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Abstract

Recent years have witnessed significant success in Gradient Boosting Decision
Trees (GBDT) for a wide range of machine learning applications. Generally, a
consensus about GBDT’s training algorithms is gradients and statistics are com-
puted based on high-precision floating points. In this paper, we investigate an
essentially important question which has been largely ignored by the previous
literature - how many bits are needed for representing gradients in training GBDT?
To solve this mystery, we propose to quantize all the high-precision gradients in a
very simple yet effective way in the GBDT’s training algorithm. Surprisingly, both
our theoretical analysis and empirical studies show that the necessary precisions
of gradients without hurting any performance can be quite low, e.g., 2 or 3 bits.
With low-precision gradients, most arithmetic operations in GBDT training can be
replaced by integer operations of 8, 16, or 32 bits. Promisingly, these findings may
pave the way for much more efficient training of GBDT from several aspects: (1)
speeding up the computation of gradient statistics in histograms; (2) compressing
the communication cost of high-precision statistical information during distributed
training; (3) the inspiration of utilization and development of hardware architectures
which well support low-precision computation for GBDT training. Benchmarked
on CPUs, GPUs, and distributed clusters, we observe up to 2× speedup of our
simple quantization strategy compared with SOTA GBDT systems on extensive
datasets, demonstrating the effectiveness and potential of the low-precision training
of GBDT. The code will be released to the official repository of LightGBM.4

1 Introduction
Gradient Boosting Decision Trees (GBDT) is a powerful machine learning algorithm. Despite the
success of deep learning in recent years, GBDT is one of the best off-the-shelf choices of machine
learning algorithms in many real-world tasks, including online advertising [33], search ranking
[26, 14], finance prediction [29], etc. Along with carefully designed tools, including XGBoost [5],
LightGBM [17], and CatBoost [24], GBDT has shown outstanding performance in various data
science competitions [36] and industrial applications [32, 9, 28, 23].

Despite the success of GBDT, we found there is room for GBDT algorithms to fully exploit modern
computation resources. First, the training of GBDT requires arithmetic operations of high-precision
FP (Floating Point) numbers, which hinders the usage of low-precision computation resources.
Low-precision training has become a standard technique to significantly accelerate the training of
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neural networks [20]. The design of new processors for machine learning tends to encourage high
throughput for low-precision computation. This results in a gap between GBDT training algorithms
and the hardware architectures. Second, distributed training of GBDT is required for large datasets.
The communication cost for distributed training, however, is huge due to high-precision statistical
information passing among machines. The cost is especially high with a large number of features in
the dataset, which hurts the scalability of GBDT in distributed systems.

In this paper, we propose a low-precision training algorithm for GBDT, based on stochastic gradient
quantization. The main computation cost of training GBDT is the arithmetic operations over gradients.
Before training each decision tree, we quantize the gradients into very low-precision (e.g., 2-bit
or 3-bit) integers. Thus, we replace most of the FP arithmetic operations with integer arithmetic
operations, which reduces computation time. In addition, low-bitwidth gradients result in a smaller
memory footprint and better cache utilization. Techniques are proposed to preserve the accuracy
of the model, including stochastic rounding in gradient quantization, and leaf-value refitting with
original gradient values. We show both empirically and theoretically that quantized training of GBDT
with low-bitwidth gradients is almost lossless in terms of model accuracy. Thus, we empower GBDT
to utilize low-precision computation resources.

Distributed training of GBDT relies on the synchronization of gradient statistics. The gradient
statistics are summarized into a histogram for each feature. With quantized gradients, only integer
histogram values are needed in our algorithm. The communication among hosts or GPUs becomes
sending and reducing of these integer values. And the size of these histograms is at least half
of the original histograms with FP values. So quantized training of GBDT has an advantage in
communication cost by nature and improves the scalability of GBDT on distributed systems.

We implement our system on both CPUs and GPUs. The results show that our methods accelerate the
training of GBDT in various settings, including a single process on CPUs, a single process on a GPU,
and distributed training over CPUs. This validates that our algorithm is general for different types
of computation resources. Besides acceleration on existing hardware architectures, our algorithm
also lay the foundation for GBDT to exploit new hardware architectures with more flexible support
for low-precision operations in the future. Based on LightGBM, we implement a quantized GBDT
training system. With quantized training, we achieve up to 2× speedup compared with SOTA GBDT
tools. Experiments also show that quantized GBDT training scales better in distributed systems.

Our algorithm also verifies huge redundancy in the information contained by gradient values in
GBDT. Moreover, we reveal both theoretically and empirically how such redundancy can be properly
reduced, to keep good model performance and training efficiency. And we show how to implement
the quantized training of GBDT efficiently across different computation resources. We believe that
these interesting findings will inspire new understandings and improvements for GBDT in the future.

2 Related Work
Trials to use low-precision training in deep neural networks (NN) are abundant. Using low bitwidth
numbers in NN training can reduce memory access and accelerate training [13, 15, 35, 20, 10]. In
addition to efficiency, the effectiveness of quantized NN training has also been discussed [7, 18, 4].
Besides quantization during the forward and backward calculations, quantization of gradients has
also been applied in distributed training of neural networks [30] to reduce communication cost.
However, the possibility of low-precision training for GBDT is rarely discussed in existing literature.
RatBoost [22] is a boosting algorithm based on re-weighting samples. In RatBoost [22], quantization
is applied to the weights of training samples during boosting, while the application of quantization
in GBDT is not discussed. Recently gradient quantization is applied in federated training of GBDT
[6] to transform FP gradients into large integers (e.g., 53-bit integers) for the sake of encryption.
But quantization towards a very small number of bits is not explored. Accelerating GBDT training
with quantized gradients was exploited by BitBoost [8]. And BitBoost shows empirically that it
is possible to achieve comparable accuracy with quantized gradients of low bitwidth. However,
BitBoost quantizes gradients in a deterministic way. In this paper, we provide a theoretical guarantee
of quantized training based on stochastic quantization. And we show that stochastic quantization is
crucial to preserve good model accuracy. Besides, BitBoost focuses on accelerating GBDT with bit
operations on a single CPU core, and the implementation is a single-thread version. In this paper, we
discuss important techniques in system implementation that enable significant acceleration across
different computation platforms, including multi-core CPUs, GPUs, and distributed clusters.
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Distributed training of GBDT is necessary for large-scale datasets. Training data are partitioned
either by rows (data samples) or by columns (features) across different machines. We call the former
strategy data-distributed training and the latter feature-distributed training. The communication cost
for feature-distributed training grows linearly with the number of training samples [1, 19]. On the
other hand, the communication cost for data-distributed training is proportional to the number of
features [1, 19]. The two strategies can be combined with each machine getting only part of the
features and samples [11]. The communication complexity of these strategies is analyzed in detail
[31], with empirical studies [11]. Since training of GBDT requires summarizing the gradient statistics
across the dataset into a histogram for each feature, the cost for data-distributed training is reduced
with the more concise histogram information [5]. Thus, data-distributed training is more favorable
with large-scale datasets. With many features, feature-distributed or the combination of two strategies
can be faster [11].

Based on these distributed training strategies, some efforts have been made to reduce the commu-
nication cost. Meng et al [19] proposed Parallel-Voting Tree (PV-Tree) to further reduce the cost
of data-distributed training. However, PV-Tree guarantees good performance only when different
parts of the partitioned dataset have similar statistical distributions, which can require expensive
random shuffling over the whole large dataset. Moreover, quantized training can be applied along
with PV-Tree. This is because PV-Tree reduces communication cost by reducing the number of
features to synchronize the statistics in the histograms. Since quantized training can reduce the size
of histograms, it brings a general benefit for both PV-Tree and ordinary data-distributed training.
DimBoost [16] keeps the number of communicated histograms unchanged but reduces the size of each
histogram by compressing the histograms instead. Histograms represented by floating-point numbers
in DimBoost are compressed into low-precision values (8-bit integers) before sending, and decoding
into high-precision values. Note that in DimBoost, only the communication message for distributed
training is in low-precision and the compression is lossy. In addition, reduction of the histograms
still requires floating-point additions. In comparison, we quantized most parts of the training process
of GBDT with low-precision integers, and only need to maintain histograms with integer values.

In this paper, we compare our algorithm with SOTA efficient implementations of GBDT, including
XGBoost [5], LightGBM [17], and CatBoost [24]. They support training on CPUs, GPUs [34], and
distributed training. However, none of these support low-precision training. We show that with
quantized gradients, GBDT can be trained much faster compared with these SOTA tools in both
single process and distributed settings, on both CPUs and GPUs. We implement quantized training
based on LightGBM. But our method is general and can be adopted by all these tools.

3 Preliminaries of GBDT Algorithms
Gradient Boosting Decision Trees (GBDT) is an ensemble learning algorithm that trains decision trees
as base components iteratively. In each iteration, for each training sample, the gradient (first-order
derivative) and hessian (second-order derivative) of the loss function w.r.t. the current prediction
value is calculated. Then a decision tree is trained to fit the negatives of gradients. Formally, in
iteration k + 1, let ŷki be the current prediction value of sample i. And gi and hi are the gradient and
hessian of loss function l:

gi =
∂l(ŷk

i , yi)

∂ŷk
i

, hi =
∂2l(ŷk

i , yi)(
∂ŷk

i

)2 (1)

For a leaf s, denote Is as the set of data indices in the leaf. Let Gs =
∑

i∈Is
gi and Hs =

∑
i∈Is

hi

be the summations of gi’s and hi’s over samples in leaf s. With the tree structure being fixed in
iteration k + 1, the training loss can be approximated by second-order Taylor polynomial:

Lk+1 ≈ C +
∑
s

(
1

2
Hsw

2
s +Gsws

)
(2)

where C is a constant and ws is the prediction value of leaf s. By minimizing the approximated loss,
we obtain the optimal value for leaf s and the minimal loss contributed by data in Is:

w∗
s = −Gs

Hs
, L∗

s = −1

2
· G

2
s

Hs
. (3)

Finding the optimal tree structure is difficult. Thus the tree is trained by greedily and iteratively
splitting a leaf into two child leaves, starting from a single root leaf. When splitting leaf s into two
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children s1 and s2 in tree Tk+1, we can calculate the reduction in the approximated loss

∆Ls→s1,s2 = L∗
s − L∗

s1 − L
∗
s2 =

G2
s1

2Hs1

+
G2

s2

2Hs2

− G2
s

2Hs
. (4)

To find the best split condition for leaf s, all split candidates of all features should be enumerated and
the one with the largest loss reduction is chosen.

To accelerate the best split-finding process, an algorithm based on histograms is used by most state-of-
the-art GBDT toolkits. The basic idea of histogram based GBDT is to divide the values of a feature
into bins. Each bin corresponds to a range of feature values. Then we construct histograms with the
bins such that each bin records the summation of gradients and hessians of data in that bin. Only
the boundaries of the bins (ranges) will be considered as candidates of split thresholds. Algorithm
1 describes the process of histogram construction. Bin data matrix data records for each feature
and sample the index of the bin in the histogram, i.e., which range the feature value falls in. The
gi’s and hi’s are accumulated in the corresponding bins in histograms of the features. Since the split

Algorithm 1 Histogram Construction for Leaf s

Input: Gradients {g1, ..., gN}, Hessians {h1, ..., hN}
Input: Bin data data[N ][J ], Data indices in leaf s denoted by Is
Output: Histogram hists
for i ∈ Is, j ∈ {1...J} do

bin← data[i][j]
hists[j][bin].g ← hists[j][bin].g + gi
hists[j][bin].h← hists[j][bin].h+ hi

end for

criterion (4) only depends on the summation of gradient statistics, we can easily obtain the optimal
split threshold by iterating over bins in the histogram. Traditionally 32-bit floating point numbers are
used for gi’s and hi’s. And the accumulations in the histograms usually require 32-bit or 64-bit FP
numbers. In the next section, we show how to quantizes gi’s and hi’s into low-bitwidth integers so
that most of the arithmetic operations can be replaced with integer operations with a fewer number of
bits, which substantially saves computational cost.

4 Quantized Training of GBDT
We describe our quantized training algorithm for GBDT. First, we show the overall framework. Then
we identify the two critical techniques to preserve the accuracy of quantized training, including
stochastic gradient quantization and leaf-value refitting.

4.1 Framework for Quantized Training
We first quantize gi and hi into low-bitwidth integers g̃i and h̃i. We divide the ranges of gi’s and hi’s
of all training samples into intervals of equal length. To use B-bit (B ≥ 2) integer gradients, we use
2B − 2 intervals. Each end of the intervals corresponds to an integer value, resulting in 2B − 1 integer
values in total. Since the first-order derivatives gi’s can take both positive and negative values, half of
the intervals will be allocated for the negative values, and the other half for the positive values. For the
second-order derivatives hi’s, almost all commonly used loss functions of GBDT have non-negative
values. We assume that hi ≥ 0 in subsequent discussions. Thus the interval lengths are

δg =
maxi∈[N ] |gi|
2B−1 − 1

, δh =
maxi∈[N ] hi

2B − 2
(5)

for gi’s and hi’s, respectively. Then we can calculate the low-bitwidth gradients

g̃i = Round

(
gi
δg

)
, h̃i = Round

(
hi

δh

)
. (6)

The function Round rounds a floating point number into an integer number. Note that in the case
where hi’s are constant, there’s no need to quantize hi. We left the detailed rounding strategy in
Section 4.2. We replace gi’s and hi’s in Algorithm 1 with g̃i’s and h̃i’s. Then addition operations
of the original gradients can be directly replaced by integer additions. Concretely, the statistics g and
h in the histogram bins will become integers. Thus accumulating gradients into histogram bins in
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Figure 1: Workflow of the quantized GBDT training.

Algorithm 1 only requires integer additions. In equation (4), Gs1 , Hs1 , Gs2 and Hs2 will replaced by
their integer counterparts G̃s1 , H̃s1 , G̃s2 , and H̃s2 . We found that 2 to 4 bits for quantized gradients
are enough for good accuracy. As we will discuss in Section 6.1 and 7.4.3, in most cases, 16-bit
integers will be enough to accumulate such low-bitwidth gradients in histograms. Thus, most of
the operations are done with low-bitwidth integers. We only need floating point operations when
calculating the original gradients, hessians and the split gain. Specifically, the split gain is estimated as

∆L̃s→s1,s2 =

(
G̃s1δg

)2
2H̃s1δh

+

(
G̃s2δg

)2
2H̃s2δh

−

(
G̃sδg

)2
2H̃sδh

, (7)

where the scale of the gradient statistics is recovered by multiplying δg and δh. Figure 1 summarizes
the workflow for quantized GBDT training.

4.2 Rounding Strategies and Leaf-Value Refitting
We find that the Round strategy in equation (6) has a significant impact on the accuracy of the
quantized training algorithm. Rounding to the nearest integer number seems to be a reasonable choice.
However, we found the accuracy drops severely with this strategy, especially with a small number of
gradient bits. Instead, we adopt a stochastic rounding strategy. g̃i randomly takes values ⌊gi/δg⌋ or
⌈gi/δg⌉ such that E[g̃i] = gi/δg . The formal definitions of the two rounding strategies are

RN(x) =


⌊x⌋, x < ⌊x⌋+ 1

2

⌈x⌉, x ≥ ⌊x⌋+ 1

2

, SR (x) =

{⌊x⌋, w.p. ⌈x⌉ − x

⌈x⌉, w.p. x− ⌊x⌋
(8)

where we use RN for round-to-nearest and SR for stochastic rounding. The key insight is that the
split gain is calculated with the summation of gradients. And stochastic rounding would provide an
unbiased estimation for the summations, i.e. E[G̃δg] = G, and E[H̃δh] = H in equation (7). The
importance of stochastic rounding is also recognized in other scenarios for quantization, including NN
quantization training [13] and histogram compression in DimBoost [16]. With stochastic rounding,
we provide a theorem in Section 5 which ensures that the error in split gain estimation caused by
quantized gradients is bounded by a small value with high probability.

With quantized gradients, the optimal leaf value in equation (3) becomes w̃∗
s = − G̃sδg

H̃sδh
. In most

cases, w̃∗
s is enough for good results. But we found that for some loss functions, especially ranking

objectives, refitting the leaf values with the original gradients after the tree has stopped growing is
useful to improve the accuracy of quantized training. BitBoost [8] also recalculates leaf values with
real gradients after tree growing. The difference is that here we consider hessians in split gain (7)
during tree growth, but BitBoost treats hessians as constants during tree growth and uses true hessians
only when refitting the leaf values. It is cheap to calculate w∗

s in equation (3) given a fixed tree
structure since only a single pass over gi’s and hi’s is needed to sum them up into different leaves.

5 Theoretical Analysis
We prove that the difference in the gain of a split due to gradient quantization is bounded by a small
value, with enough training data. We consider loss functions with constant second-order derivatives
(i.e., the hi’s are constant). The square error loss function l(ŷ, y) = 1

2 (ŷ − y)
2 for regression tasks

falls in this category. The analysis is also fit for GBDT without second-order Taylor approximation.
We leave the case for loss functions with non-constant second-order derivatives in Appendix B. We
focus on the discussion of the conclusion in this section and leave details of the proof in Appendix B.
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Our theoretical analysis is based on a more specific form of weak-learnability assumption in boosting.
Specifically, the assumption considers only two-leaf decision trees (a.k.a. stumps) as weak learners.

Definition 5.1 (Weak Learnability of Stumps) Given a binary classification dataset D =
{(xi, c(xi))}Ni=1 where c(xi) ∈ {−1, 1}, weights {wi}Ni=1, wi ≥ 0 and

∑
i wi > 0, there ex-

ists γ > 0 and a two-leaf decision tree with leaf values in {−1, 1} s.t. the weighted classification
error rate on D is 1

2 − γ. Then the dataset D is γ-empirically weakly learnable by stumps w.r.t. c and
{wi}Ni=1.

The weak learnability of stump states that given a binary-class concept c and weights for dataset D,
there exists a stump that can produce slightly better classification accuracy than a random guess. Our
analysis is based on the following assumption over the data in a single leaf s.

Assumption 5.2 Let sign(·) be the sign function (with sign(0) = 1). For data subset Ds ⊂ D in
leaf s, there exists a stump and a γs > 0 s.t. Ds is γs-empirically weakly learnable by stumps, w.r.t.
concept c(xi) = sign(gi) and weights wi = |gi|, where i ∈ Is.

An equivalence of the assumption is: D is γs-empirically weakly learnable by stumps, w.r.t. concept
c(xi) = sign(gi), and weights wi = |gi| for i ∈ Is and wi = 0 for i ∈ [N ]\Is. A similar assumption
has been adopted in previous theoretical analysis for gradient boosting [12]. The difference is that
here we restrict the weak learner to be a stump. In Appendix B, we show that for any leaf s with
positive split gain, there exists such a γs > 0. As we will see in the experiments, for most leaves
during the training of GBDT, γs won’t be too small.

Let Gs→s1,s2 = −
(
L∗
s1 + L∗

s2

)
≥ 0, where L∗

s1 and L∗
s2 are defined in equation (3). And let

G̃s→s1,s2 = −
(
L̃∗
s1 + L̃∗

s2

)
≥ 0 be the estimated version of Gs→s1,s2 after gradient quantization.

And let G∗
s = Gs→s∗1 ,s

∗
2

be the value for the optimal split s → s∗1, s
∗
2 in leaf s. Note that for leaf s,

the optimal split is chosen only according to Gs→s1,s2 , since L∗
s is a constant for different splits of

leaf s. Then based on Assumption 5.2, we have the following theorem.

Theorem 5.3 For loss functions with constant hessian value h > 0, if Assumption 5.2 holds for the
subset Ds in leaf s for some γs > 0, then with stochastic rounding and leaf-value refitting, for any
ϵ > 0, and δ > 0, at least one of the following conclusions holds:

1. With any split of leaf s and its descendants, the resultant average of absolute values of
prediction values by the tree in the current boosting iteration for data in Ds is no greater
than ϵ/h.

2. For any split s → s1, s2 of leaf s, with a probability of at least 1− δ,∣∣∣G̃s→s1,s2 − Gs→s1,s2

∣∣∣
G∗s

≤
max
i∈[N ]

|gi|
√

2 ln
4

δ

γ2
s ϵ · 2B−1

(√
1

ns1

+

√
1

ns2

)
+

(
max
i∈[N ]

|gi|
)2

ln 4
δ

γ2
s ϵ2ns · 4B−2

.
(9)

In equation (9), the bound of gradients maxi∈[N ] |gi| is determined by the labels and the loss function.
For regression tasks, we can normalize the labels to a fixed range, e.g., [0, 1], thus the gradients
are bounded. For classification tasks, the gradients are bounded (in the range [−1, 1]) by nature
with cross-entropy loss. With enough data in leaf s, if the split is not too imbalanced and partitions
enough data into both children s1 and s2, then we can expect the error caused by quantization is
small. Theorem 5.3 ensures that with quantized training, either a split of a leaf has a limited impact
on the prediction values, or quantization does not change the gains of the splits too much.

In equation (9), we also notice that with more bits (larger B) to represent gradients in quantization,
the error will be smaller. This is consistent with our intuition that with more quantized values, we can
approximate the original gradients better. But in practice, we found that a smaller number of bits (e.g.,
2 to 4 bits) is enough for good accuracy. With ns = 107 in parent node s, and ns1 = ns2 = 5× 106.
Let ϵ = maxi∈[N ] |gi| /10, assume that in leaf s we have γs = 0.2 and let δ = 0.1. With 3 bits for
gradients, the upper bound in (9) is approximately 0.15. With 4 bits, the value is smaller than 0.08.
Thus, with a high probability (greater than 90%), changes in split gain due to quantization is well
bounded.

We have a similar analysis for the cases where hessians hi’s are not constant. For non-constant
hessian values, the analysis requires additional assumptions. Due to limited space, we left the details
in Appendix B.
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Figure 2: Hierarchical histogram buffers.

Table 1: Datasets used in experiments.
Name #Train #Test #Attribute Task Metric

Higgs [2] 10,500,000 500,000 28 Binary AUC↑
Epsilon5 400,000 100,000 2,000 Binary AUC ↑

Kitsune [21] 14,545,195 3,999,993 115 Binary AUC↑
Criteo6 41,256,555 4,584,061 67 Binary AUC↑
Bosch7 1,000,000 183,747 968 Binary AUC↑
Year [3] 463,715 51,630 90 Regression RMSE↓

Yahoo LTR 8 473,134 165,660 700 Ranking NDCG@10↑
LETOR [25] 2,270,296 753,611 137 Ranking NDCG@10↑

6 System Implementation
In this section, we show how to implement quantized GBDT for good efficiency. Current CPU
and GPU architectures have limited support for the representation and calculation of low-precision
numbers. For example, most CPUs by today only support 8-bit integers as the smallest data type.
Under these limitations, the benefits of quantized training cannot be fully exploited. Though the
gradients can be compressed into integers with only 2 to 4 bits, we must use at least 8-bit arithmetics
for accumulations in histograms. Even with these limitations, we achieve a considerable speedup on
existing CPU and GPU architectures, given the techniques introduced in this section.

6.1 Hierarchical Histogram Buffers
Note that in Algorithm 1 most operations are accumulating gradients. Thus, low-bitwidth gradients
will not bring much speedup if high-bitwidth integers are used to store the accumulations. On
the contrary, integer overflow may occur with low-bitwidth integers storing the accumulations. To
maximally exploit low-precision computation resources while avoiding integer overflow, we partition
the training dataset by rows (samples) and assign one partition to a thread on CPU or multiple CUDA
blocks on GPU. Thus, each thread or CUDA block constructs a local histogram over the samples in
the assigned partition. Since the number of training samples per partition is much smaller, in most
cases 16-bit integers for the accumulations in the histogram is enough. In the end, local histograms
are reduced to the total histogram which may use more bits per bin, e.g. with 16-bit or 32-bit integers.
Figure 2 displays this divide-and-merge strategy and how the bitwidths differ in local and total
histograms.

6.2 Packed Gradient and Hessian
We pack the summations of gradients and hessians in a histogram bin into a single integer in a similar
way as SecureBoost+ [6]. For example, if we use two 16-bit integers to store the accumulation values,
then the packed accumulation value would be a single 32-bit integer. In our case, however, since
gradients can be either negative or positive, the accumulation of gradients must reside in the upper
part of the packed integer to exploit the signed bit. The accumulation of hessians resides in the lower
part of the packed integer. When accumulating the gradient and hessian of a sample into a bin, the
low-bitwidth gradient and hessian are packed in the same way before the addition.

Packed gradient and hessian halves the number of memory accesses in histogram construction. It also
halves the number of integer additions. On GPUs, the packing has one more contribution to efficiency.
This is because histogram construction on GPUs relies on atomic operations to ensure correctness
when multiple threads add to the same histogram. Thus, packing also reduces the overhead of atomic
operations.

7 Experiments
We evaluate our quantized GBDT training system on public datasets and compare both accuracy and
efficiency with other GBDT tools. First, we show that quantized GBDT training preserves accuracy
with low-bitwidth gradients. Then, we assess the efficiency on CPUs and GPU of a single machine,

5https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html#epsilon
6https://go.criteo.net/criteo-research-kaggle-display-advertising-challenge-dataset.tar.gz
7https://www.kaggle.com/c/bosch-production-line-performance
8https://webscope.sandbox.yahoo.com/catalog.php?datatype=c
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Table 2: Comparison of accuracy, w.r.t. different quantized bits.

Algorithm Binary Classification Regression Ranking
Higgs↑ Epsilon↑ Kitsune↑ Criteo↑ Bosch↑ Year↓ Yahoo LTR↑ LETOR↑

XGBoost 0.845778 0.950210 0.948329 0.802030 0.706423 8.954460 0.794919 0.505058
CatBoost 0.845425 0.943211 0.944557 0.803150 0.687795 8.951745 0.794215 0.519952

LightGBM 0.845694 0.950203 0.950561 0.803791 0.703471 8.956278 0.793792 0.524191
2-bit SRrefit 0.845587 0.949472 0.952703 0.803293 0.700040 8.953388 0.788579 0.519067
3-bit SRrefit 0.845725 0.949884 0.951309 0.803768 0.702025 8.937374 0.791077 0.522220
4-bit SRrefit 0.845507 0.950049 0.950911 0.803783 0.702959 8.942898 0.792664 0.523702
5-bit SRrefit 0.845706 0.950298 0.949229 0.803766 0.703242 8.948542 0.793166 0.524616

2-bit SRno refit 0.846713 0.944509 0.952974 0.803750 0.701399 9.112302 0.764862 0.486193
3-bit SRno refit 0.846040 0.949593 0.951385 0.803922 0.702460 8.990034 0.780041 0.507689
4-bit SRno refit 0.845816 0.950127 0.951197 0.803812 0.704053 8.955256 0.787575 0.515767
5-bit SRno refit 0.845842 0.950275 0.949794 0.803790 0.702717 8.952768 0.791631 0.520900
2-bit RNrefit 0.795991 0.889149 0.962201 0.779906 0.685407 9.429014 0.765103 0.454512
3-bit RNrefit 0.830506 0.944329 0.966606 0.782732 0.688372 9.062854 0.772364 0.476874
4-bit RNrefit 0.840747 0.949946 0.961938 0.795803 0.691163 8.968694 0.777347 0.487394
5-bit RNrefit 0.843820 0.950457 0.962427 0.802438 0.698529 8.952418 0.784333 0.494828

2-bit RNno refit 0.836683 0.925220 0.946016 0.768338 0.695089 10.685840 0.632058 0.203732
3-bit RNno refit 0.843482 0.946850 0.940961 0.791709 0.697933 9.377560 0.732487 0.350127
4-bit RNno refit 0.845788 0.949676 0.949228 0.802689 0.702767 8.969828 0.765432 0.437317
5-bit RNno refit 0.845765 0.950307 0.952420 0.803645 0.695559 8.965400 0.782608 0.485752

and scalability with distributed training over multiple CPU machines. Ablation study is provided
to analyze the techniques for accuracy preservation and system implementation. Table 1 lists the
datasets used for the experiments. For Criteo, we encode the categorical features by target and count
encoding. We include open-source GBDT tools XGBoost, LightGBM, and CatBoost as baselines.
We use the leaf-wise tree-growing strategy [27] for all baselines. A full description of datasets and
hyperparameter settings is provided in Appendix C.
7.1 Accuracy of Quantized Training
We evaluate the accuracy of quantized training. For each dataset and each algorithm, the result of the
best iteration of the test set is reported. We use gradients with 2-bit, 3-bit, 4-bit and 5-bit integers, and
compare the results with 32-bit single-precision FP gradients. Table 2 lists the best metric achieved on
the test set across all boosting iterations. We denote stochastic rounding by SR and round-to-nearest
by RN. And use the subscripts to indicate whether to apply leaf-value refitting. Here we focus on
the effect of quantization on accuracy only (the SRrefit part), and leave the discussion of rounding
strategy and leaf-value refitting in 7.4.1. And due to limited space, we list only metrics of the CPU
version here. Appendix C provides a similar table for GPU version. With low-bitwidth gradients, the
accuracy is not affected much. For some datasets, including Epsilon, Yahoo LTR, and LETOR, more
gradient bits can improve the performance. Other datasets are less sensitive to the number of bits.

7.2 Speedup on Standalone Machine
We evaluate the acceleration brought by quantized training (SRrefit) on a single machine by comparing
it with CPU and CUDA implementations of popular open-source GBDT tools. Our quantized training
on CPU is based on LightGBM. We compare our CPU implementation with XGBoost, CatBoost,
and LightGBM with 32-bit gradients. For the comparison on GPU, we implement a new CUDA
version of LightGBM (denoted by LightGBM+, details are in Appendix E) and further implement
quantized training based on it. We summarize the benchmark results in Table 3. Overall, quantized
training achieves comparable accuracy with a shorter training time. For the histogram construction
time, quantized training speeds up histogram construction by up to 3.8 times on GPU, with an overall
speedup of up to 2.2 times compared with LightGBM+. We also see the acceleration on the CPU,
but with relatively small gains compared with GPU. In summary, quantized training pushes forward
the SOTA efficiency of GBDT algorithms. The number of bits for gradients does not influence the
training time much. For histogram construction time, we only list the results with 2-bit gradients due
to limited space. A full table can be found in Table 6 of Appendix C.

7.3 Speedup of Distributed Training
We evaluate quantization in distributed GBDT training on an enlarged version of the Epsilon dataset,
which duplicates 20 copies of the training set of the original Epsilon dataset (denoted by Epsilon-8M),
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Table 3: Detailed time costs for different algorithms in different datasets (seconds).
Algorithm Higgs Epsilon Kitsune Criteo Bosch Year Yahoo LTR LETOR

GPU total time

XGBoost 33.97 311.12 181.24 326.82 68.44 20.47 28.64 51.29
CatBoost 61.10 105.00 80.20 187.80 22.12 33.96 59.22 N/A

LightGBM+ 29.05 87.12 77.43 102.33 21.41 24.33 30.79 41.79
LightGBM+ 2-bit 24.78 39.04 38.26 61.04 12.57 18.19 23.09 33.60
LightGBM+ 3-bit 24.45 39.25 38.63 59.93 12.60 18.24 24.93 33.87
LightGBM+ 4-bit 24.53 39.82 40.00 59.49 12.55 18.34 25.65 34.11
LightGBM+ 5-bit 24.55 41.30 40.83 60.24 12.08 18.41 25.50 34.36

CPU total time

XGBoost 109.16 1282.97 281.72 565.52 130.92 28.85 103.87 72.37
CatBoost 1009.8 1283.4 1495.0 7702.2 998.4 95.8 588.2 865.4

LightGBM 83.27 519.89 332.12 524.61 59.94 12.67 75.44 103.09
LightGBM 2-bit 73.36 426.50 215.91 444.28 46.63 12.94 61.50 72.08
LightGBM 3-bit 69.64 459.39 207.96 440.68 47.35 12.79 61.07 74.35
LightGBM 4-bit 69.30 458.62 208.99 416.60 46.45 11.90 61.15 77.66
LightGBM 5-bit 69.86 457.68 211.53 423.80 47.52 11.79 61.76 77.92

GPU Hist. time LightGBM+ 11.26 46.96 54.77 70.97 16.57 9.61 11.59 17.75
LightGBM+ 2-bit 4.84 12.11 16.41 21.74 8.52 4.08 8.23 10.20

CPU Hist. time LightGBM 50.74 458.46 253.07 385.98 53.08 6.68 58.53 66.39
LightGBM 2-bit 32.82 375.70 147.10 269.00 39.80 5.99 43.59 38.23

(a) Epsilon-8M (b) Criteo

Figure 3: Scaling on distributed systems.

and Criteo. Figure 3 shows how training time and communication time vary with different numbers
of machines. Quantization can consistently reduce communication cost and accelerate distributed
training. On the Criteo dataset, the communication cost dominates with 16 machines, and the training
time with 16 machines is even slower than with 4 machines. This shows that there is still some room
for improvement in the scalability of our system.

7.4 Ablation Study
We analyze the effect of proposed techniques that ensure the effectiveness and efficiency of quantized
training. We also provide a discussion on the feasibility of the weak-learnability assumption used in
Section 5.

7.4.1 Rounding Strategies and Leaf-Value Refitting
Stochastic rounding plays an important role in the accuracy of quantized training. Table 2 also
compares the accuracy on test sets with round-to-nearest (denoted by RN) and stochastic rounding
(denoted by SR), with different numbers of gradient bits. For both strategies, the results with
and without leaf-value refitting are both reported. With smaller numbers of bits, the SR strategy
significantly outperforms the RN strategy. Note that leaf-value refitting is not able to compensate
for the drawback of the RN. Table 2 also demonstrates how leaf-value refitting influences accuracy.
For binary classification, leaf-value refitting is less important as a comparable accuracy could be
achieved without it. While for regression and ranking tasks, leaf-value refitting is crucial to achieving
comparable accuracy.
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7.4.2 Packed Gradient and Hessian
Figure 5 shows the training time and histogram construction time with and without packing gradient
and hessian, testing with 2-bit gradients of CPU version. No-packing version on GPU requires atomic
addition for 16-bit integers, which is not natively supported by NVIDIA V100 GPUs. Thus, for a
clear comparison, we only show the results of CPU version here. Overall, packing is important for
the speed of histogram construction.

7.4.3 Histogram Bitwidth

Figure 4: Histogram bitwidth frequency. Figure 5: Speedup by packing gradients. Figure 6: Cumulative distribution of γ̂s.

Figure 4 shows the frequency of per-thread histograms of different bitwidths used during training
with 2-bit gradients on CPUs. The counts are the number of leaves in the boosting process using the
corresponding bitwidth in per-thread histograms. On CPUs, our per-thread histograms can use either
8-bit, 16-bit, or 32-bit integers. For now 8-bit integer histogram is only available with 2-bit gradients
in our current version. The bitwidth in histograms is determined by the number of training samples in
the leaves, the number of threads/blocks to use, the total number of bins in histograms of all features,
and the gradient bitwidth. The minimum bitwidth of histogram integers that won’t result in an integer
overflow is chosen. The figure shows that quantized training exploits low-precision computations.
On GPUs, there’s no native support for atomic additions of packed 8-bit integers. Thus, we use
16-bit histograms in CUDA blocks in our current implementation. We leave more aggressive usage
of low-bitwidth computations in our future work.

7.4.4 Feasibility of Weak-Learnability Assumption
To verify the feasibility of Assumption 5.2, we should evaluate the largest γs with which a stump
with weighted classification error rate 1

2 − γs exists. This requires enumerating all the splits again
and calculating the weighted error rate for each split, which is costing. Luckily, we have an easy
approach to obtaining a lower bound of the largest γs, which can be naturally recorded during
training of GBDT, we name the lower bound as γ̂s. γ̂s is the weighted error rate of the optimal split
in leaf s according to the criterion in (4). Figure 6 shows the cumulative distribution of γ̂s of all
leaves during quantized training of the Year dataset with 3-bit gradients. For most leaves (over 75%),
a γs > 0.05 exists. Thus γs won’t be too small for most leaves.

8 Discussion and Future Work
In this paper, we try to answer an important but previously neglected question: Can GBDT exploit
low-precision training? We propose a quantized training framework with low-bitwidth integer
arithmetics which enables the low-precision training of GBDT. We identify the key techniques to
preserve accuracy with quantized training, including stochastic rounding and leaf-value refitting.
Theoretical analysis shows that quantization has a limited impact on the selection of optimal splits in
leaves, given enough training data. We implement our algorithm with both CPU and GPU versions.
Experiments show that our quantized training GBDT method can achieve comparable accuracy
with significant speedup over SOTA GBDT tools, with CPUs, GPUs, and distributed clusters. In
this work, we propose a simple stochastic quantization framework. Designing more sophisticated
quantization methods for GBDT is an interesting direction for future exploration. We also leave the
implementation of quantized GBDT training on multi-GPU distributed systems and more aggressive
usage of low-bitwidth computations in our future work. We believe our method will bring new
inspirations in improving GBDT training algorithms, as low-precision computation becomes a trend
in machine learning.
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