minima of the
learned potential energy surface by RMCF, where those non-essential DoF which contribute to local
structural perturbations are omitted in our modeling framework. We argue that both the data-driven
segmentation and MRF modeling of the joint probability distribution are essential for the success of
our model.

5 Conclusion
We introduce RMCF, a novel framework for 3D molecular conformation generation. Our model
is physics-motivated, with the central idea to effectively model the joint probability distribution of
governing dynamical modes in a reduced conformation space to achieve energetically favorable
conformation generation. Experimental results show that RMCF outperforms state-of-the-art models
on the GEOM-Drugs dataset to predict a diverse set of conformations located at distinct local minima
of the corresponding molecular potential energy surface. Our methodology can be naturally extended
to larger biomolecular systems, e.g., proteins, whose conformation prediction is a significant topic in
the biological research community. We will address this challenge in our future work.
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