
Large-batch Optimization for Dense Visual Predictions

Zeyue Xue∗
The University of Hong Kong
xuezeyue@connect.hku.hk

Jianming Liang∗
Beihang University

ljmmm1997@gmail.com

Guanglu Song
Sensetime Research

songguanglu@sensetime.com

Zhuofan Zong∗
Beihang Univerisity

zongzhuofan@gmail.com

Liang Chen∗

Peking University
clandzyy@pku.edu.cn

Yu Liu†

Sensetime Research
liuyuisanai@gmail.com

Ping Luo†

The University of Hong Kong,
Shanghai AI Laboratory

pluo@cs.hku.hk

A Appendix

For presenting the details in appendix, we extend the notations as: given a module set M,
e.g., M = {Backbone, FPN, RPN, Detection head} for Faster R-CNN, we define w ={
w(i) | i ∈ [1, h]

}
as the weights of it, where h means the number of modules in M and w(i)

indicates the learnable parameters of i-th module. Let w ∈ Rd, w(i) ∈ Rdi , and Σh
i=1di = d. Given

a dataset S = {(xi, yi)}ni=1 with n training samples, where xi and yi denote a data point and its
label respectively, we can estimate a loss function L : Rd → R for a randomly sampled mini-batch
St to obtain l (wt) =

1
b

∑
j∈St

L (wt, (xj , yj)), where St is the mini-batch samples with batch size
|St| = b at the t-th iteration. At the t-th backward propagation step, we can derive the gradient
∇il (wt) to update i-th module in M. Keep this in mind, we further formulate the gradient of full
batch (total samples in S) as ∇f (wt), where ∇f (wt) =

1
n

∑
j∈S ∇L (wt, (xj , yj)). Naturally, we

have E [∇il (wt)] = ∇if (wt). For convenience, we use gt, ∥·∥ and ∥·∥1 to denote∇l (wt) , l2-norm
and l1-norm, respectively. In particular, g(i)t is used to denote∇il (wt).

A.1 Gradient Variance Estimation

We introduce the gradient variance to measure the gap between SGD (stochastic gradient descent with
mini-batch) and GD (gradient descent with full batch). However, computing the accurate gradient
variance requires extremely high computational cost and it will slow down training speed dramatically.
To address this problem, Qin et al. [1] utilize the cosine similarity between two aggregated gradients
from the replicas in a distributed training system to estimate the gradient variance between SGD
and GD efficiently. Specifically, we can compute the gradient for each sample in the t-th mini-batch
St of batch size b, denoted by r1,t, ..., rj,t, ..., rb,t, then we have gt =

1
b

∑b
j=1 rj,t. Since we split

the above gradients into two groups, averaging each group can obtain Gt,1 = 2
b

∑ b
2
j=1 r2j−1,t and

Gt,2 = 2
b

∑ b
2
j=1 r2j,t, respectively. It formulates the gradient variance as:

Var(gt) = E[∥gt −∇f(wt)∥2] =
n− b

2n− b
(1− E[cos(Gt,1, Gt,2)])E[∥gt∥2], (1)

*Work done during an internship at Sensetime Research.
†Corresponding authors.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Faster R-CNN+SGD (32) Faster R-CNN+SGD (512) Panoptic FPN+SGD (32) Panoptic FPN+SGD (512)

Faster R-CNN+AdamW (32) Faster R-CNN+AdamW (512) Swin+AdamW (32) Swin+AdamW (512)

Figure 1: Comparisons of the gradient variances (omitting the learning rate ηt referring to Eq. (2)) in different
modules of different pipelines (i.e., Faster R-CNN and Panoptic FPN) and optimizers (i.e., SGD and AdamW).
The number in the bracket represents the batch size. We see that when the batch size is small (i.e., 32), the
gradient variances are similar. When the batch size is large (i.e., 512), the gradient variances all suffer significant
misalignment of different modules. All pipelines use ResNet50 as the backbone network other than the last two
figures, where we adopt Faster R-CNN+Swin-Tiny to visualize the variances.

where n and b are the number of training samples and the mini-batch size, respectively. Then we
derive a updated (considering learning rate) gradient variance to delve into the difference of network
modules in complicated dense visual prediction pipelines. The updated gradient variance of the i-th
network module at the t-th iteration can be formulated as:

Var(ηtg
(i)
t) = E[∥ηtg(i)t − ηt∇if(wt)∥2] =

n− b

2n− b
η2t (1− E[cos(G(i)

t,1, G
(i)
t,2)])︸ ︷︷ ︸

Φ
(i)
t

E[∥g(i)t ∥2], (2)

where ηt is the learning rate. G
(i)
t,1 and G

(i)
t,2 are two groups of the gradient es-

timation as discussed above for i-th submodule. Following [1, 2], since each en-
try in the vector g

(i)
t could be assumed independent and identically distributed (i.i.d.)

RetinaNet+AdamW(32) RetinaNet+AdamW(10k)

Figure 2: Comparisons of variances for Reti-
naNet with batch size 32 and 10k.

in a massive dataset, Φ(i)
t is thus proportional to the

above updated gradient variance. At each training itera-
tion, we can approximate the updated gradient variance
by Φ

(i)
t = η2t (1 − cos(G

(i)
t,1, G

(i)
t,2)), where Φ

(i)
t indi-

cates the Var(ηtg
(i)
t) normalized by the number of pa-

rameters. For consistency of presentation, we still call
Φ

(i)
t gradient variance, which enables us to estimate the

gradient variance of each network module at each train-
ing iteration. Note that gradient variance magnitude
has great influence on the generalization ability of deep
neural network [2].

A.2 Overview of Gradient Variance of Different
Pipelines

In this section, we give an overview of the gradient variance comparisons of different pipelines in
Fig. 1, including four pipelines (i.e., Faster R-CNN and Panoptic FPN) and two optimizers (i.e., SGD
and AdamW). We also show the gradient variances with batch size 32 and 10k in Fig. 2 on RetinaNet.
The variances after applying AGVM on Mask R-CNN is shown in Fig. 3.

2

Figure 3: Comparisons of the gradient variances of different modules in Mask R-CNN with the help of AGVM.
From left to right, the models are trained using SGD with a mini-batch size of 32, 256, 512, and 1024. AGVM
helps avoid training failure with batch size 1024.

A.3 Ablation Study of Variance Misalignment on Faster R-CNN

We define the module set M as {Backbone, FPN, RPN, Detection head} in Faster R-CNN [3] and
|Bi| indicates the effective batch size of the i-th module in M. Intuitively, there are |B4| ≈ NK|B1|
due to the shared detection head (i.e., classifiers/regressors) by all levels of the FPN and different
region proposals. N and K indicate the number of FPN levels and region proposals fed into the
detection head. To evaluate this assumption, as shown in Fig. 4, we have three observations. (1)
Similar to the ablation study on RetinaNet, we remove the FPN and adopt the final level to perform
detection. As illustrated by the second figure in Fig. 4, the gradient misalignment phenomenon
between detection head and backbone has been reduced. (2) Furthermore, we reduce the number
of region proposals from 512 to 10. As shown in the third figure in Fig. 4, this also alleviates the
variance difference between detection head and backbone. (3) Finally, we freeze the parameters in
the detection head and only train RPN and backbone. Similar to the phenomenon on RetinaNet, this
also leads to a variance convergence trend throughout the training between RPN and backbone.

A.4 Proof of Convergence Rate

In this section, we will show that even using AGVM, SGD and AdamW optimizers still enjoy
appealing convergence properties. In order to present our analysis, we first need to make some
assumptions.

Assumptions. We need to assume function f(w) is Li − smooth with respect to w(i), i.e., there
exists a constant Li such that:

∀x, y ∈ Rd, ∥∇if(x)−∇if(y)∥ ≤ Li∥x(i) − y(i)∥, (3)

for all i ∈ [1, h]. We use L = (L1, · · · , Lh)
⊤ to denote the h-dimensional vector of Lipschitz

constants and use Lmax to denote maxi Li. We also assume the following bound on different
modules’ gradient norm via E

[
∥g(i)∥2

]
≤ K∥∇1f(w)∥2. Furthermore, although it’s difficult to

quantify the effective batch size of different modules, we argue the ratio of effective batch size

between different modules should be bounded, so we can assume 1 ≤ E[∥Φ(1)
t ∥]

E[
∥∥∥Φ(i)

t

∥∥∥] ≤ αu for i ∈ [1, h]

and t ∈ [1, T]. For the sake of simplicity, we give convergence results when β1 = 0 and ignore the
weight decay coefficient (λ = 0). However, our analysis should extend to the general case as well.
We leave this investigation in future work.

A.4.1 Convergence of AGVM+SGD

For SGD optimizer, we also assume the following bound on the variance in stochastic gradients
E
∥∥g(i) −∇if(w)

∥∥2 ≤ σ2
i for all w ∈ Rd and i ∈ [1, h] with effective batch size bi. For component

i, we have the following update for SGD optimizer:

w
(i)
t+1 = w

(i)
t − ηt

√√√√E[∥Φ(1)
t ∥]

E[
∥∥∥Φ(i)

t

∥∥∥]g(i)t . (4)

3

Figure 4: Ablative experiments on exploring the gradient variance misalignment. To validate our result on
effective batch size, we progressively remove the FPN, decrease region proposals, and freeze the parameters of
detection head to reduce the effective batch size. Finally, it also leads to a variance convergence trend throughout
the training between RPN and backbone.

Since the function f is Li − smooth, we can obtain the following inequality:

f (wt+1) ≤ f (wt) +
〈
∇if (wt) , w

(i)
t+1 − w

(i)
t

〉
+

h∑
i=1

η2t
Li

2

E[∥Φ(1)
t ∥]

E[
∥∥∥Φ(i)

t

∥∥∥]
∥∥∥g(i)t

∥∥∥2 . (5)

Then, we will first give some analysis on the following ratio:

E[∥Φ(1)
t ∥]

E[
∥∥∥Φ(i)

t

∥∥∥] =
E
[
1− cos(G

(1)
t,1 , G

(1)
t,2)

]
E
[
1− cos(G

(i)
t,1, G

(i)
t,2)

] . (6)

Because the samples are randomly divided into two groups, according to the law of large numbers,
when batch size b goes to infinity, we have:

E
[
cos(G

(j)
t,1 , G

(j)
t,2)

]
→ 1,∀j ≥ 1. (7)

For b = 2, each group only has one sample that comes from the same training distribution, we have:

E
[
cos(G

(j)
t,1 , G

(j)
t,2)

]
→ 0,∀j ≥ 1. (8)

Therefore, there exists a b̂ that makes the following equation hold,

E
[
cos(G

(j)
t,1 , G

(j)
t,2)

]
≤ 1

2
, if b ≤ b̂,∀j ≥ 1. (9)

Since the effective batch size of backbone is smaller than that of other modules, the gradient variance
of backbone is larger than that of other modules, which means:

E
[
cos(G

(1)
t,1 , G

(1)
t,2)

]
≤ E

[
cos(G

(i)
t,1, G

(i)
t,2)

]
,∀i > 1. (10)

When b < b̂, we further have:

E
[
cos(G

(1)
t,1 , G

(1)
t,2)

]
(1−E

[
cos(G

(1)
t,1 , G

(1)
t,2)

]
) ≤ E

[
cos(G

(i)
t,1, G

(i)
t,2)

]
(1−E

[
cos(G

(i)
t,1, G

(i)
t,2)

]
),∀i > 1.

(11)
Based on this, we have the following:

E
[
1− cos(G

(1)
t,1 , G

(1)
t,2)

]
E
[
1− cos(G

(i)
t,1, G

(i)
t,2)

] ≤ E
[
cos(G

(i)
t,1, G

(i)
t,2)

]
E
[
cos(G

(1)
t,1 , G

(1)
t,2)

] . (12)

By displaying δt ≡ g
(i)
t −∇if (wt), we obtain:

E
[
∥g(i)t ∥2

]
= E

[
∥δt +∇if (wt) ∥2

]
≤ σ2

i + ∥∇if (wt) ∥2. (13)

Following the Eq.(6) in [1], we have:

∥∇if(wt)∥2

∥∇if(wt)∥2 + σ2
i

≤ ∥∇if(wt)∥2

E
[
∥g(i)t ∥2

] = E
[
cos(G

(i)
t,1, G

(i)
t,2)

]
≤ 1. (14)

4

With the help of above inequality, we have:

E
[
cos(G

(i)
t,1, G

(i)
t,2)

]
E
[
cos(G

(1)
t,1 , G

(1)
t,2)

] ≤ 1 +
σ2
1

∥∇1f(wt)∥2
. (15)

However, as shown in Fig. 2, when the batch size is extremely large (e.g., 10k), we cannot derive the
above inequality. In this case, we have:

E
[
1− cos(G

(1)
t,1 , G

(1)
t,2)

]
E
[
1− cos(G

(i)
t,1, G

(i)
t,2)

] ≤ 1 + α0 +
σ2
1

∥∇1f(wt)∥2
, (16)

where α0 is a constant that meets αu − 1 − σ2
1

∥∇1f(wt)∥2 ≤ α0 ≤ αu − 1 for all t ≤ T . Then by
adding Eq. (16) to Eq. (5), we obtain:

f (wt+1) ≤ f (wt) +
〈
∇if (wt) , w

(i)
t+1 − w

(i)
t

〉
+

h∑
i=1

η2t
Li

2

(
α0 + 1 +

σ2
1

∥∇1f(wt)∥2

)
∥g(i)t ∥2.

(17)
Taking expectation on the both side, according to the assumption on Eq. (6), we have:

E [f (wt+1)] ≤ f (wt)− ηt

h∑
i=1

∥∇if (wt) ∥2 +
h∑

i=1

η2t
Li

2

(
α0 + 1 +

σ2
1

∥∇1f(wt)∥2

)
E
[
∥g(i)t ∥2

]
≤ f (wt)− ηt

h∑
i=1

∥∇if (wt) ∥2 +
h∑

i=1

η2t
Li

2

(
(1 + α0)E

[
∥g(i)t ∥2

]
+Kσ2

1

)
≤ f (wt)− ηt

h∑
i=1

∥∇if (wt) ∥2 +
h∑

i=1

η2t
Li

2

(
(1 + α0)(σ

2
i + ∥∇if (wt) ∥2) +Kσ2

1

)
= f (wt)−

h∑
i=1

(
ηt −

Lmax

2
(1 + α0)η

2
t

)
∥∇if (wt) ∥2 +

h∑
i=1

η2t
Li

2

(
Kσ2

1 + (1 + α0)σ
2
i

)
.

(18)

Summing both sides of this inequality and taking the complete expectation, we get:

E [f (wt+1)] ≤ f (w1)

−
T∑

t=1

h∑
i=1

(
ηt −

Lmax

2
η2t (1 + α0)

)
E[∥∇if (wt) ∥2] + T

h∑
i=1

η2t
Li

2

(
Kσ2

1 + (1 + α0)σ
2
i

)
.

(19)

Define finf = inf f (wt) and arrange the above inequality, we can get:

1

T

T∑
t=1

h∑
i=1

E
[
∥∇if (wt) ∥2

]
≤ f (w1)− finf

T
(
ηt − Lmax

2 η2t (1 + α0)
) +

∑h
i=1 ηtLi

(
Kσ2

1 + (1 + α0)σ
2
i

)
2− Lmaxηt(1 + α0)

.

(20)
Let ηt ≤ 1

(1+α0)Lmax
, we have the following bound:

1

T

T∑
t=1

E
[
∥∇f (wt) ∥2

]
≤ 2 (f (w1)− finf)

Tηt
+

h∑
i=1

ηtLi

(
Kσ2

1 + (1 + α0)σ
2
i

)
. (21)

A.4.2 Convergence of AGVM+AdamW

For AdamW optimizer, we also assume ∥gt∥∞ ≤ G−
√
ϵ, di = d

h . Following [4], we rewrite the

learning rate in the following manner: η̃t = ηt

√
1−βt

2

1−β2
. Based on this, we can redefine the vt as

5

vt = β2vt−1 + g2t , and let ṽt = β2vt−1 + E[g2t]. So the update of original AdamW can be given
by:rt = gt√

vt+ϵ
, then we have the following update for AGVM+AdamW:

w
(i)
t+1 = w

(i)
t − η̃t

√√√√E[∥Φ(1)
t ∥]

E[
∥∥∥Φ(i)

t

∥∥∥]r(i)t . (22)

Since the function f is Li − smooth, we have the following:

f (wt+1) ≤ f (wt) +
〈
∇if (wt) , w

(i)
t+1 − w

(i)
t

〉
+

h∑
i=1

η̃2t
Li

2

E[∥Φ(1)
t ∥]

E[
∥∥∥Φ(i)

t

∥∥∥]
∥∥∥r(i)t

∥∥∥2 . (23)

For any component i, we have:

E
[
cos(G

(i)
t,1, G

(i)
t,2)

]
=

∑di

j=0(E
[
g
(i)
t,j/

√
ϵ+ v

(i)
t,j

]
)2

∑di

j=0 E
[
(g

(i)
t,j/

√
ϵ+ v

(i)
t,j)

2

] ≤ 1, (24)

where g
(i)
t,j and v

(i)
t,j denote the j-th entry of g(i)t and v

(i)
t . Thanks to the l∞ bound on gt, we have

g
(i)
t ≤

√
ϵ+ v

(i)
t,j ≤ G√

1−β2
, so that:

∥∇if(wt)∥2

di(G2/(1− β2))
≤

∑di

j=0(E
[
g
(i)
t /

√
ϵ+ v

(i)
t,j

]
)2

∑di

j=0 E
[
(g

(i)
t /

√
ϵ+ v

(i)
t,j)

2

] ≤ 1. (25)

Similar to Eq. (12), then we get:

E[∥Φ(1)
t ∥]

E[
∥∥∥Φ(i)

t

∥∥∥] =
E
[
1− cos(G

(1)
t,1 , G

(1)
t,2)

]
E
[
1− cos(G

(i)
t,1, G

(i)
t,2)

] ≤ E
[
cos(G

(i)
t,1, G

(i)
t,2)

]
E
[
cos(G

(1)
t,1 , G

(1)
t,2)

] ≤ d1(G
2/(1− β2))

∥∇1f(wt)∥2
. (26)

However, since 1− β2 → 0 in general AdamW settings, as well as for some extremely large batch
size settings (where the upper bound of Eq. (26) is dominated by αu), we have the following for the
sake of consistency:

E
[
1− cos(G

(1)
t,1 , G

(1)
t,2)

]
E
[
1− cos(G

(i)
t,1, G

(i)
t,2)

] ≤ min{d1(G
2/(1− β2))

∥∇1f(wt)∥2
, αu}. (27)

We will give the convergence bounds using these two items, respectively. For the first item, by
rewriting Lemma 1 in [4], we get:

E

∇i,jf (wt)
g
(i)
t,j√

ϵ+ v
(i)
t,j

 ≥ (∇i,jf (wt))
2

2
√

ϵ+ ṽ
(i)
t,j

− 2GE

(
g
(i)
t,j

)2

ϵ+ v
(i)
t,j

 , (28)

where we denote the j-th entry of ∇if(wt) by ∇i,jf(wt). Thanks to the l∞ bounded on g(i), we
have:

η̃t
(∇i,jf (wt))

2

2
√
ϵ+ ṽ

(i)
t,j

≥ ηt (∇i,jf (wt))
2

2G
. (29)

Taking expectation on Eq. (23), and adding Eq. (29) to Eq. (23), we have:

E [f (wt+1)] ≤ f (wt)

− ηt
2G
∥∇f (wt) ∥2 +

h∑
i=1

(
2η̃tG+

η̃2tLid1(G
2/(1− β2))

2∥∇1f(wt)∥2

)
E
[∥∥∥r(i)t

∥∥∥2] . (30)

6

Taking complete expectation on Eq. (30) and sum up:

E [f (wt+1)] ≤ f (w1)−
ηt
2G

T∑
t=1

E
[
∥∇f (wt) ∥2

]
+

T∑
t=1

h∑
i=1

(
2ηtG√
1− β2

E
[∥∥∥r(i)t

∥∥∥2])+
η2t ∥L∥1d1(G2/(1− β2))KT

2ϵ(1− β2)
.

(31)

Then, with the help of Lemma 2 in [4], we get:

E [f (wt+1)] ≤ f (w1)−
ηt
2G

T∑
t=1

E
[
∥∇f (wt) ∥2

]
+

2ηtGd√
1− β2

(
1

T
ln

(
1 +

G2

(1− β2)ϵ

)
− T ln(β2)

)
+

η2t ∥L∥1d1(G2/(1− β2))KT

2ϵ(1− β2)
.

(32)

For the second item in Eq. (27), taking complete expectation on Eq. (23) and sum up:

E [f (wt+1)] ≤ f (w1)

− ηt
2G

T∑
t=1

E
[
∥∇f (wt) ∥2

]
+

T∑
t=1

h∑
i=1

((
2ηtG√
1− β2

+ η̃2tαu
Li

2

)
E
[∥∥∥r(i)t

∥∥∥2]) .

(33)

With the help of Lemma 2 in [4], we get:

E [f (wt+1)] ≤ f (w1)−
ηt
2G

T∑
t=1

E
[
∥∇f (wt) ∥2

]
+

(
2ηtGd√
1− β2

+ η̃2tαuh
∥L∥1
2

)(
1

T
ln

(
1 +

G2

(1− β2)ϵ

)
− T ln(β2)

)
.

(34)

Finally, we have:

1

2GT

T∑
t=1

E
[
∥∇f (wt) ∥2

]
≤ f (w1)− finf

ηtT
+

2Gd√
1− β2

(
1

T
ln

(
1 +

G2

(1− β2)ϵ

)
− ln(β2)

)
+ C,

C = min

{
ηt∥L∥1dG2K

2ϵh(1− β2)2
,
ηtαuh∥L∥1
2(1− β2)

(
1

T
ln

(
1 +

G2

(1− β2)ϵ

)
− ln(β2)

)}
.

(35)

For AGVM+SGD, suppose ηt =
1√
T

, and for AGVM+AdamW, let ηt = 1√
T

and β2 = 1− 1
T , then

SGD and AdamW achieve O(1/
√
T) and O(ln(T)/

√
T) convergence rate, respectively. Note that in

this case, the upper bound of Eq. (35) is dominated by the second item of C.

A.4.3 Linear Speedup Property of AGVM

We give the linear speedup property for AGVM+synchronous SGD w.r.t. batch size as a corollary.
First, we will prove gradient variance decreases linearly with batch size b. For ease of understanding,
we assume that∇f(w), g, r represent the gradient of the full dataset, the mini-batch with size b and
the single sample, respectively. Then we have the following covariance matrix:

Σ(w) := cov [r] =
1

n

n∑
i=1

(ri −∇f(w)) (ri −∇f(w))T , (36)

where n indicates the total number of training samples. Likewise, a stochastic gradient g computed on
a randomly-drawn mini-batch is a random variable with mean ∇f(w). Assuming that it is composed
of b samples drawn independently with replacement, its covariance matrix is:

cov[g] =
Σ(w)

b
. (37)

7

According to the Central Limit Theorem, g can be approximately normally distributed:

g ∼ N

(
∇f(w), Σ(w)

b

)
. (38)

As assumed in Appendix A.4.1 section, the variance of stochastic gradients with batch size bi meets
E
∥∥g(i) −∇if(w)

∥∥2 ≤ σ2
i for all w ∈ Rd and i ∈ [1, h]. So when we increase the batch size from

bi to Mbi, we have:

E
∥∥∥g(i) −∇if(w)

∥∥∥2 ≤ σ2
i

M
. (39)

By substituting σ2
i with σ2

i

M for all i ∈ [1, h] in Eq.(21), we get:

1

T

T∑
t=1

E
[
∥∇f (wt) ∥2

]
≤ 2 (f (w1)− finf)

Tηt
+

h∑
i=1

ηtLi

(
K

σ2
1

M
+ (1 + α0)

σ2
i

M

)
. (40)

Let ηt =
√

M
T , we obtain a O(1/

√
MT) convergence rate.

A.5 Parameter Settings

A.5.1 Settings for Different Visual Predictors

In this section, we give the detailed hyper-parameter settings for the training of different visual
predictors, which are shown in Table 1, Table 2 and Table 3. All predictors are evaluated on the
validation set of COCO and ADE20K datasets. For SGD optimizer, we do not follow the linear
learning rate scaling in [5] since the large learning rate on batch size 512 leads to the training failure
of baseline. Instead, when the batch size is greater than 128 (256 for semantic segmentation), we use
the square root of learning rate scaling to avoid divergence in the training process. With this strategy,
we obtain a better baseline than [5]. Especially, the best learning rate on Faster R-CNN on batch size
512 is 0.38. For AdamW optimizer, the learning rate scaling strategy is almost the same as SGD.
The only difference is that we adopt a smoother scaling scheme due to its faster convergence speed.
Specifically, when the batch size is greater than 128, the learning rate is scaled up with a ratio of√
1.5 if we double the batch size.

Table 1: Hyper-parameter settings for SGD optimizer on Faster R-CNN, Mask R-CNN, and Panoptic FPN with
the CNN backbone. LR represents the global learning rate.

Batch Size Warmup Epochs LR LR Decay τ α Weight Decay

32 1 0.04 MultiStep 10 0.97 1e-4
256 2 0.226 MultiStep 10 0.97 1e-4
512 2 0.32 MultiStep 10 0.97 1e-4

1024 2 0.452 MultiStep 5 0.97 1e-4

Table 2: Hyper-parameter settings for SGD optimizer on Semantic FPN with the CNN backbone. LR
represents the global learning rate. "Poly" means that the learning rate at current iteration is multiplied by
(1− iter

max_iter)
power (with power = 0.9).

Batch Size Warmup Iters LR LR Decay τ α Weight Decay

32 500 0.01 Poly 5 0.97 5e-4
512 500 0.113 Poly 5 0.97 5e-4

1024 250 0.16 Poly 5 0.97 5e-4
2048 125 0.226 Poly 5 0.97 5e-4

8

Table 3: Hyper-parameter settings for AdamW optimizer on Faster R-CNN with the Tranformer backbone. LR
represents the global learning rate.

Batch Size Warmup Epochs LR LR Decay τ α Weight Decay Gradient Clip

32 1 2e-4 MultiStep 10 0.97 0.05 -
256 2 9.8e-4 MultiStep 10 0.97 0.05 1.0
512 2 1.2e-3 MultiStep 10 0.97 0.05 1.0

1024 3 1.5e-3 MultiStep 5 0.97 0.05 1.0

A.5.2 Settings for Billion-level UniNet

Table 4: UniNet-G architecture. We adopt the Fused MBConv blocks [6] and transformer blocks to
form a hybrid convolution-transformer visual network.

Stage Block Network Size
Expansion Channel Layers Stride

0 Fused MBConv 1 104 6 2
1 Fused MBConv 4 216 9 4
2 Fused MBConv 6 384 18 8
3 Fused MBConv 3 576 18 16
4 Transformer 2 576 18 16
5 Transformer 5 1152 36 32

We scale the UniNet [7] to 1-billion parameters and evaluate it on COCO test-dev benchmark. The
detailed architecture is presented in Table 4.

Improved HTC detector. To compare with the state-of-the-art, we implement some extensions to
the original HTC [8] and denote it as HTC-X. This improved version is built upon the light-weight
variant of HTC (HTC-Lite [9]). To reduce the computation overheads, the transformer blocks of
UniNet-G backbone are evenly split into 18 subsets. There are two blocks using window attention
and the last block using global attention in each subset. Furthermore, we adopt RCNet [10] and
SEPC [11] as the feature pyramid with levels from P3 to P8, and increase the feature channel from
256 to 384. The positive IoU thresholds in the R-CNN stage are increased to 0.6, 0.7, 0.8. We use 4
decoupled transformer blocks for the classification branch and localization branch, respectively.

ImageNet-22K pre-training. We train the UniNet-G for 150 epochs using an AdamW optimizer
and a cosine learning rate scheduler. The peak learning rate is 0.005 and the minimum learning rate
is 0.0001. A batch size of 5120 and a weight decay coefficient of 0.03 are used. We adopt common
augmentation techniques including Mixup, Cutmix, Random Erasing, and stochastic depth with a
ratio of 0.3.

Finetuning on COCO object detection. We first finetune the improved HTC-X (without the mask
branch) on the Objects-365 V1 dataset [12], which consists of 638k images. The model is trained
with an AdamW optimizer with a learning rate of 8e− 5 and a batch size of 64 for 20 epochs. Then
we further finetune it on COCO dataset for only 11 epochs. A batch size of 960 and a learning rate of
1.5e− 4 are adopted. During the finetuning phase, the shorter side of the input image is randomly
selected between 400 and 1200 while the longer side is at most 1600. The window sizes of UniNet-G
are set to 28× 28 for Stage 4 and 14× 14 for Stage 5.

A.6 Overview of AGVM-enabled SGD and AdamW

We treat the Backbone (i = 1) as the anchor and modulate other modules making their gradient
variances consistent with the Backbone. Specifically, we adjust the module learning rates η̂(i)t by
using the ratio between Φ

(1)
t and Φ

(i)
t . The update rule for each network module can be written as:

w
(i)
t+1 = w

(i)
t − η̂

(i)
t g

(i)
t , where η̂

(i)
t = ηtµ

(i)
t and µ

(i)
t =

√√√√Φ
(1)
t

Φ
(i)
t

, (41)

9

Algorithm 1 AGVM+SGD

Input: w1 ∈ Rd, learning rate {ηt}Tt=1, parameters
0 ≤ β1, α < 1, interval τ , weight decay coefficient
λ
Set m0 = 0, u(i)

0 = 1 for i ∈ [1, h]
for t = 1 to T do

Draw b samples St from dataset S
Compute gt =

1
b

∑
j∈St

∇l (wt, (xj , yj))

if t%τ = 0 then
Compute Φ

(i)
t via gradients g(i)t

Compute η̂t
(i) and µ

(i)
t

end if
mt = β1mt−1 + (1− β1)(gt + λwt)

w
(i)
t+1 = w

(i)
t − η̂t

(i)m
(i)
t

end for

Algorithm 2 AGVM+AdamW

Input: w1 ∈ Rd, learning rate {ηt}Tt=1, parameters
0 ≤ β1, β2, α < 1, interval τ , weight decay coeffi-
cient λ
Set m0 = 0, v0 = 0, u(i)

0 = 1 for i ∈ [1, h]
for t = 1 to T do

Draw b samples St from dataset S
Compute gt =

1
b

∑
j∈St

∇l (wt, (xj , yj))

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g

2
t

if t%τ = 0 then
Compute Φ

(i)
t via modified gradients g

(i)
t√
vt+ϵ

Compute η̂t
(i) and µ

(i)
t

end if
mt =

mt

1−βt
1

, vt = vt
1−βt

2
, rt = mt√

vt+ϵ

w
(i)
t+1 = w

(i)
t − η̂t

(i)(r
(i)
t + λw

(i)
t)

end for

where ηt is the global learning rate. However, simply adjusting the learning rates on-the-fly would
easily yield training failure due to the transitory large variance ratio that impedes the optimization.
We propose a momentum update to address this problem. Let α ∈ [0, 1) be a momentum coefficient,
we have:

µ
(i)
t ← αµ

(i)
t−1 + (1− α)µ

(i)
t , (42)

which can reduce the influence of unstable variance. Note that we update µ
(i)
t each τ iterations.

Based on this, we present AGVM-enabled SGD and AdamW optimizers in Alg. 1, and Alg. 2. In the
practical implementation in extremely-large batch regime (e.g., 10k), we add a small epsilon value

µ
(i)
t =

√
Φ

(1)
t +ϵ

Φ
(i)
t +ϵ

in Eq.(41) to ensure stability and also clip the µ
(i)
t to [0.1, 10].

A.7 Related Work on Dense Visual Predictions

We can divide current deep learning based object detection into two-stage and single-stage detectors.
A network that has a separate module to generate region proposals is termed as a two-stage detector.
These methods try to find an arbitrary number of proposals in an image during the first stage and
then classify and localize them in the second stage, including Faster R-CNN [3], Mask R-CNN [13],
and R-FCN [14]. Single-stage detectors, such as SSD [15] and RetinaNet [16], classify and localize
semantic objects in a single shot using dense sampling. They use predefined boxes/keypoints of
various scales and aspect ratios to localize objects. Some single-stage detectors, like FOCS [17]
can also achieve competitive results with two-stage detectors. In recent years, deep learning models
have yielded a new generation of image segmentation [18, 19] tasks with significant performance
improvements. Different from detection tasks, we can group deep learning segmentation based on
the segmentation goal into semantic segmentation, instance segmentation, and panoptic segmentation.
Semantic segmentation [20, 21] can be seen as an extension of image classification from image level
to pixel level, while instance segmentation [13, 22] can be defined as the task of finding simultaneous
solution to semantic segmentation and object detection. Finally, panoptic segmentation [23, 24, 25]
focus on identifying things and stuff separately, also separating (using different colors) the things of
the same class.

References
[1] H. Qin, S. Rajbhandari, O. Ruwase, F. Yan, L. Yang, and Y. He, “Simigrad: Fine-grained

adaptive batching for large scale training using gradient similarity measurement,” in Advances
in Neural Information Processing Systems, vol. 34, 2021.

[2] J. Wu, W. Hu, H. Xiong, J. Huan, V. Braverman, and Z. Zhu, “On the noisy gradient descent that
generalizes as sgd,” in International Conference on Machine Learning, 2020, pp. 10 367–10 376.

10

[3] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with
region proposal networks,” in Advances in Neural Information Processing Systems, vol. 28,
2015.

[4] A. Défossez, L. Bottou, F. Bach, and N. Usunier, “A simple convergence proof of adam and
adagrad,” arXiv Preprint arXiv:2003.02395, 2020.

[5] T. Wang, Y. Zhu, C. Zhao, W. Zeng, Y. Wang, J. Wang, and M. Tang, “Large batch optimization
for object detection: Training coco in 12 minutes,” in European Conference on Computer Vision,
2020, pp. 481–496.

[6] M. Tan and Q. Le, “Efficientnetv2: Smaller models and faster training,” in International
Conference on Machine Learning, 2021, pp. 10 096–10 106.

[7] J. Liu, H. Li, G. Song, X. Huang, and Y. Liu, “Uninet: Unified architecture search with
convolution, transformer, and mlp,” arXiv Preprint arXiv:2110.04035, 2021.

[8] K. Chen, J. Pang, J. Wang, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Shi, W. Ouyang et al.,
“Hybrid task cascade for instance segmentation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019, pp. 4974–4983.

[9] J. Wang, W. Zhang, Y. Zang, Y. Cao, J. Pang, T. Gong, K. Chen, Z. Liu, C. C. Loy, and
D. Lin, “Seesaw loss for long-tailed instance segmentation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp. 9695–9704.

[10] Z. Zong, Q. Cao, and B. Leng, “Rcnet: Reverse feature pyramid and cross-scale shift network
for object detection,” in Proceedings of the 29th ACM International Conference on Multimedia,
2021, pp. 5637–5645.

[11] X. Wang, S. Zhang, Z. Yu, L. Feng, and W. Zhang, “Scale-equalizing pyramid convolution for
object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 13 359–13 368.

[12] S. Shao, Z. Li, T. Zhang, C. Peng, G. Yu, X. Zhang, J. Li, and J. Sun, “Objects365: A large-
scale, high-quality dataset for object detection,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 8430–8439.

[13] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 2961–2969.

[14] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-based fully convolu-
tional networks,” in Proceedings of the 30th International Conference on Neural Information
Processing Systems, 2016, pp. 379–387.

[15] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd: Single
shot multibox detector,” in European Conference on Computer Vision, 2016, pp. 21–37.

[16] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in
Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2980–2988.

[17] Z. Tian, C. Shen, H. Chen, and T. He, “Fcos: Fully convolutional one-stage object detection,”
in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp.
9627–9636.

[18] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and D. Terzopoulos, “Image
segmentation using deep learning: A survey,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021.

[19] S. Ghosh, N. Das, I. Das, and U. Maulik, “Understanding deep learning techniques for image
segmentation,” ACM Computing Surveys (CSUR), vol. 52, no. 4, pp. 1–35, 2019.

[20] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Semantic
image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834–848,
2017.

11

[21] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2881–2890.

[22] A. M. Hafiz and G. M. Bhat, “A survey on instance segmentation: state of the art,” International
Journal of Multimedia Information Retrieval, vol. 9, no. 3, pp. 171–189, 2020.

[23] A. Kirillov, R. Girshick, K. He, and P. Dollár, “Panoptic feature pyramid networks,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp.
6399–6408.

[24] Y. Xiong, R. Liao, H. Zhao, R. Hu, M. Bai, E. Yumer, and R. Urtasun, “Upsnet: A unified
panoptic segmentation network,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 8818–8826.

[25] Z. Li, W. Wang, E. Xie, Z. Yu, A. Anandkumar, J. M. Alvarez, T. Lu, and P. Luo, “Panoptic
segformer,” arXiv preprint arXiv:2109.03814, 2021.

12

	Appendix
	Gradient Variance Estimation
	Overview of Gradient Variance of Different Pipelines
	Ablation Study of Variance Misalignment on Faster R-CNN
	Proof of Convergence Rate
	Convergence of AGVM+SGD
	Convergence of AGVM+AdamW
	Linear Speedup Property of AGVM

	Parameter Settings
	Settings for Different Visual Predictors
	Settings for Billion-level UniNet

	Overview of AGVM-enabled SGD and AdamW
	Related Work on Dense Visual Predictions

