
Appendix Outline

A Proofs for Section 5.

B Additional Details for Experiments in Section 4.

C RCAD can Improve Robustness to Adversarial/Natural Distribution Shifts.

D Analyzing RCAD vs. ERM in a Non-linear Toy Classification Setup.

A Proofs for Section 5

In Section 5 of the main paper we analyze the performance of our method RCAD and compare it to
empirical risk minimization (ERM) in a simplified Binary classification setting. Our investigation
reveals that one reason for the better test performance of RCAD could be its ability to unlearn noisy
features that are spuriously correlated with the labels in the finite sampled training dataset. This
is identified under some conditions over the data distribution (noise conditions) and specifically
when the RCAD objective is optimized using iterations of projected gradient ascent initialized with a
decent (better than random) classifier. This implies that the initial classifier (initialized with the ERM
solution in our case) has learnt the true feature to some extent. The solution obtained at the end of
projected gradient ascent iterations on the RCAD objective maximizing entropy along adversarial
directions, is termed as the RCAD solution. We also matched some of our theoretical results to trends
observed empirically with respect to both the decision boundary learnt by RCAD vs. ERM classifier
and the effect of the step size α on the performance of RCAD (Figure 5).

In this section we present proofs for our theoretical claims in Section 5. For the benefit of the reader,
we begin by redefining our setup with some additional notation, followed by technical details on how
the new examples are generated by RCAD in this setup. We then provide an informal proof outline
for our main result in Theorem 5.3.

Setup. We consider a binary classification problem with a joint distribution D over (x, y) ∈
X × {0, 1} where X ⊆ Rd+1 with x = [x1,x2]

⊤, x1 ∈ R, x2 ∈ Rd and for some β > 0, D is:

y ∼ Unif{−1, 1}, x1 ∼ N (β · y, σ2
1), x2 ∼ N (0,Σ2)

Σ̃ ≜

(
σ2
1 0
0 Σ2

)
, σw ≜

√
wT Σ̃w, aw ≜

βw1 − γ

σw
(5)

This setup is relevant for our analysis since it captures two kinds of features: x1, which is the true
univariate feature that is predictive of the label y, and x2, which is the high dimensional noise,
that is not correlated with the label under the true distribution D, but w.h.p. is correlated with the
label on finite sampled training dataset D̂ = {(x(i), y(i))}ni=1 ∼ Dn. We wish to learn the class of
homogeneous linear predictorsW ≜ {w ∈ Rd+1 : ⟨w,x⟩ = w1·x1+w2·x2, ∥w∥2 ⩽ 1}. Following
the modifications we make to the RCAD objective in Section 5, and using Lemma 5.1 we arrive at the
following constrained form of the RCAD objective where lγ(w; (x, y)) ≜ max(0, γ − y · ⟨w,x⟩).

max
w
MD̂(w) ≜ ED̂ exp(−|⟨w,x+ α · ∇xlγ(w; (x, y))⟩|)

s.t. ED̂ 1(lγ(w; (x, y)) > 0) ⩽ ρ/2, w ∈ W (6)

Note that the gradient∇xlγ(w; (x, y)) maybe undefined at the margins, when y · ⟨w,x⟩ = γ. Hence,
we rely on subgradients defined in Equation 7. Since, many subgradient directions exist for the
margin points, for consistency, we stick with ∂xlγ(w; (x, y)) = {0} when y · ⟨w,x⟩ = γ. Note,
that the set of points in X satisfying this equality is a zero measure set. Thus, by replacing the log-
likelihood loss with the margin loss and defining its gradients in this way, it is clear that RCAD would
not perturb any data points lying on or beyond the margin.

16

∂xlγ(w; (x, y)) =

{ {−yw} y · ⟨w,x⟩ < γ
{−κ · yw | κ ∈ [0, 1]} y · ⟨w,x⟩ = γ
{0} otherwise

(7)

The reformulated RCAD objective in Equation 6 is a non-convex optimization problem with convex
constraints. Thus, different solvers may yield different solutions. The solver we choose to analyze is
a typical one – taking projected gradient ascent steps to maximize the entropy term, starting from an
initialization w(0) that satisfies the constraint in Equation 6, and one where the iterates w(t) continue
to do so after every projection step.

Given the projection operator ΠS onto the convex set S , and learning rate η > 0, an RCAD iteration’s
update rule for w(t) is defined as follows:

w̃(t+1) = w(t) + η · ∇w(t)MD̂(w
(t))

w(t+1) = Π∥w∥2⩽1w̃
(t+1)

Note on projection. For simplicity we shall treat the projection operation as just renormalizing
w̃(t+1) to have unit norm, i.e., ∥w(t+1)∥2 = 1, ∀t ⩾ 0. This is not necessarily restrictive. In fact,
the optimal solution with the lowest test error: w∗ ≜ [1, 0, . . . , 0]

⊤, satisfies ∥w∗∥22 = 1, and thus
lies on the boundary ofW . Thus, we do not lose anything by renormalizing w̃(t+1) to get the next
iterate w(t+1). With this, we are ready to state an informal outline of our proof strategy.

Informal proof outline. Our main approach to prove the claim in Theorem 5.3 can be broken down
and outlined in the following way:

• Lemma A.4: First, we shall rely on typical margin based generalization bounds to show that if
our training loss is low (⩽ ρ/2) and training data size n is large enough, then we can bound the
test error of the ERM solution by some small value ρ with high probability.

• Lemma 5.2: Next we shall use the fact that the test error of the ERM solution is less than ρ, to
prove a lower bound on the true feature weights w1. This tells us that the true feature has been
sufficiently learned, but ERM still depends on the noisy dimensions since ∥w2∥2 ≫ 0, and this
cannot be remedied by ERM without sampling more training data.

• Lemma 5.4: Now, given the ERM solution as the initialization we take steps of projected gradient
ascent on the reformulated RCAD objective in Equation 6. For this procedure, under some
conditions on the noise terms, margin γ and step size α we show that the partial derivative of the
population objectiveMD(w) with respect w1 is along w1 at every step: ⟨∂MD(w(t))

∂w
(t)
1

, w
(t)
1 ⟩ > 0.

On the other hand, we show that the derivative with respect to w2 is sufficiently negatively
correlated with w2 at every step: ⟨∇

w
(t)
2
MD(w

(t)),w
(t)
2 ⟩ < −c1 · ∥w

(t)
2 ∥22. Also, we note that

projecting the iterates to a unit norm ball is sufficient to satisfy the constraints in Equation 6 after
every ascent step.

• Finally, we use the above two sufficient conditions to arrive at the following conclusion: RCAD
gradient ascent iterations onMD(w) monotonically increase the norm along the true feature
(|w(t)

1 | ↑) and monotonically decrease the norm along the irrelevant noisy features (∥w(t)
2 ∥2 ↓),

thereby unlearning the spuriousness. Next, we rely on some uniform convergence arguments
from prior works [7] to show that the previous two points are true even if we approximate the
population gradient ∇wMD(w), with the finite sample approximation ∇wMD̂(w), yielding
the high probability finite sample guarantees in Theorem 5.3.

A.1 Technical Lemmas

In this section we shall state some technical lemmas without proof, with references to works that
contain the full proof. We shall use these in the following sections when proving our lemmas in
Section 5.
Lemma A.1 (Lipschitz functions of Gaussians [63]). Let X1, . . . , Xn be a vector of iid Gaussian
variables and f : Rn 7→ R be L-Lipschitz with respect to the Euclidean norm. Then the random

17

variable f(X)− E[f(X)] is sub-Gaussian with parameter at most L, thus:

P[|f(X)− E[f(X)]| ⩾ t] ⩽ 2 · exp
(
− t2

2L2

)
, ∀ t ⩾ 0.

Lemma A.2 (Hoeffding bound [63]). Let X1, . . . , Xn be a set of µi centered independent sub-
Gaussians, each with parameter σi. Then for all t ⩾ 0, we have

P

[
1

n

n∑
i=1

(Xi − µi) ⩾ t

]
⩽ exp

(
− n2t2

2
∑n

i=1 σ
2
i

)
.

Lemma A.3 (Koltchinskii and Panchenko [29]). If we assume ∀f : X 7→ R ∈ F , supx∈X |f(x)| ⩽
C, then with probability at least 1 − δ over sample D̂ of size n, given lγ(w; (x, y)) as the margin
loss with some γ > 0, andRn(F) as the empirical Rademacher complexity of class F , the following
uniform generalization bound holds ∀f ∈ F ,

ED1(y · ⟨w,x⟩ < 0) ⩽ ED̂1(lγ(w; (x, y)) > 0) + 4
Rn(F)

γ
+

√
log log(4C/γ)

n
+

√
log 1/δ

2n
.

A.1.1 Some useful facts about the erfc (·) function

In this section we define the complementary error function: erfc (x) and look at some useful upper
and lower bounds for erfc (x) when x ⩾ 0, along with the closed form expression for its derivative.
If Φ(x) ≜ Pz∼N (0,1)(z ⩽ x) is the cumulative distribution function of a standard normal, then the
complement Φc(x) = 1− Φ(x), is related to the erfc function in the following way:

Φc(x) =
1√
2π
·
∫
z⩾x

exp
(
−z2/2

)
· dz

erfc (x) = 2 · Φc(
√
2x) =

2√
π
·
∫
z⩾x

exp
(
−z2

)
· dz (8)

The erfc function is continuous and smooth, with its derivative having a closed form expression, as
given by Equation 9. For our calculations we would also need convenient upper and lower bounds
on the erfc function itself, given by Equation 10 and Equation 11 respectively. Full proofs for these
bounds can be found in Kschischang [32].

d

dx

(
erfc

(
x/
√
2
))

= −
√

2

π
· exp

(
−x2/2

)
(9)

erfc

(
x√
2

)
⩽

√
2

π
·
exp

(
−x2/2

)
x

, erfc upper bound when x ⩾ 0 (10)

erfc

(
x√
2

)
⩾ 2

√
2

π
·
exp

(
−x2/2

)
(x+

√
x2 + 4)

, erfc lower bound when x ⩾ 0 (11)

Now, we are ready to begin proving our lemmas in Section 5. We prove them in the same order as
listed in the informal proof sketch provided in Section A.

A.2 Proof of Lemma 5.2

First, we state and prove the following lemma that bounds the generalization gap of l2 norm con-
strained linear predictors trained by minimizing a margin loss on training data.

18

Lemma A.4 (generalization gap). With probability 1−δ over D̂, ∀w ∈ W,

ED [1(y · ⟨w,x⟩ < 0)] ⩽ ED̂ [1(y · ⟨w,x⟩ < γ)] + Õ

β +
√
log(1/δ)∥Σ̃∥op +

√
∥Σ̃∥∗

γ
√
n

 ,

where Õ hides poly-log factors in β, γ, ∥Σ̃∥.

Proof.

The proof is a simple application of the margin based generalization bound in Lemma A.3. For this
we first need to prove the claim in Proposition A.5 which yields a high probability bound over the
function |⟨w,x⟩| : X 7→ R which belongs to our classW when ∥w∥2 ⩽ 1. Then, we shall bound
the empirical Rademacher complexity of the function classW using Proposition A.6. These two high
probability bounds are used to satisfy the conditions for Lemma A.3. Finally, we use a union bound
to show that Proposition A.5, Proposition A.6 along with Lemma A.3 hold true with with probability
⩾ 1− δ, to present a final generalization gap.

In the end, we arrive at a lower bound on training sample size n, indicating the number of samples
that are sufficient for the ERM solution obtained by minimizing the margin loss over the training data
to have test error at most ρ.
Proposition A.5 (high probability bound over |⟨w,x⟩|). If ∥w∥2 ⩽ 1, then with probability ⩾ 1− δ

2 ,
we can bound |⟨w,x⟩| using Lemma A.1,

|⟨w,x⟩| ⩽
√

2∥Σ̃∥op · log
2

δ
+

√
tr
(
Σ̃
)
+ β

Proof.

Since ∥w∥2 ⩽ 1, by Cauchy-schwartz we get |⟨w,x⟩| ⩽ ∥w∥2∥x∥2 ⩽ ∥x∥2. Now we try to get a
high probability bound over ∥x∥2. Since we know that x follows a multivariate Gaussian distribution,
specified by Equation 5, we can use triangle inequality to conclude that ∥x∥2 ⩽ β + ∥Σ̃1/2z∥2 since
x = yβ · [1, 0, . . . , 0]⊤ + Σ̃1/2z, where z ∼ N (0, Id+1).

Hence, all we need to do is get a high probability bound over ∥Σ̃1/2z∥2 which is a function of d+ 1
independent Gaussian variables. Thus, we can apply the concentration bound in Lemma A.1. But
before that, we need to compute the Lipschitz constant for the the function g(z) = ∥Σ̃1/2z∥2 in the
eculidean norm.

|∥Σ̃1/2z1∥2 − ∥Σ̃1/2z2∥2| ⩽ ∥Σ̃1/2(z1 − z2)∥2 ⩽
√
∥Σ̃∥op (12)

Using Lipschitz constant from Equation 12 in Lemma A.1, we arrive at the following inequality
which holds with probability at least 1− δ

2 .

|⟨w,x⟩| ⩽
√

2∥Σ̃∥op · log
2

δ
+ E[∥Σ̃1/2z∥2] + β (13)

We shall simplify E
[
∥Σ̃1/2z∥22

]
in the following way:

E
[
∥Σ̃1/2z∥22

]
= E

[
tr
(
z⊤Σ̃z

)]
= tr

(
Σ̃ E

[
zz⊤

])
= tr

(
Σ̃
)

Now, we can use Jensen: E
[√
∥Σ̃1/2z∥22

]
⩽

√
E
[
∥Σ̃1/2z∥22

]
=

√
tr
(
Σ̃
)

. Applying this result

into Equation 13, we finish the proof for Proposition A.5.

The next step in proving Lemma A.4 is to bound Rn(W) which is the empirical Rademacher
complexity of the class of linear predictors in d + 1 dimensions with l2 norm ⩽ 1. We state an
adapted form of the complexity bound (Proposition A.6) for linear predictors from Kakade et al. [27]
and then apply it to our specific class of linear predictorsW .

19

Proposition A.6 (Rn(W) bound for linear functions [27]). LetW be a convex set inducing the set of
linear functionsF(W) ≜ {⟨w,x⟩ : X 7→ R | w ∈ W} for some input spaceX , bounded in norm ∥·∥
by some value R > 0. Now, if ∃ a mapping h :W 7→ R that is κ-strongly with respect to the dual norm
∥ · ∥∗ and some subsetW ′ ⊆ W takes bounded values of h(·) i.e., {h(w) ⩽ K | w ∈ W ′} for some

K > 0, then the empirical Rademacher complexity of the subsetW ′ given byRn(F(W ′)) ⩽ R
√

2K
κn .

Let ∥ · ∥22 be the function h :W 7→ R in Proposition A.6, and we know that ∥ · ∥22 is 2-strongly convex
in l2 norm. Further, take the standard l2 norm as the norm over X . So, the dual norm ∥ · ∥∗ is also
given by l2 norm. Thus, κ = 2. We also know thatW is bounded in ∥ · ∥2 by 1, based on our setup
definition. Thus, R = 1.

Now, we look at K. While proving Proposition A.5 we proved a high probability bound over ∥x∥2,
which we shall plug into the value of K. Thus, from our choice of h above, and the result in
Proposition A.5 we can conclude that with probability ⩾ 1− δ

2 :

Rn(W) ⩽

√
2∥Σ̃∥op log(2/δ) +

√
tr
(
Σ̃
)
+ β

√
n

(14)

We are now ready to plugin the bounds onRn(W) and |⟨w,x⟩| into the margin based generalization
bound in Lemma A.3, where C takes the value of the bound on |⟨w,x⟩|. We set the sample size n
large enough for Lemma A.3 to hold with probability ⩾ 1− δ

2 . Thus, by union bound the following
is satisfied with probability ⩾ 1− δ.

ED1(y · ⟨w,x⟩ < 0) ⩽ ED̂1(lγ(w; (x, y)) > 0) + Õ

β +
√
∥Σ̃∥op log(1/δ) +

√
tr
(
Σ̃
)

γ
√
n

(15)

Corollary A.7 immediately gives us a sufficient condition on n for the test error of the ERM solution
to be upper bounded by ρ. Note, that from our constraint in Equation 6 we know that the training
error of the ERM solution is at most ρ/2.

Corollary A.7 (sufficient condition on n for ERM test error ⩽ ρ). If n >∼
β2+log(1/δ)·∥Σ̃∥op+∥Σ̃∥∗

γ2ρ2 ,

then the test error of the ERM solution can be bounded by ρ, with probability ⩾ 1− δ over D̂.

Proof.

From the constraint in Equation 6 we know that the training loss on D̂ is at most ρ/2 i.e.,
ED̂ [1(y · ⟨w,x⟩ < 0)] ⩽ ρ/2 in Lemma A.3. If we can upper bound the generalization error by ρ

2
then the result follows. The generalization error is bounded using Equation 15.

This completes our proof of Lemma A.4.

Let µ+ ≜ [β, 0, . . . , 0] ∈ Rd+1 and µ− ≜ [−β, 0, . . . , 0] ∈ Rd+1 and σw be as defined in Equation 5.
If we assume that the test error for some w is sufficiently upper bounded: ED [1(y · ⟨w,x⟩ < 0)] ⩽ ρ,
then we can show that the norm along the true feature w1 is also appropriately lower bounded using
the following sequence of implications:

20

ED [1(y · ⟨w,x⟩ < 0)] ⩽ ρ

=⇒ 1

2
· Ez∼N (0,Id+1)1(⟨w, µ+ + Σ̃1/2z⟩ < 0) +

1

2
· Ez∼N (0,Id+1)1(⟨w, µ− + Σ̃1/2z⟩ > 0) ⩽ ρ

=⇒ 1

2
· Ez∼N (0,σ2

w)1(βw1 + z < 0) +
1

2
· Ez∼N (0,σ2

w)1(−βw1 + z > 0) ⩽ ρ

=⇒ Pz∼N (0,σ2
w)(z > βw1) ⩽ ρ

=⇒ Pz∼N (0,1)

(
z >

β

σw
· w1

)
⩽ ρ

=⇒ 1

2
· erfc

(
β√
2σw

· w1

)
⩽ ρ since, Φc(t) =

1

2
erfc

(
t/
√
2
)

=⇒ w1 ⩾
erfc−1 (2ρ)

β
·
√
2σw ⩾

erfc−1 (2ρ) ·
√

2σmin(Σ̃)

β

This completes our proof of Lemma 5.2.

From Corollary A.7 and the arguments above, we arrive at the high probability result in
Lemma 5.2, i.e., if n >∼

β2+log(1/δ)·∥Σ̃∥op+∥Σ̃∥∗
γ2ρ2 , then with probability ⩾ 1 − δ over D′, w1 ⩾

erfc−1(2ρ)·
√

2σmin(Σ̃)

β .

Corollary A.8 (ERM solution can have non-negligible dependence on w2). For the ERM solution

w, in the worst cast w1 =
erfc−1(2ρ)·

√
2σmin(Σ̃)

β < 1 and given ∥w∥2 = 1, it is easy to see that
∥w2∥2 ≫ 0.

Proof. Assume erfc−1(2ρ)·
√

2σmin(Σ̃)

β ⩾ 1. =⇒ 2ρ ⩽ erfc

(
β/
√
2σmin(Σ̃)

)
. This further implies

ρ ⩽ (1/2) · erfc
(
β/
√
2σ1

)
which is not possible since the optimal test error achieved by w∗ is

(1/2) · erfc
(
β/
√
2σ1

)
and w ̸= w∗.

A.3 Proof of Lemma 5.4

Before proving Lemma 5.4 we derive the closed form expression for the population objectiveMD(w)
in Lemma A.9 which we shall use repeatedly in the sections that follow.

Lemma A.9 (MD(w) closed form). If α ⩾ γ, ∥w∥2 = 1 and if we define

σw ≜
√

w⊤Σ̃w, aw ≜
βw1 − γ

σw
,

then we can write the closed form forMD(w) as:

MD(w) =
1

2
· exp

(
βw1 − α ∥w∥22 +

σ2
w

2

)
· erfc

(
σw + aw√

2

)
+

1

2
· exp

(
−βw1 +

σ2
w

2

)
· erfc

(
σw − aw√

2

)
. (16)

Proof.

Using the definition of the subgradient ∂xlγ(w; (x, y)) in Equation 7, the population objective can
be broken down into the following integrals, where D(x, y) is the measure over the space X × Y
defined by distribution D.

21

MD(w) ≜ ED exp(−|⟨w,x+ α · ∇xlγ(w; (x, y))⟩|)

=

∫
y⟨w,x⟩<γ

exp(−|⟨w,x− αyw⟩|) · D(x, y) +

∫
y⟨w,x⟩⩾γ

exp(−|⟨w,x⟩|) · D(x, y)

=
1

2

∫
⟨w,x⟩>−γ

exp(−|w⊤x+ α ∥w∥22 |) · D(x | y = −1)

}
1⃝

+
1

2

∫
⟨w,x⟩<γ

exp(−|w⊤x− α ∥w∥22 |) · D(x | y = 1)

}
2⃝

+
1

2

∫
⟨w,x⟩⩽−γ

exp(−|w⊤x|) · D(x | y = −1)

}
3⃝

+
1

2

∫
⟨w,x⟩⩾γ

exp(−|w⊤x|) · D(x | y = 1)

}
4⃝

where the final equation uses the fact that y ∼ Unif{−1, 1}. We are also given that the measure
D(x1 | y = −1) for the conditional distribution over x1 given y = −1 has distribution N (−β, σ2

1).
Similarly, D(x1 | y = +1) follows N (β, σ2

1) and measure D(x2) follows N (0,Σ).

Thus,

⟨w,x⟩ | (y = −1) ∼ N (−βw1, σ
2
w)

⟨w,x⟩ | (y = 1) ∼ N (βw1, σ
2
w).

We shall substitute the above into 1⃝, 2⃝, 3⃝, 4⃝, to get:

1⃝ =
1

2

∫
−βw1+σwz>−γ

exp(−| − βw1 + σwz + α ∥w∥22 |) p(z) dz

2⃝ =
1

2

∫
βw1+σwz<γ

exp(−|βw1 + σwz − α ∥w∥22 |) p(z) dz

3⃝ =
1

2

∫
−βw1+σwz⩽−γ

exp(−| − βw1 + σwz|) p(z) dz

4⃝ =
1

2

∫
βw1+σwz⩾γ

exp(−|βw1 + σwz|) p(z) dz

where p(z) ≜ 1√
2π

exp
(
−z2/2

)
is the density of a standard Gaussian random variable. Now we

shall look at the region where each of the four integrals are defined and apply the inequality α ⩾ γ,
which is stated as a condition on the step size α in Lemma A.9. Recall, the definition of aw = βw1−γ

σw

and the condition ∥w∥2 = 1.

Region for 1⃝ : (α ⩾ γ) and (−βw1 + σwz > −γ) =⇒ −βw1 + σwz + α∥w∥22 > 0

Region for 2⃝ : (α ⩾ γ) and (βw1 + σwz < γ) =⇒ βw1 + σwz − α∥w∥22 < 0

Region for 3⃝ : (α ⩾ γ) and (−βw1 + σwz ⩽ −γ) =⇒ −βw1 + σwz ⩽ 0

Region for 4⃝ : (α ⩾ γ) and (βw1 + σwz ⩾ γ) =⇒ βw1 + σwz ⩾ 0

As a result, we can further simplify the expressions into:

22

1⃝ =
1

2

∫
−βw1+σwz>−γ

exp(βw1 − σwz − α ∥w∥22 |) p(z) dz

2⃝ =
1

2

∫
βw1+σwz<γ

exp(βw1 + σwz − α ∥w∥22) p(z) dz

3⃝ =
1

2

∫
−βw1+σwz⩽−γ

exp(−βw1 + σwz) p(z) dz

4⃝ =
1

2

∫
βw1+σwz⩾γ

exp(−βw1 − σwz) p(z) dz

Now we shall note that 1⃝ = 2⃝ and 3⃝ = 4⃝, since z and −z are random variables that have the
same probability distribution N (0, 1). Using the definition of erfc (x) in Equation 8, we get:

MD(w) =
1

2

[
exp

(
βw1 − α ∥w∥22 +

σ2
w

2

)
· erfc

(
σw + aw√

2

)
+

exp

(
−βw1 +

σ2
w

2

)
· erfc

(
σw − aw√

2

)]
.

This completes the proof of Lemma A.9. In the subsections that follow we look at the derivative of
the population objectiveMD(w) with respect to weights w at each time step t of RCAD’s gradient
ascent iterations, specifically how well the direction of the derivative is aligned/misaligned with w.

A.3.1 Deriving and bounding ⟨∂MD(w)
∂w1

, w1⟩.

Using the reformulated expression forMD(w) derived in Lemma A.9, and given that ∥w(t)∥22 =

1 we derive the expression for ∂MD(w(t))

∂w
(t)
1

in Equation 18. Whenever convenient we drop the

dependence on the superscript (t). The following derivation is a simple application of the chain rule
where we used the following:

∂aw
∂w1

=
β + (γ − βw1)

w1σ
2
1

σ2
w

σw
,

∂σw

∂w1
=

w1σ
2
1

σw
.

∂MD(w)

∂w1
=

1

2
exp

(
βw1 +

σ2
w

2
− α

)
·

(
(β − 2αw1) · erfc

(
(σw + aw)/

√
2
)

+
β + (γ − βw1)

w1σ
2
1

σ2
w

σw
·
∂
(
erfc

(
(σw + aw)/

√
2
))

∂aw
+ w1σ

2
1 · erfc

(
(σw + aw)/

√
2
)

+
w1σ

2
1

σw
·
∂
(
erfc

(
(σw + aw)/

√
2
))

∂σw

)

+
1

2
exp

(
−βw1 +

σ2
w

2

)
·

(
− β · erfc

(
(σw − aw)/

√
2
)

+
β + (γ − βw1)

w1σ
2
1

σ2
w

σw
·
∂
(
erfc

(
(σw − aw)/

√
2
))

∂aw
+ w1σ

2
1 · erfc

(
(σw − aw)/

√
2
)

+
w1σ

2
1

σw
·
∂
(
erfc

(
(σw − aw)/

√
2
))

∂σw

)
(17)

Substituting the partial derivatives for erfc (·) from Equation 9 we can rewrite the above equation:

23

∂MD(w)

∂w1
=

1

2
exp

(
βw1 +

σ2
w

2
− α

)
·

(
(β − 2αw1 + w1σ

2
1) · erfc

(
(σw + aw)/

√
2
)

−
√

2

π
·
(β + (γ − βw1)

w1σ
2
1

σ2
w

+ w1σ
2
1)

σw
· exp

(
− (σw + aw)2

2

))

+
1

2
exp

(
−βw1 +

σ2
w

2

)
·

(
(−β + w1σ

2
1) · erfc

(
(σw − aw)/

√
2
)

+

√
2

π
·
(β + (γ − βw1)

w1σ
2
1

σ2
w
− w1σ

2
1)

σw
· exp

(
− (σw − aw)2

2

))
(18)

Now we shall bound the term ⟨w1,
∂MD(w)

∂w1
⟩ and show that ⟨w1,

∂MD(w)
∂w1

⟩ > 0 with high probability
over the dataset D′.

From our assumption on the margin term γ in Theorem 5.3 we can bound aw ⩽ c0, where c0 > 0,

γ + c0σmin(Σ̃) ⩾ β =⇒ γ − βw1 ⩾ −c0σw =⇒ aw ⩽ c0 (19)

=⇒ (βw1 − γ)
w1σ

2
1

σ2
w

⩽ c0 ·
σ2
1√

σmin(Σ̃)

Thus, when β is large enough such that β >∼ σ2
1 , we get (β + (γ − βw1)

w1σ
2
1

σ2
w
− w1σ

2
1) > 0. This is

exactly the assumption regarding the separation between the class means (β) made in Theorem 5.3,
i.e., we are given that β >∼ ∥Σ̃∥op =⇒ β >∼ σ2

1 . Finally, we know that w1 > 0 from our initialization
condition in Lemma 5.2. Thus, when showing ⟨w1,

∂MD(w)
∂w1

⟩ > 0, we can ignore corresponding
terms in Equation 18, and it is sufficient to show:

exp (βw1 − α) ·

(
(βw1 − 2αw2

1 + w2
1σ

2
1) · erfc

(
(σw + aw)/

√
2
)

−
√

2

π
·
(βw1 + (γ − βw1)

w2
1σ

2
1

σ2
w

+ w2
1σ

2
1)

σw
· exp

(
− (σw + aw)2

2

))

+ exp (−βw1) ·

(
(−βw1 + w2

1σ
2
1) · erfc

(
(σw − aw)/

√
2
))

> 0 (20)

First, we will show that aw + σw ⩾ 0. Then, we will prove the critical condition in Equation 21.
This would imply that the term multiplied with exp (βw1 − α) is positive, and since for large enough
β, we get exp (βw1 − α)≫ exp (−βw1), we can recover the inequality in Equation 20.

(βw1 − 2αw2
1 + w2

1σ
2
1) · erfc

(
(σw + aw)/

√
2
)

−
√

2

π
·
(βw1 + (γ − βw1)

w2
1σ

2
1

σ2
w

+ w2
1σ

2
1)

σw
· exp

(
− (σw + aw)2

2

)
> 0 (21)

From Theorem 5.3, we are given that n >∼
β2+log(1/δ)·∥Σ̃∥op+∥Σ̃∥∗

γ2erfc
(
Kα/
√

2σmin(Σ̃)
)2 . Applying Corollary A.7 we get

that βw1 ⩾ Kα at initialization using the following sequence of arguments:

24

n >∼
β2 + log(1/δ) · ∥Σ̃∥op + ∥Σ̃∥∗

γ2erfc

(
Kα/

√
2σmin(Σ̃)

)2 =⇒ ρ ⩽ erfc

 Kα√
2σmin(Σ̃)

=⇒ erfc−1 (ρ)

√
2σmin(Σ̃) ⩾ Kα =⇒ βw1 ⩾ Kα (22)

Now, aw + σw = βw1−γ
σw

+ σw. Since, βw1 ⩾ Kα for a sufficiently large K that we can choose,
and given that the margin γ ⩽ α, it is easy to see that aw + σw > 0. Thus, we can substitute
erfc

(
(σw + aw)/

√
2
)

with its lower bound from Equation 11 into Equation 21 to get:

(βw1 − 2αw2
1 + w2

1σ
2
1) · 2

√
2

π
·

exp
(
−(aw + σw)2/2

)
aw + σw +

√
(aw + σw)2 + 4

−
√

2

π
·
(βw1 + (γ − βw1)

w2
1σ

2
1

σ2
w

+ w2
1σ

2
1)

σw
· exp

(
− (σw + aw)2

2

)
(23)

Simplifying the above expression by taking out common positive terms, we conclude that it is
sufficient to prove the following lower bound, to effectively prove Equation 21.

2(βw1 − 2αw2
1 + w2

1σ
2
1)

aw + σw +
√
(aw + σw)2 + 4

−
(βw1 + (γ − βw1)

w2
1σ

2
1

σ2
w

+ w2
1σ

2
1)

σw

Recall the margin assumption in Theorem 5.3, and the corresponding implication in Equation 19.

Thus, we know that aw ⩽ c0, since aw ⩽ β−γ√
σmin(Σ̃)

. Thus, aw+σw+
√

(aw+σw)2+4

2σw
⩽ c̃ ≜

c0+
√

∥Σ̃∥op+

√
(c0+
√

∥Σ̃∥op)2+4

2
√

σmin(Σ̃)
. Let βw1 ⩾ Kα ⩾ erfc−1 (2ρ) ·

√
2σmin(Σ̃), which is true with

high probability at initialization, as we derived in Equation 22. Thus for some arbitrary constant 10/9
that need only be slightly greater than 1, if

γ < erfc−1 (2ρ) ·
√
2σmin(Σ̃)− β2

(
1− 1

(10/9)c̃

)
· ∥Σ̃∥op

σ2
1

(
erfc−1 (2ρ) ·

√
2σmin(Σ̃)

) (24)

=⇒ γ < βw1 − β2

(
1− 1

(10/9)c̃

)
· ∥Σ̃∥op

σ2
1

(
erfc−1 (2ρ) ·

√
2σmin(Σ̃)

)
=⇒ γ < βw1 − β

(
1− 1

(10/9)c̃

)
· ∥Σ̃∥op
σ2
1w1

< βw1 − β

(
1− 1

(10/9)c̃

)
· σ2

w

w1σ2
1

=⇒ βw1 − γ

σw
· w1σ

2
1

σw
> β

(
1− 1

(10/9)c̃

)
=⇒ w1 ·

βw1 − γ

σw
· w1σ

2
1

σw
> w1 · β

(
1− 1

(10/9)c̃

)
=⇒ βw1 − aw

σ2
1w

2
1

σw
<

9

10

βw1

c̃
(25)

25

Using the definition of c̃ and Equation 25, we can derive the following:

 2βw1

aw + σw +
√
(aw + σw)2 + 4

−
(βw1 + (γ − βw1)

w2
1σ

2
1

σ2
w

σw

⩾

2

aw + σw +
√
(aw + σw)2 + 4

·
(
βw1 − c̃

(
βw1 − aw

w2
1σ

2
1

σw

))
⩾

2

aw + σw +
√
(aw + σw)2 + 4

·
(
βw1 − c̃

9

10

βw1

c̃

)
⩾ c3 · βw1 (26)

for some constant c3 > 0.

Now, let us come back to Equation 23. Under some conditions on γ in Equation 24, we arrived at
the final result in Equation 26. This, further implies that Equation 23 is strictly greater than zero,
when βw1 ⩾ Kα and β >∼ ∥Σ̃∥op, where the former is proven and the latter is assumed. This finally
recovers the critical condition in Equation 21.

Before, we look at proving the final bound in Equation 20, let us quickly revisit the condition on γ

in Equation 24 that is sufficient to make the claims above. If we allow n >∼
β2+log(1/δ)·∥Σ̃∥op+∥Σ̃∥∗

γ2ρ2 ,
then we can allow ρ to be as small as we want for the right hand side in Equation 24 to be positive.
In addition, we can also control the term ∥Σ̃∥op by assuming that it is sufficiently bounded. Thus,
it is not hard to see that for any large enough β, if the training data is large enough and/or noise is
bounded, then there exists a valid value of the margin γ satisfying Equation 24. Hence, in a way this
condition on the margin is quite benign compared to the assumption in Theorem 5.3, which yielded
the upper bound over aw as a consequence of Equation 19.

Given that the bound in Equation 21 is satisfied, we can easily verify that Equation 20 would also
be true since βw1 ⩾ Kα and β >∼ ∥Σ̃∥op. Thus, ∃K0 that is large enough so that for any constant
c′′′ > 0 and α > 0:

exp ((K − 1)α) · c′′′ −Kα · exp (−Kα) > 0, ∀K ⩾ K0

This completes the proof for the first part of Lemma 5.4, i.e., we have shown ⟨w1,
∂MD(w)

∂w1
⟩ > 0 at

initialization, and for any w
(t)
1 ⩾ w

(0)
1 . We will see in the proof of Theorem 5.3 that this inequality is

also true, since |w1| increases monotonically whenever ⟨w1,
∂MD(w)

∂w1
⟩ > 0. Thus, by an induction

argument ⟨w(t)
1 , ∂MD(w(t))

∂w
(t)
1

⟩ > 0, ∀t ⩾ 0. In the following section we look at the second part of

Lemma 5.4, involving∇w2
MD(w).

A.3.2 Deriving and bounding ⟨∇w2
MD(w),w2⟩.

Using the reformulated expression forMD(w) derived in Lemma A.9, and given that ∥w(t)∥22 = 1
we derive the expression for ∇w2MD(w) in Equation 28. The following derivation is a simple
application of the chain rule where we used the following:

∇w2
aw =

(γ − βw1)

σw
· Σw2

σ2
w

, ∇w2
σw =

Σw2

σw
.

26

∇w2MD(w) =
1

2
exp

(
βw1 +

σ2
w

2
− α

)
·

(
erfc

(
(σw + aw)/

√
2
)
· (Σ− 2αId)w2

+
∂
(
erfc

(
(σw + aw)/

√
2
))

∂σw
· Σw2

σw

+
∂
(
erfc

(
(σw + aw)/

√
2
))

∂aw
· (γ − βw1)

σ2
w

Σw2

σw

)

+
1

2
exp

(
−βw1 +

σ2
w

2

)
·

(
erfc

(
(σw − aw)/

√
2
)

+
1

σw
·
∂
(
erfc

(
(σw − aw)/

√
2
))

∂σw

− aw
σ2
w

·
∂
(
erfc

(
(σw − aw)/

√
2
))

∂aw

)
· Σw2 (27)

Substituting the partial derivatives for erfc (·) from Equation 9 we can rewrite the above equation:

∇w2MD(w) =
1

2
exp

(
βw1 +

σ2
w

2
− α

)
·

(
erfc

(
(σw + aw)/

√
2
)
· (Σ− 2αId)w2

−
√

2

π
exp

(
− (σw + aw)2

2

)
· Σw2

σw
+

√
2

π
exp

(
− (σw + aw)2

2

)
· awΣw2

σ2
w

)

+
1

2
exp

(
−βw1 +

σ2
w

2

)
·

(
erfc

(
(σw − aw)/

√
2
)

− 1

σw

√
2

π
exp

(
− (σw − aw)2

2

)
− aw

σ2
w

√
2

π
exp

(
− (σw − aw)2

2

))
· Σw2

(28)

Lemma A.10 (∥∇w2MD(w)∥2 is bounded). Given the expression for∇w2MD(w) in Equation 28,
when ∥w∥2 = 1, and the conditions on γ, α in Theorem 5.3 hold true then ∥∇w2MD(w)∥22 ⩽
c′1∥w2∥22 for some c′1 > 0.

Proof.

Since ∥w∥2 = 1, for any fixed value of β and α, it is easy to see from Equation 28 that the upper
bound on ⟨∇w2MD(w),∇w2MD(w)⟩, will only have terms involving some positive scalar times
∥w2∥22, where the scalar depends on σmin(Σ̃), ∥Σ̃∥op, β, α, γ and c0. Since these are finite and
positive, and erfc is bounded, the scalar is bounded above for any value taken by w. From this, we
can conclude that ∥∇w2MD(w)∥22 ⩽ c′1∥w2∥22 for some c′1 > 0 that is independent of w.

Now, we look at ⟨w2,∇w2
MD(w)⟩ and show that ∃c1 > 0, such that ⟨w2,∇w2

MD(w)⟩ <
−c1 · ∥w2∥22. Since, erfc and exp take non-negative values, and Σ is positive semi-definite covariance
matrix, we note that:

−
√

2

π
·

(
1

2
exp

(
βw1 +

σ2
w

2
− α

)
· w

⊤
2 Σw2

σw
· exp

(
− (σw + aw)2

2

)

+
1

2
exp

(
−βw1 +

σ2
w

2

)
· w

⊤
2 Σw2

σw
· exp

(
− (σw − aw)2

2

))
< 0

Recall Equation 22 where we derived that βw1 ⩾ K for some large K > 0, and we assume
Kα ⩾ Kγ in Theorem 5.3. Thus, aw = βw1−γ

σw
> 0, with high probability given sufficient training

samples. Hence,

−
√

2

π
· 1
2
exp

(
−βw1 +

σ2
w

2

)
· aw
σ2
w

·w⊤
2 Σw2 · exp

(
− (σw − aw)2

2

)
< 0

27

Thus, the only remaining terms are:

1

2
exp

(
βw1 +

σ2
w

2
− α

)
·

(
erfc

(
(σw + aw)/

√
2
)
·w⊤

2 (Σ− 2αId)w2

+

√
2

π
exp

(
− (σw + aw)2

2

)
· aw
σ2
w

w⊤
2 Σw2

)

+
1

2
exp

(
−βw1 +

σ2
w

2

)
· erfc

(
(σw − aw)/

√
2
)
·w⊤

2 Σw2 (29)

Since aw + σw > 0, we use the upper bound from Equation 10 on erfc
(
(σw + aw)/

√
2
)
. Thus,

we realize that if Equation 30 holds true, then we get the desired result: ⟨w2,∇w2
MD(w)⟩ ⩽

−c1∥w2∥22.

1

2
exp

(
βw1 +

σ2
w

2
− α

)
·
√

2

π
· exp

(
− (σw + aw)2

2

)
·
(
w⊤

2

(
Σ

(
1 +

aw
σ2
w

)
− 2αId

)
w2

)
+

1

2
exp

(
−βw1 +

σ2
w

2

)
· erfc

(
(σw − aw)/

√
2
)
·w⊤

2 Σw2 ⩽ −c1∥w2∥22 (30)

Recall our assumption on the step size α in Theorem 5.3: α >∼ ∥Σ̃∥op. Also, from our assumption
on margin γ in Theorem 5.3, we know that γ + c0σmin(Σ̃) ⩾ β, which translates to aw ⩽ c0 using
Equation 19. Since β >∼ ∥Σ̃∥op, we get γ + c0σmin(Σ̃) >∼ ∥Σ̃∥op. When, σmin(Σ̃) is lower bounded

by some positive constant c4, then 1
2

(
∥Σ∥op + c0

σmin(Σ̃)

)
<∼
(
c0σmin(Σ̃) +

c0σmin(Σ̃)
c24

)
<∼ ∥Σ̃∥op.

The margin condition on γ trivially implies this lower bound. Still, let us discuss why this is not a
restricting, rather a necessary condition.

In order for RCAD to identify and unlearn noisy dimensions, it is needed that the feature variance is
not diminishing. When σmin(Σ̃)→ 0, then both the sampled data, and the self-generated examples
by RCAD would have point mass distributions, along certain directions, which can result in some
degenerate cases. Essentially we are assuming the covariance matrix Σ to be positive definite. This is
not a strong assumption and is needed to provably unlearn components along the d noisy dimensions.
If the variance is 0 along some direction, and if the initialization for ERM/RCAD has a non-zero
component along that direction, there is no way to reduce this component to lower values with zero
mean zero variance features along this direction. Thus, Σ ≻ 0. In the case where σ1 = 0, the term
σ2
w would be vanishingly close 0 only when ∥w2∥ → 0 i.e., we are arbitrarily close to w∗.

By choosing α >∼ ∥Σ̃∥op, we can ensure that
(
Σ
(
1 + aw

σ2
w

)
− 2αId

)
is a negative definite matrix with

all negative singular values. Thus, we can show that ∃c′′, c′′′ > 0 wherein, the first term in Equation 30
scales as − exp ((K − 1)α) · c′′∥w2∥22 and the second term scales as c′′′∥w2∥22 · exp (−Kα). Now,
recall Equation 22 where we derived βw1 ⩾ Kα and β >∼ ∥Σ̃∥op. Thus, ∃K0 that is large enough so
that for any constants c1, c′′, c′′′ > 0 and α > 0:

− exp ((K − 1)α) · c′′∥w2∥22 + c′′′∥w2∥22 · exp (−Kα) ⩽ −c1∥w2∥22, ∀K ⩾ K0

Thus, we conclude that ⟨w2,∇w2
MD(w)⟩ ⩽ −c1 · ∥w2∥22, for some c1 > 0. This, completes our

proof for the second part of Lemma 5.4, and by making the same induction argument that we saw
at the end of the previous section, we get ⟨w(t)

2 ,∇
w

(t)
2
MD(w

(t))⟩ ⩽ −c1 · ∥w(t)
2 ∥22, ∀t ⩾ 0. This

completes our proof of Lemma 5.4.

A.4 Proof of Theorem 5.3

From the previous sections we concluded the following results with respect to the population objective
MD(w): (i) ⟨∂MD(w(t))

∂w
(t)
1

, w
(t)
1 ⟩ > 0; and (ii) ⟨∇

w
(t)
2
MD(w

(t)),w
(t)
2 ⟩ < −c1 · ∥w

(t)
2 ∥22. Now,

Lemma A.11 below tells us that there is an appropriate learning rate η such that if we do projected

28

gradient ascent on the population objective MD(w), starting from the initialization satisfying
Lemma 5.2, then the iterate w(T) would be ϵ close to w∗ in T = O

(
log
(
1
ϵ

))
iterations.

Lemma A.11. If Lemma 5.4 is true, then ∃η, such that there is a constant factor decrease in
∥w(t)

2 ∥22 at each time step t, if we perform gradient ascent on the objectiveMD(w) starting from the
initialization in Lemma 5.2. Thus, in T = O

(
log
(
1
ϵ

))
iterations we get:

|w(T)
1 | ⩾

√
1− ϵ2, and ∥w(T)

2 ∥2 ⩽ ϵ.

Proof:

Since, w̃(t+1) = w(t) + η · ∇w(t)MD(w
(t)):

∥w̃(t+1)
2 ∥22 = ∥w(t)

2 + η∇
w

(t)
2
MD(w

(t))∥22

= ∥w(t)
2 ∥22 + η2∥∇

w
(t)
2
MD(w

(t))∥22 + 2η⟨∇
w

(t)
2
MD(w

(t)),w
(t)
2 ⟩

⩽ (1− 2ηc1) · ∥w(t)
2 ∥22 + η2∥∇

w
(t)
2
MD(w

(t))∥22, c1 > 0 from Lemma 5.4

In Lemma A.10 we had identified that ∥∇
w

(t)
2
MD(w

(t))∥22 ⩽ c′1
2∥w(t)

2 ∥22 for some c′1 > 0 using
the expression in Equation 28. Thus,

∥w̃(t+1)
2 ∥22 ⩽ (1− 2ηc1 + η2c′1

2
) · ∥w(t)

2 ∥22 (31)

Thus, for a specific choice of η, one where (1− 2ηc1 + η2c′1
2
) < 1, we get:

∥w̃(t+1)
2 ∥22 ⩽ κ · ∥w(t)

2 ∥22, κ < 1. (32)

Similarly, from w1 update: ∥w̃(t+1)
1 ∥22 = ∥w(t)

1 ∥22 + η2∥∂MD(w(t))

∂w
(t)
1

∥22 +2η⟨∂MD(w(t))

∂w
(t)
1

, w
(t)
1 ⟩. Since

⟨∂MD(w(t))

∂w
(t)
1

, w
(t)
1 ⟩ > 0, we get:

|w̃(t+1)
1 | > |w(t)

1 | (33)

Recall that we re-normalize w̃(t+1), i.e., w(t+1) = w̃(t+1)/∥w̃(t+1)∥2. Hence, from Equation 32 and
Equation 33 we can conclude: ∥w(t+1)

2 ∥22 = (1−Ω(1)) · ∥w(t)
2 ∥22, a constant factor reduction. With a

telescoping argument on ∥w(t+1)
2 ∥22, we would need T = O(log(1/ϵ)) iterations for ∥w(T)

2 ∥22 ⩽ ϵ2.
This completes the proof.

Lemma A.11 furnishes the guarantees in Theorem 5.3 when we perform project gradient ascent with
respect to the population objectiveMD(w). We discussed this setting first since it captures the main
intuition and simplifies some of the calculation. In the next subsection we shall look at the finite
sample case, where RCAD optimizesMD̂(w).

A.4.1 Revisiting Lemma A.11 in a finite sample setting

Note that Lemma A.11 furnished guarantees when we took projected gradient ascent steps on the
population objectiveMD(w). In fact, it gave us limT→∞ ∥w(T)

2 ∥2 = 0 and limT→∞ w
(T)
1 = 1.

But, in practice, we only have access to gradients of the finite sample objectiveMD̂(w), where the
expectation is taken with respect to the empirical measure over training data D̂.

We still follow the same arguments that we used to prove Lemma A.11, but now with sample gradients
that closely approximate the true gradients through some uniform convergence arguments over the
random variable∇wMD̂(w). Then the monotonic results in Lemma 5.4 hold with high probability
if we are given sufficient training data, i.e., n is large enough that ∇wMD̂(w) ≈ ∇wMD(w), ∀w,
along directions w1 and w2. To formalize this notion, we rely on an adapted form of Theorem C.1
in Chen et al. [7]. Although the conditions in our adaptation (Theorem A.12) are slightly different,
the proof technique is identical to that of Theorem C.1 in [7]. Hence, we only present the key ideas
needed to ensure that finite sample approximation does not change the behavior in of w(t) we saw in
Lemma 5.4, and refer interested readers to [7] for more details.

29

Theorem A.12 (finite sample approximation from Chen et al. [7]). Assume that ⟨∂MD(w)
∂w1

, w1⟩ > 0,

⟨∇w2
MD(w),w2⟩ < −c1 · ∥w2∥22, and ∥∇w2

MD(w)∥22 ⩽ c′1
2∥w2∥22, for constants c1, c′1 > 0.

If n = Õ(d∥Σ̃∥op

ϵ2 log(1/δ)) where ϵ = O(c1τ2) for some small τ < 0.5, then with probability 1− δ

over D̂, the empirical and true gradients along w1 and w2 are close:

|⟨∇w1MD(w)−∇w1MD̂(w), w1⟩| ⩽ ϵ

|⟨∇w2
MD(w)−∇w2

MD̂(w),w2⟩| ⩽ ϵ (34)

Furthermore, if the true feature at initialization is dominant i.e., |w(0)
1 | ⩾ 0.5 and if ∥w(t)

2 ∥2 ⩾ τ/2,
then for η = O(c1/c′21) the norm along w2 shrinks by a constant factor: ∥w(t+1)

2 ∥22 ⩽ (1 −
O(c21/c′21))∥w

(t)
2 ∥22. This continues until ∥w(t)

2 ∥2 < τ/2 after which it stabilizes and ∥w(t)
2 ∥2 ⩽ τ

is guaranteed in subsequent iterations.

In Theorem A.12 we allow for some error ϵ in approximating the true gradient with the finite sample
approximation along directions w1 and w2. Note, that this error is much smaller O(c1τ

2), than the
final error tolerated on the norm of w2 which is τ , when τ < 0.5. Essentially, using Lemma C.1
in [7], it is easy to show that Equation 34 holds with probability 1− δ if n = Õ(d∥Σ̃∥op

ϵ2 log(1/δ)),
where Õ hides logarithmic factors in 1/ϵ2. This, allows us to make the following replacements for
our expressions in Lemma A.11 which considered the population version:

⟨∂MD(w)

∂w1
, w1⟩ > 0 ←→ ⟨

∂MD̂(w)

∂w1
, w1⟩ > −ϵ

⟨∇w2
MD(w),w2⟩ < −c1 · ∥w2∥22 ←→ ⟨∇w2

MD̂(w),w2⟩ < −c1 · ∥w2∥22 + ϵ

∥∇w2
MD(w)∥22 ⩽ c′1

2∥w2∥22 ←→ ∥∇w2
MD̂(w)∥22 ⩽ 2c′1

2∥w2∥22 + 2ϵ2

Thus, when η = O
(

c1
c′21

)
, there is a constant factor decrease in ∥w̃∥22:

∥w̃(t+1)
2 ∥22 ⩽ (1−O(c21/c′21))∥w

(t)
2 ∥22 + 2η2ϵ2 + 2ηϵ

On the other hand since ηϵ is small, there is a significant increase in |w̃1|:

∥w̃(t+1)
1 ∥22 ⩾ ∥w(t)∥22 − 2ηϵ

Thus, any decrease in |w1| is relatively much smaller compared to decrease in ∥w2∥2. After re-
normalization we get:

∥w2
(t+1)∥22 ⩽ (1−O(c21/c′21))∥w

(t)
2 ∥22

Given the constant factor reduction, the number of iterations needed to drive ∥w2
(t+1)∥2 to be less

than τ isO(log(1/τ)). Furthermore, in the finite sample case, we need n = Õ(1
τ4 log(1/δ)) samples

for the ϵ−approximation in Equation 34 to hold where ϵ = O(c1τ2). We can now combine this
requirement on the sample size with the lower bound on n from Corollary A.7 needed to maintain the
initialization conditions in Lemma 5.2 with βw1 ⩾ Kα, to get n >∼

β2+log(1/δ)·∥Σ̃∥op+∥Σ̃∥∗

γ2erfc
(
Kα/
√

2σmin(Σ̃)
)2 +

log 1/δ
τ4 .

This completes the proof for Theorem 5.3.

B Additional Details for Experiments in Section 4

In this section, we first present technical details useful for reproducing our empirical results in
Section 4. We also take a note of the computational resources needed to run the experiments in this
paper. Then we present some tables containing absolute test performance values for some of the plots
in Section 4 where we plotted the relative performance of each method with respect to empirical
risk minimization (ERM). Finally, we present some preliminary results on Imagenet classification
benchmark.

Hyperparameter details. The hyperparameters used to train ADA [62], ME-ADA [73], and adver-
sarial training (FGSM) [14] are identical to those reported in the original works we cite. For label

30

smoothing, we tune the smoothing parameter on the validation set and find ϵ = 0.6 to be optimal
for the smaller dataset of CIFAR-100-2k, and ϵ = 0.2 yields the best results on other datasets. For
RCAD we have two hyperparameters α, λ and find that α = 0.5, λ = 0.02 gives good performance
over all benchmarks except CIFAR-100-2k for which we use α = 1.0, λ = 0.1.

Unless specified otherwise, we train all methods using the ResNet-18 [19] backbone, and to accelerate
training loss convergence we clip gradients in the l2 norm (at 1.0) [71, 18]. We train all models
for 200 epochs and use SGD with an initial learning rate of 0.1 and Nesterov momentum of 0.9,
and decay the learning rate by a factor of 0.1 at epochs 100, 150 and 180 [10]. We select the model
checkpoint corresponding to the epoch with the best accuracy on validation samples as the final
model representing a given training method. For all datasets (except CIFAR-100-2k and CIFAR-100-
10k for which we used 32 and 64 respectively) the methods were trained with a batch size of 128.
For our experiments involving the larger network of Wide ResNet 28-10, we use the optimization
hyperparameters mentioned in Zagoruyko and Komodakis [67].

Computational resources. To run any experiment we used at most two NVIDIA GEFORCE GTX
1080Ti GPU cards. As we mention in the main paper, any run of our method RCAD takes at most
30% more per-batch processing time than ERM with data augmentation on a given dataset. All runs
of RCAD with ResNet-18 backbone on CIFAR-100-2k, CIFAR-100-10k, CIFAR-100, CIFAR-10 and
SVHN take less than 20 hours, while Tiny Imagenet takes about 36 hours. As we mention in Section 6,
one of the main limitations of RCAD is that it increases the running time by 30% compared to ERM
training. But RCAD training is much faster than alternative adversarial data augmentation baselines
ADA and ME-ADA which increase running time by 160% and 185% (over ERM), respectively.

Absolute test performance values. In Table 2, we plot the test performance values for our method
RCAD which maximizes entropy on self-generated perturbations, and adversarial baselines which
minimize cross-entropy on adversarial examples. The plot in Figure 3a is derived from the results
in Table 2. Table 3a compares the performance of RCAD with the most competitive adversarial
baseline ME-ADA, when both methods are used in combination with the label smoothing regularizer.
These results are also presented in Figure 3a and discussed in Section 4.2. For the plot in Figure 4a
comparing baselines ERM and ME-ADA to our method RCAD with the larger network Wide ResNet
28-10 [67], we show the test accuracy values on CIFAR-100(-2k/10k) in Table 3b. Finally, Table 4
presents the test accuracy of each method on the CIFAR-100 test set, when trained on training datasets
of varying sizes. Figure 3b plots the same results relative to ERM. The trends observed here and
in Figure 3b are discussed in Section 4.3. In all the above, we show the mean accuracy and 95%
confidence interval evaluated over 10 independent runs.

Dataset ERM FGSM ADA ME-ADA RCAD
CIFAR-100-2k 28.5± 0.12 27.1± 0.08 28.7± 0.12 29.4± 0.11 30.4± 0.09

CIFAR-100-10k 60.4± 0.09 57.6± 0.09 60.0± 0.10 60.4± 0.08 61.9± 0.06
Tiny Imagenet 66.4± 0.07 62.4± 0.07 66.5± 0.08 66.9± 0.10 67.3± 0.07

CIFAR-10 95.2± 0.04 93.1± 0.04 95.2± 0.03 95.6± 0.05 95.7± 0.04
CIFAR-100 76.4± 0.05 73.2± 0.05 76.5± 0.05 77.1± 0.07 77.3± 0.05

SVHN 97.5± 0.02 95.4± 0.02 97.5± 0.02 97.4± 0.04 97.6± 0.02

Table 2: RCAD consistently outperforms adversarial baselines. In Section 4.2 we investigated the performance
of RCAD against baseline methods that use the adversarially generated perturbations differently, i.e., methods
that reduce cross-entropy loss on adversarial examples. This table presents the test accuracies for RCAD and
other baselines with 95% confidence interval computed over 10 independent runs. Figure 3a plots the results
reported here by looking at the performance improvement of each method over the ERM baseline.

Preliminary results on Imagenet classification. We take a ResNet-50 [19] model pretrained on
Imagenet [9] and measure its top-1 and top-5 test accuracy. Next, we tune this pretrained ResNet-50
model, using the optimization hyperparameters from Yun et al. [66]. We refer to the model produced
by this method as “Finetuned with ERM”. We compare the test accuracies for these two models on
the Imagenet test set with the test accuracy of the model that is obtained by finetuning the pretrained
ResNet-50 model with the RCAD objective in Equation 2 (“Finetuned with RCAD”). Results for this
experiment can be found in Table 5. We do not finetune RCAD hyperparameters α, λ on Imagenet,
and retain the ones used for the TinyImagenet benchmark. We faced issues running experiments
for the competitive but expensive adversarial baseline ME-ADA since the GPU memory needed to
run ME-ADA on Imagenet exceeded the limit on our GPU cards. Mainly for these two reasons,

31

Dataset ME-ADA+LS RCAD+LS
CIFAR-100-2k 30.5± 0.13 32.2± 0.11

CIFAR-100-10k 61.15± 0.07 63.1± 0.08
Tiny Imagenet 67.1± 0.08 67.9± 0.07

CIFAR-10 95.65± 0.04 95.7± 0.03
CIFAR-100 77.8± 0.06 79.1± 0.06

SVHN 97.42± 0.04 97.6± 0.02

(a)

Dataset ERM ME-ADA RCAD
C100-2k 30.2± 0.10 31.8± 0.07 32.3± 0.08

C100-10k 62.5± 0.07 62.6± 0.08 62.9± 0.05
C100 81.2± 0.07 81.0± 0.07 81.4± 0.06

(b)

Table 3: (Left) RCAD outperforms adversarial baselines even when combined with existing regularizers.
We compare the performance of RCAD and ME-ADA when both methods are trained with label smoothing
(smoothing parameter ϵ = 0.2). We find that label smoothing improves the performance of both methods, but the
benefit of RCAD still persists. Figure 3a also plots the same results, relative to the performance of ERM. (Right)
RCAD can outperform baselines when used with larger backbones. Here, we train our method RCAD and
baselines ERM, ME-ADA with the larger architecture Wide ResNet 28-10 on CIFAR-100 (C100), CIFAR-100-
2k (C100-2k) and CIFAR-100-10k (C100-10k) benchmarks. We find that while the performance gains of RCAD
over ME-ADA and ERM are higher with the ResNet-18 backbone, RCAD continues to outperform them here as
well. Figure 4a also plots the same results, relative to the performance of ERM.

Dataset size ERM LS FGSM ME-ADA RCAD
500 11.9± 0.06 13.5± 0.08 13.2± 0.06 13.1± 0.06 14.8± 0.08

1,000 18.9± 0.07 19.7± 0.07 18.4± 0.08 18.6± 0.08 21.3± 0.05
2,000 28.5± 0.05 29.2± 0.07 27.1± 0.07 29.4± 0.05 30.4± 0.05
5,000 52.2± 0.07 52.7± 0.06 50.9± 0.07 51.4± 0.06 53.6± 0.05

10,000 60.4± 0.07 61.5± 0.06 57.6± 0.06 60.4± 0.07 61.9± 0.06
50,000 76.4± 0.07 77.4± 0.08 73.2± 0.08 77.1± 0.07 77.7± 0.06

Table 4: RCAD is more effective than other existing regularizers in low data regime. We evaluate the
effectiveness of RCAD over other baseline regularizers as we decrease the size of the training data for CIFAR-
100. We find that the performance gain from using RCAD is higher as training data size reduces, possibly
since RCAD is more robust to spurious correlations in the training data (compared to other baselines), and deep
models are more vulnerable to such correlations in the low data regime [68]. Figure 3b also plots the same
results, relative to the performance of ERM.

we note that our results on the Imagenet benchmark are preliminary. Nevertheless, the results are
promising since we see an improvement in test accuracy when we finetune the pretrained model with
our RCAD objective as opposed to the standard cross-entropy loss as part of the ERM objective. The
improvement is more significant for top-1 test accuracy.

Test Accuracy Pretrained ResNet-50 Finetuned with ERM Finetuned with RCAD
top-1 69.81± 0.07% 77.45± 0.05% 77.76± 0.06%
top-5 89.24± 0.06% 93.21± 0.04% 93.29± 0.05%

Table 5: Preliminary results on Imagenet classification. We compare the performance of a pretrained ResNet-
50 model, with the models obtained by finetuning the pretrained model with either the cross-entropy loss
(finetuned with ERM) or the RCAD objective (finetuned with RCAD). We show the mean accuracy and 95%
confidence interval evaluated over 7 independent runs.

Comparisons with Virtual Adversarial Training [37]. In Section 4.3 we find that RCAD is most
effective in low-data regimes. Hence, we would like to compare it with semi-supervised methods that
regularize models trained on a small fraction of labeled data, with unsupervised objectives on a larger
set of unlabeled data. In the context of using adversarially generated examples, we compare RCAD
with Virtual Adversarial Training [37] (VAT) which makes the model’s predictive distribution robust
to small perturbations on a given input. Note that the VAT regularizer does not require supervision
(true label). For a fair comparison, we adapt RCAD to the semi-supervised setting with the objective in
Equation 35, where the labeled and unlabeled sets of data points are denoted as D̂l and D̂u respectively.
In addition to optimizing our objective in Equation 2 on D̂l, we optimize the entropy term on the
unlabeled points in D̂u. For each example in D̂u, we simply maximize entropy on its corresponding

32

CIFAR-100-2k CIFAR-100-10k
VAT [37] 32.74± 0.06% 62.81± 0.06%

RCAD 33.03± 0.05% 62.98± 0.05%

Table 6: Comparing RCAD with semi-supervised baseline in low-data regime: On CIFAR-100-2k and
CIFAR-100-10k we train with the semi-supervised algorithm Virtual Adversarial Training (VAT) [37] and
compare the test performance with a model that is trained with the semi-supervised form of the RCAD objective
(Equation 35). The 95% confidence intervals are obtained by evaluating the test performance of models from 10
independent runs for both methods.

OOD example generated using Equation 1 with the main difference being that we treat the model’s
predicted label (ŷ) as the true label, similar to what VAT does when generating adversarial examples on
unlabeled data. We run VAT and semi-supervised RCAD on our subsampled CIFAR-100 training sets:
CIFAR-100-2k and CIFAR-100-10k with 2000 and 10,000 labeled training samples respectively. The
rest of the CIFAR-100 training data is treated as the unlabeled set. Our findings in Table 6 indicate that
RCAD improves over VAT by 0.29% and 0.17% on CIFAR-100-2k and CIFAR-100-10k respectively.

argmax
w∈W

ED̂l
[log pw(y | x) + λ · Hw (x− α · ∇x log pw(y | x))]

+ λ · ED̂u
[Hw (x− α · ∇x log pw(ŷ | x))]

where, ŷ = argmax
y∈Y

pw(y | x) (35)

In order to train VAT, we used the original paper authors’ implementation and set hyperparameters α, ϵ
(see Equations 5, 8 in Miyato et al.) to α = 1.0, ϵ = 8.0 for both datasets. RCAD hyperparameters
were set to α = 0.7, λ = 0.1 for CIFAR-100-2k and α = 0.5, λ = 0.02 for CIFAR-100-10k. For
both methods, the respective hyperparameters were tuned using a hold out validation set.

C RCAD can Improve Robustness to Adversarial/Natural Distribution Shifts

Typically, methods for handling distribution shift are different from methods for improving test
accuracy. Prior work has found that increasing robustness to distribution shifts tends to be at odds
with increasing test accuracy: methods that are more robust often achieve lower test accuracy, and
methods that achieve higher test accuracy tend to be less robust [48, 70, 61]. While the main aim of
our experiments is to show that RCAD improves test accuracy, our next set of experiments investigate
whether RCAD is any more robust to distribution shift than baseline methods.

For these experiments on distribution shift, we use the exact same hyperparameters as in the previous
experiments. Better results are likely achievable by tuning the method for performance on these
robustness benchmarks. By reporting results using the exact same hyperparameters, we demonstrate
that the same method might both achieve high in-distribution performance and out-of-distribution
performance.

Method CIFAR-100-2k CIFAR-100 CIFAR-10
Clean FGSM Attack Clean FGSM Attack Clean FGSM Attack

ERM 28.5 ± 0.12 24.7 ± 0.10 76.4 ± 0.05 67.4 ± 0.07 95.2 ± 0.04 88.3 ± 0.03
Adv. Training 27.1 ± 0.08 27.2 ± 0.08 73.2 ± 0.05 73.1 ± 0.04 93.1 ± 0.04 92.9 ± 0.04

ADA 28.7 ± 0.12 27.0 ± 0.08 76.5 ± 0.05 72.7 ± 0.05 95.2 ± 0.03 88.1 ± 0.04
ME-ADA 29.4 ± 0.11 27.6 ± 0.11 77.1 ± 0.07 74.8 ± 0.03 95.6 ± 0.05 93.1 ± 0.04

RCAD 30.4 ± 0.09 28.1 ± 0.10 77.3 ± 0.05 74.5± 0.04 95.7 ± 0.04 93.0± 0.03

Table 7: Robustness to adversarial perturbations compared against in-distribution test accuracy: Clean
(evaluation on iid test data) and Robust test accuracies of adversarial methods (adversarial training (FGSM [14]),
ADA and ME-ADA), ERM and RCAD when the adversary carries out attacks using the Fast Gradient Sign
(FGSM) method when the strength of the attack in l1 norm is 0.05. We show the mean accuracy and 95%
confidence interval evaluated over 10 independent runs.

33

C.1 Robustness to adversarial attacks

We first look at robustness to adversarial attacks, using FGSM [14] as the attack method. The
conventional approach to fending off adversarial attacks is adversarial training, wherein the training
objective exactly matches the testing objective. Thus, adversarial training represents the “gold
standard” for performance on this evaluation. We compare the adversarial robustness of RCAD,
adversarial training, ADA, and ME-ADA in Table 7. Not only does our method achieve higher
(clean) test accuracy than adversarial training on all datasets, but surprisingly it also achieves higher
robust test accuracy on the harder CIFAR-100-2k benchmark where the clean test accuracy of RCAD
is +3% greater than adversarial training, and robust test accuracy is +0.5% better than ME-ADA.
Although, we find that adversarial baselines achieve better robust test accuracy when the training data
is sufficient (e.g., CIFAR-100 and CIFAR-10 in Table 7).

Both ADA and ME-ADA perform some form of adversarial training, so it is not surprising that
they outperform RCAD on this task. We suspect that these methods outperform adversarial training
because they are trained using the multi-step projected gradient descent (PGD) [36], rather than the
one-step FGSM [14] and also have a higher clean test accuracy. While our aim is not to propose a
state-of-the-art method for withstanding adversarial attacks, these preliminary results suggest that
RCAD may be somewhat robust to adversarial attacks, but does so without inheriting the poor (clean)
test accuracy of standard adversarial training.

Ga
us

sia
n

No
ise

Sh
ot

 N
oi

se

Im
pu

lse
 N

oi
se

De
fo

cu
s B

lu
r

Gl
as

s B
lu

r

M
ot

io
n

Bl
ur

Zo
om

 B
lu

r

Sn
ow

Fr
os

t

Fo
g

Br
ig

ht
ne

ss

Co
nt

ra
st

El
as

tic
 Tr

an
sf

or
m

Pi
xe

la
te

JP
EG

 C
om

pr
es

sio
n

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

Standard ERM ME-ADA Our Objective

Figure 6: Robustness to natural shifts in distribution: Plots comparing the performance of standard ERM
training and ME-ADA against our method (RCAD) trained on CIFAR-10 benchmark and tested on various
distribution shifts in the corrupted CIFAR-10-C benchmark.

C.2 Robustness to natural distribution shifts

Our final set of experiments probe robustness to more systematic distribution shifts using the corrupted
CIFAR-10-C dataset [21]. These shifts go beyond the small perturbations introduced by adversarial
examples, and are a more faithful reflection of the sorts of perturbations a machine learning model
might face “in the wild”.

We compare RCAD to standard ERM and ME-ADA on this benchmark; when all methods are trained
on the uncorrupted CIFAR-10 training dataset, but evaluated on different types of corruptions. We
report results in Figure 6. Both RCAD and ME-ADA consistently outperform ERM. On certain
corruptions (e.g., Gaussian noise, glass blur), RCAD and ME-ADA achieve test accuracies that are
around +25% larger than the ERM baseline. We do not notice any systematic difference in the results
of RCAD versus ME-ADA, but note that ME-ADA requires 2× more compute than RCAD because
its adversarial examples require multiple gradient steps to compute.

While the main aim of our experiments has been to show that RCAD achieves higher test accuracy, its
good performance on robustness benchmarks suggests that it may be a simpler yet appealing choice
for practitioners.

34

(a) ERM (b) RCAD (100 epochs) (c) RCAD (200 epochs) (d) RCAD (300 epochs)

Figure 7: RCAD objective learns decision boundary using only generalizable features: We simulate a high-
dimensional non-linear classification problem by projecting a simple 2-d dataset into a 625-dimensional space.
(a) Standard ERM training overfits to this dataset, achieving perfect training accuracy by picking up on spurious
features. Plotting a 2D projection of the decision boundary along the true features, we see that it poorly separates
the data along the generalizable (true) features. (b, c, d) Visualizing our method (RCAD) at different snapshots
throughout training, we see that it converges to the true decision boundary using only the generalizable features,
thereby achieving a higher test accuracy.

D Analyzing RCAD vs. ERM in a Non-linear Toy Classification Setup

In Section 5 we analyse the solution returned by RCAD and compare it to the ERM solution in
a simplified binary classification setting where the hypothesis class consists of linear predictors.
We find that the high dimensional linear decision boundary learnt by ERM depends on the noisy
dimensions that are spuriously correlated with the label on the training data D̂. On the other hand, our
method RCAD corrects this decision boundary by unlearning spurious features. The self-generated
examples by RCAD exemplify the spurious correlations, and maximizing entropy on these examples
helps the model to drive any learnt components along the noisy dimensions to lower values. In this
section, we consider a setup where the true decision boundary is non-linear and the hypothesis class
consists of two-layer neural networks with 128 hidden units and ReLU activations. In order to induce
spurious features in our training data, we stick to high-dimensional inputs.

Typically, in classification problems the true generalizable features span a lower dimensional space
(compared to the ambient dimension) [1]. Ideally, we would like to learn classifiers that depend only
on these few generalizable features, and remain independent of all the other noisy features. However,
training neural networks with the cross-entropy loss and stochastic gradient descent (SGD) often
leads to overfitting on training data since the trained model ends up fitting on noisy features with
high probability [44, 20]. To simulate this phenomenon, we use a d−dimensional toy classification
problem where the true features are given by the first two-dimensions only, while the rest of the d− 2
dimensions are pure noise.

A dataset D̂ of 20,000 training examples is generated by first sampling a two-dimensional vector x̃
with equal probability from one of two classes supported over two different well separated moon
shaped regions (see Figure 7). Here, x̃ is a two dimensional vector with label y ∈ {0, 1}. In our setting,
the input dimension d = 625. Now, in order to construct the final d−dimensional input x for the
classifier using this two dimensional sample x̃, we first append to each sample a vector of (d−2 = 623)
zeros, and then add add Gaussian noise ϵ ∼ N (0, σ2Id) where σ = 0.1. Note that the noise is added
to all dimensions, including the dimensions of the true feature but our results would not change if we
choose to only add noise to the last d− 2 dimensions, which would only make the problem easier.

x ≜ (x̃, 0, · · · , 0︸ ︷︷ ︸
d-2=623 zeros

) + ϵ, ϵ ∼ N (0, σ2Id)

We will measure the in-distribution performance of a classifier, trained on D̂ and evaluated on fresh
examples from the distribution defined above. In our toy setup, the first two dimensions of the data
perfectly explain the class label; we call these dimensions the generalizable (true) features. We are
interested in learning non-linear classifiers (two-layer neural nets) that successfully identify these
generalizable features, while ignoring the remaining dimensions.

Models trained with the standard cross-entropy loss on a fixed dataset D̂ are liable to overfit [68]. A
model can best reduce the (empirical) cross-entropy loss by learning features that span all dimensions,

35

(d, σ) ERM Adv. Training (FGSM) ME-ADA RCAD
(625, 0.10) 80.4% 78.8% 90.9% 94.9%
(625, 0.75) 77.8% 77.9% 84.4% 89.6%

(1000, 0.10) 74.3% 72.0% 83.5% 87.1%

Table 8: In the toy non-linear classification problem, RCAD is found to be more robust to spurious
correlations in the training data. We show the test performance of RCAD vs. baseline methods ERM,
adversarial training (FGSM) and ME-ADA as we vary two parameters: d which is the dimension of the input,
and σ which is the standard deviation of the noise added to every dimension.

including the spurious feature dimensions. Precisely, the model can continue to reduce the cross-
entropy loss on some example x(i) by further aligning some of the weights of its hidden units along
the direction of the corresponding noise ϵ(i), that is part of input x(i).

We start by training a two-layer net on D̂. We train it for 300 epochs of SGD using the standard
empirical cross entropy loss. This model achieves perfect training accuracy (100%), but performs
poorly on the validation set (80.4%). To visualize the learned model, we project the decision boundary
on the first two coordinates, the only ones that are truly correlated with the label on population data.
The decision boundary for this model, shown in Figure 7a, is quite different from the true decision
boundary. Rather than identifying the true generalizable features, this model has overfit to the noisy
dimensions, which are perpendicular to the span of the true features. Training this model for more
epochs leads to additional overfitting, further decreasing the test accuracy.

Next we train with our objective RCAD using the same training dataset. In addition to minimizing
the standard empirical cross entropy loss, our method also maximizes the predictive entropy of
the model on self-generated perturbations that lie along the adversarial directions. Intuitively, we
expect that these new examples will be along the directions of the spurious features, exacerbating
them. This is because adversarial directions have been shown to comprise of spurious features [23].
Thus, in training the model to be less confident on these examples, we signal the model to unlearn
these spurious features. Applying RCAD to this dataset, we achieve a much larger test accuracy
of 94.9%. When we visualize the decision boundary (along span of the true features) in Figure 7d,
we observe that it correctly separates the data. While SGD is implicitly biased towards learning
simple (e.g., linear) decision boundaries [28], our results show that RCAD partially counters this bias,
forcing the model to learn a non-linear decision boundary along the true features and ignoring the
noisy dimensions. Additionally we also train adversarial baselines in this setup and compare the test
accuracies with RCAD in Table 8. We find that RCAD is less vulnerable to spurious correlations
compared to other methods even when we increase the dimensionality of the input or the noise level
in the data generating process, both of which would make models more prone to overfitting. This is
confirmed by the significant drop in the test performance of the ERM baseline.

36

