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Abstract

Supervised learning methods trained with maximum likelihood objectives often
overfit on training data. Most regularizers that prevent overfitting look to increase
confidence on additional examples (e.g., data augmentation, adversarial training),
or reduce it on training data (e.g., label smoothing). In this work we propose a
complementary regularization strategy that reduces confidence on self-generated
examples. The method, which we call RCAD (Reducing Confidence along Ad-
versarial Directions), aims to reduce confidence on out-of-distribution examples
lying along directions adversarially chosen to increase training loss. In contrast to
adversarial training, RCAD does not try to robustify the model to output the origi-
nal label, but rather regularizes it to have reduced confidence on points generated
using much larger perturbations than in conventional adversarial training. RCAD
can be easily integrated into training pipelines with a few lines of code. Despite its
simplicity, we find on many classification benchmarks that RCAD can be added to
existing techniques (e.g., label smoothing, MixUp training) to increase test accu-
racy by 1–3% in absolute value, with more significant gains in the low data regime.
We also provide a theoretical analysis that helps to explain these benefits in simpli-
fied settings, showing that RCAD can provably help the model unlearn spurious
features in the training data.

1 Introduction

Supervised learning techniques typically consider training models to make accurate predictions on
fresh test examples drawn from the same distribution as training data. Unfortunately, it is well
known that maximizing the likelihood of the training data alone may result in overfitting. Prior work
broadly considers two approaches to combat this issue. Some methods train on additional examples,
e.g., generated via augmentations [53, 10, 66] or adversarial updates [14, 36, 4]. Others modify
the objective by using alternative losses and/or regularization terms (e.g., label smoothing [56, 39],
MixUp [69], robust objectives [65, 22]). In effect, these prior approaches either make the model’s
predictions more certain on new training examples or make the distribution over potential models
less certain.

Existing regularization methods can be seen as providing a certain inductive bias for the model, e.g.,
the model’s weights should be small (i.e., weight decay), the model’s predictions should vary linearly
between training examples (i.e., MixUp). In this paper we identify a different inductive bias: the
model’s predictions should be less confident on out-of-distribution inputs that look nothing like the
training examples. We turn this form of inductive bias into a simple regularizer, whose benefits are
complementary to existing regularization strategies. To instantiate such a method, we must be able to
sample out-of-distribution examples. For this, we propose a simple approach: generating adversarial
examples [38, 14] using very large step sizes (orders-of-magnitude larger than traditional adversarial
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Figure 1: Reducing confidence along adversarial directions (RCAD) is a simple and efficient regularization
technique to improve test performance. (Left) For RCAD, examples are generated by taking a large step
(10× typical for adversarial examples) along the gradient direction. We see that generated images thus look
very different from the original, with accentuated spurious components responsible for the model’s flipped
predictions on adversarial images. (Right) RCAD achieves greater test accuracy than data augmentation (DA),
label smoothing (LS), and methods that minimize cross-entropy on adversarial examples: adversarial training
via FGSM [14] and ME-ADA [73].

training [36]). Hence, we first perturb the training points using the training loss gradient, and then
maximize predictive entropy on these adversarially perturbed examples.

In contrast to adversarial training, our method does not try to robustify the model to output the original
label, but rather regularizes it to have reduced confidence on examples generated via a large step
size (Figure 1a). As shown in Figure 1b, this can lead to significant improvements in in-distribution
test accuracy unlike adversarial training [36, 37, 5, 4], which tends to decrease in-distribution test
performance [48, 70, 61]. Compared with semi-supervised learning methods [15, 64], our method
does not require an additional unlabeled dataset (it generates one automatically), and different from
prior works [64, 74] it also trains the model to be less confident on these examples.

As the self-generated samples in our procedure no longer resemble in-distribution data, we are
uncertain of their labels and train the model to predict a uniform distribution over labels on them,
following the principle of maximum entropy [25]. A few prior works [56, 43, 52, 11] have also
considered using the same principle to prevent the memorization of training examples, but only
increase entropy on iid sampled in-distribution labeled/unlabeled data. In contrast, we study the effect
of maximizing entropy on self-generated out-of-distribution examples along adversarial directions.

The main contribution of this work is a training procedure we call RCAD: Reducing Confidence along
Adversarial Directions. RCAD improves test accuracy (for classification) and log-likelihood (for
regression) across multiple supervised learning benchmarks. Importantly, we find that the benefits of
RCAD are complementary to prior methods: Combining RCAD with alternative regularizers (e.g.,
augmentation [53, 66], label smoothing [56], MixUp training [69]) further improves performance.
Our method requires adding ∼5 lines of code and is computationally efficient (with training time at
most 1.3× standard). We provide a theoretical analysis that helps to explain RCAD’s benefits in a
simplified setting, showing that RCAD can unlearn spurious features in the training data, thereby
improving accuracy on unseen examples.

2 Related Work

Below we survey common regularization techniques in machine learning, as well as other methods
that utilize entropy maximization in training for various purposes (differing from our own).

Data augmentation. A common strategy to improve test accuracy (particularly on image tasks) is to
augment the training data with corruptions [53] or surface level variations [10, 66] (e.g., rotations,
random crops). Some methods [37, 36, 14] further augment data with imperceptibly different
adversarial examples or interpolated samples [69]. Others [46, 42] sample new examples from
generative models that model the marginal density of the input distribution. Also related are semi-
supervised methods, which assume access to an extra set of unlabeled data and train the model to
have more confident predictions on them [15, 37]. All these methods minimize entropy [16] on the
augmented or unlabeled data to improve generalization [69, 73]. In contrast, our method maximizes
entropy on perturbed samples along the adversarial direction.
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Table 1: Regularization objectives: We summarize prior works that employ adversarial examples or directly
regularize model’s predictions pw(y | x) along with the scalar hyperparameters (in [·]) associated with each.

name objective

cross entropy minw −
∑

x,y∈D̂ log pw(y | x)

label smoothing [ϵ] [39] minw −
∑

x,y∈D̂

(
(1 − ϵ) log pw(y | x) +

∑
y′ ̸=y

ϵ
|Y|−1

log pw(y′ | x)
)

Adv. training [α] [36] minw −
∑

x,y∈D̂ log pw(y | x − α · sign(∇x log pw(y | x)))

ME-ADA [α, β] [73]
minw −

∑
(x,y)∈D̂∪D̂′ log pw(y | x) where, for a distance metric Cw:(X × Y) × (X × Y) 7→ R

D̂′ ≜ {(x̃, y) | x̃ ≜ supx0
− log pw(x0 | y) + αHw(x0) − βCw((x0, y), (x, y)), ∀(x, y) ∈ D̂}

RCAD (ours) [α, λ] minw
∑

x,y∈D̂ (− log pw(y | x) − λ · Hw(x − α · ∇x log pw(y | x)))

Adversarial training. Deep learning models are vulnerable to worst-case perturbations that can
flip the model’s predictions [14, 50]. Adversarial training was proposed to improve robustness to
such attacks by reducing worst-case loss in small regions around the training samples [36, 33, 48].
More recently, Zhao et al. [73] proposed maximum entropy adversarial data augmentation (ME-
ADA), which uses an information bottleneck principle to identify worst-case perturbations that
both maximize training loss and predictive entropy. Similar to adversarial training ME-ADA still
minimizes cross-entropy to output the same label on new points. There are two key differences
between above methods and RCAD; (i) rather than minimizing cross entropy loss on adversarial
examples, we increase model’s uncertainty on the self-generated examples; and (ii) we take much
larger steps—so large that unlike adversarial images, the generated example is no longer similar
to the original one (Figure 1a). While prior work has successfully used adversarial examples to
improve OOD detection [2] or adversarial robustness [36, 33, 48], we show that these changes allow
our method to improve the standard test accuracy, a metric that adversarial training typically makes
worse [48, 60, 70]. Further, RCAD has a lower (at most 1/5th) computational cost compared to multi-
step adversarial training procedures [73, 70].

Robust objectives. In order to improve robustness to noise and outliers in the data, a common
approach is to modify the objective by considering risk averse loss functions [e.g., 22, 49, 57] or
incorporating regularization terms such as the l2/l1 norms [31, 59]. Our method is similar to these
approaches in that we propose a new regularization term. However, whereas most regularization terms
are applied to the model’s weights or activations, ours is directly applied to the model’s predictions.
Another effective loss function for classification problems is label smoothing [56, 8, 26], which
uniformly increases model’s predictive uncertainty in a region around training samples [12]. In
contrast, RCAD increases entropy only on examples generated along the adversarial direction that
has been shown to comprise of spurious features [23, 7], thereby unlearning them.

Entropy maximization. Finally, we note that our work builds upon prior work that draws connections
between entropy maximization in supervised [52, 11, 43] and reinforcement learning [17]. For
example, Pereyra et al. [43] apply a hinge form of confidence penalty directly on training data which
is similar to label smoothing in principle and performance (Table 2 in [43]). Other works like [11, 52]
also adapt the principle of entropy maximization but do so either on additional unlabeled data or a
subset of the training samples. More recently [45] show that maximizing entropy on interpolated
samples from the same class improves out-of-distribution uncertainty quantification. While we also
minimize cross-entropy loss on training data, in contrast to the above we maximize entropy on
samples generated along the adversarial direction. Our experimental results also span a wider set of
benchmarks and presents significant gains (+1–3%) complementary to methods like label smoothing.
We also theoretically analyze our objective for the class of linear predictors and show how RCAD
can mitigate vulnerability to spurious correlations.

3 RCAD: Reducing Confidence Along Adversarial Directions

We now introduce our regularization technique for reducing confidence along adversarial directions
(RCAD). This section describes the objective and an algorithm for optimizing it; Section 5 presents a
more formal discussion of RCAD and in Section 4 we provide our empirical study.

Notation. We are given a training dataset D̂ ≜
{
(x(i), y(i))

}N
i=1

where x(i) ∈ X , yi ∈ Y , are
sampled iid from a joint distribution D over X ×Y . We use D̂ to denote both the training dataset and
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an empirical measure over it. The aim is to learn a parameterized distribution pw(y | x), w ∈ W
where the learnt model is typically obtained by maximizing the log-likelihood over D̂. Such a solution
is referred to as the maximum likelihood estimate (MLE): ŵmle ≜ argmaxw∈W ED̂ log pw(y | x).
In the classification setting, we measure the performance of any learned solution ŵ using its accuracy
on the test (population) data: ED

[
1(argmaxy′ pŵ(y′ | x) = y)

]
.

Solely optimizing the log-likelihood over the training data can lead to poor test accuracy, since the
estimate ŵmle can overfit on noise in D̂ and fail to generalize to unseen samples. Many algorithms
aim to mitigate overfitting by either designing suitable loss functions replacing the log-likelihood
objective, or by augmenting the training set with additional data (see Section 2). Our main contribution
is a new data-dependent regularization term that will depend not just on the model parameters but
also on the training dataset. We reduce confidence on out-of-distribution samples that are obtained by
perturbing the original inputs along the direction that adversarially maximizes training loss.

In the paragraphs that follow we describe the methodology and rationale behind our objective that
uses the following definition of model’s predictive entropy when Y is a discrete set:

Hw(x) ≜ −
∑
y∈Y

pw(y | x) log pw(y | x).

In cases where Y is continuous, for example in regression tasks, we will use the differential form of
predictive entropy: −

∫
Y pw(y | x) log pw(y | x) dy.

RCAD: Reducing Confidence along Adver-
sarial Directions

def rcad_loss(x, y, α, λ):
loss = − model(x).log_prob(y)
x_adv = x + α * loss.grad(x)
entropy = model(x_adv).entropy()
return loss - λ * entropy

Reducing Confidence Along Adversarial Directions.
The key idea behind RCAD is that models should not only
make accurate predictions on the sampled data, but also
make uncertain predictions on examples that are very dif-
ferent from training data. We use directions that adversar-
ially maximize the training loss locally around the train-
ing points to construct these out-of-distribution examples
that are different from the training data. This is mainly be-
cause adversarial directions have been known to comprise of spurious features [23] and we want to
regularize the model in a way that makes it uncertain on these features. We first describe how these
examples are generated, and then describe how we train the model to be less confident.

We generate an out-of-distribution example x̃ by taking a large gradient of the MLE objective with
respect to the input x, using a step size of α > 0:

x̃ ≜ x− α · ∇x log pw(y | x) (1)

We train the model to make unconfident predictions on these self-generated examples by maximizing
the model’s predictive entropy. We add this entropy term Hw (x̃) to the standard MLE objective,
weighted by scalar λ > 0, yielding the final RCAD objective:

ŵrcad ≜ argmax
w∈W

ED̂ [log pw(y | x) + λ · Hw (x− α · ∇x log pw(y | x))] (2)

In adversarial training, adversarial examples are generated by solving a constrained optimization
problem [36, 48]. Using a first-order approximation, the adversarial example x̃ generated by one of
the simplest solvers [14] has a closed form resembling Equation 1. We note that RCAD is different
from the above form of adversarial training in two ways. First, RCAD uses a much larger step size
(10× larger), so that the resulting example no longer resembles the training examples (Figure 1a).
Second, whereas adversarial training updates the model to be more confident on the new example,
RCAD trains the model to be less confident. Our experiments in Section 4 (Figure 4b) show that
these differences are important for improving test accuracy.

Informal understanding of RCAD. For image classification, image features that are pure noise and
independent of the true label can still be spuriously correlated with the labels for a finite set of iid
drawn examples [54]. Such features are usually termed spurious features [72]. Overparameterized
neural networks have a tendency to overfit on spurious features in the training examples [68, 51]. In
order to generate unrealistic out-of-distribution samples, we pick examples that are far away from
the true data point along the adversarial direction because (i) adversarial directions are comprised of
noisy features that are spuriously correlated with the label on a few samples [23]; and (ii) maximizing
entropy on samples with an amplified feature forces the model to quickly unlearn that feature. By
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Figure 2: Main results on supervised image classification benchmarks: We plot the mean test accuracy and
95% confidence intervals over 10 independent runs for models trained with base methods: Data Augmentation
(DA), Label Smoothing (LS), CutOut/CutMix (CutOut+Mix) augmentation, MixUp and compare them with the
test accuracies of the models trained with the RCAD objective in Equation 2, in addition to the base methods.

using a large step size α we exacerbate the spurious features in our self-generated example x̃. When
we maximize predictive entropy over our generated examples we then force the model to unlearn these
spurious correlations. Hence, the trained model can generalize better and achieve higher prediction
performance on unseen test examples. In Section 5 we build on this informal understanding to present
a more formal analysis on the benefits of RCAD.

4 Experiments: Does RCAD Improve Test Performance?

Our experiments aim to study the effect that RCAD has on test accuracy, both in comparison to and
in addition to existing regularization techniques and adversarial methods, so as to understand the
degree to which its effect is complementary to existing methods.

Benchmark datasets. We use six image classification benchmarks. In addition to CIFAR-10,
CIFAR-100 [30], SVHN [41] and Tiny Imagenet [34], we modify CIFAR-100 by randomly sub-
sampling 2,000 and 10,000 training examples (from the original 50,000) to create CIFAR-100-2k
and CIFAR-100-10k. These smaller datasets allow us to study low-data settings where we expect the
generalization gap to be larger. CIFAR-100(-2k/10k) share the same test sets. If the validation split is
not provided by the benchmark, we hold out 10% of our training examples for validation.

Implementation details2. Unless specified otherwise, we train all methods using the ResNet-18 [19]
backbone, and to accelerate training loss convergence we clip gradients in the l2 norm (at 1.0) [71, 18].
We train all models for 200 epochs and use SGD with an initial learning rate of 0.1 and Nesterov
momentum of 0.9, and decay the learning rate by a factor of 0.1 at epochs 100, 150 and 180 [10]. We
select the model checkpoint corresponding to the epoch with the best accuracy on validation samples
as the final model representing a given training method. For all datasets (except CIFAR-100-2k and
CIFAR-100-10k for which we used 32 and 64 respectively) the methods were trained with a batch
size of 128. For details on algorithm specific hyperparameter choices refer to Appendix B.

Baselines. The primary aim of our experiments is to study whether entropy maximization along
the adversarial direction shrinks the generalization gap. Hence, we explore baselines commonplace
in deep learning that either (i) directly constrain the model’s predictive distribution on observed
samples (label smoothing [39]) or (ii) implicitly regularize the model by training on additional images
generated in an adversarial manner. For the first, our main comparisons are to label smoothing [56]),
standard data augmentation [53], cutout data augmentation [66, 10], and MixUp [69] training. For
the second, we compare with adversarial training[36] that uses FGSM [14] to perturb the inputs.
Additionally, we compare RCAD with two recent approaches that use adversarial examples in
different ways: adversarial data augmentation (ADA) [62] and maximum entropy adversarial data
augmentation (ME-ADA) [73]. We summarize these baselines in Table 1.

2Code for this work can be found at https://github.com/ars22/RCAD-regularizer.
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Figure 3: (Left) How should we use adversarial examples to improve test accuracy? We compare RCAD with
adversarial baselines including label smoothing on adversarial samples (LS on Adv), measuring the improvement
in test accuracy relative to ERM. We also compare RCAD with ME-ADA when combined with label smoothing.
(Right) RCAD is more effective in low-data regime. We compare the test accuracy improvement over ERM for
baselines: Label Smoothing (LS), Data Augmentation (DA), adversarial training, and ME-ADA with RCAD +
LS on different sub-samples of CIFAR-100 training set (0.5k → 50k). We find RCAD achieves the largest gains
in the low data regime. In both plots, we plot the mean and 95% confidence intervals over 10 independent runs.

4.1 How much does RCAD improve test accuracy in comparison and in addition to other
regularization methods?

Figure 2 presents the main empirical findings of RCAD over six image classification benchmarks
and across four baseline regularizers. Across all datasets, we observe that training with the RCAD
objective improves the test accuracy over the baseline method in 22/24 cases. The effects are more
pronounced on datasets with fewer training samples. For example, on CIFAR-100-2k, adding RCAD
on top of label smoothing boosts the performance by ≈ 3%. These results also show that the benefits
of RCAD are complementary to prior methods—RCAD + MixUp outperforms MixUp, and RCAD +
augmentation/smoothing outperforms both. We test for statistical significance using a 1-sided p-value,
finding that p ≪ 1e−3 in 22/24 comparisons. In summary, these results show that our proposed
regularizer is complementary to prior regularization techniques.

4.2 How effectively does RCAD improve test accuracy compared to adversarial training?

Our next set of experiments compares different ways of using adversarial examples. RCAD maximizes
the model’s predictive entropy on unlabeled examples along the adversarial direction (obtained with
a large step-size ≈ 0.5). In contrast, other methods we compare against (Adversarial Training [36],
ADA [62], ME-ADA [62]) minimize the cross entropy loss on examples obtained by adversarially
perturbing the inputs without changing the original labels (using a much smaller step size ≈ 0.05).
Additionally, we look at the baseline that performs label smoothing on these adversarial samples (LS
on Adv) – a relaxed version of RCAD. We evaluate all methods by measuring their test accuracy
improvement over empirical risk minimization (ERM), noting that some of these methods were
proposed to optimize robustness, a different metric. We show results in Figure 3a and note that
RCAD outperforms adversarial training and LS on Adv with small step-sizes (α = 0.02), ADA and
ME-ADA by significant margins on all benchmarks. We numerically verify that RCAD statistically
outperforms the best baseline ME-ADA by computing 1-sided p-values (p=0.009 on CIFAR-10,
p < 1e−4 on others).

Next, we look at LS on Adv with large α = 0.5. Since this is the same value of α used by RCAD for
most datasets, this method is equivalent to performing label smoothing on examples generated by
RCAD. Since label smoothing is a relaxed form of entropy maximization it is not surprising that the
performance of this method is similar to (if not better than) RCAD on a few benchmarks. Finally,
when both RCAD and ME-ADA are equipped with label smoothing, both methods improve, but the
benefit of RCAD persists (p = 0.0478 on CIFAR-10, p < 1e−4 on others).

4.3 How effective is RCAD in the low training data regime?

Since supervised learning methods are more susceptible to overfitting when training samples are
limited [13], we analyze the effectiveness of RCAD in the low-data regime. To verify this, we sample
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Figure 4: RCAD can be used with larger networks and is also effective on regression tasks. (Left) We
compare the improvements in test accuracy (over ERM) for RCAD and ME-ADA when all methods use Wide
ResNet 28-10 [67]. (Center) For CIFAR-100-2k, we show the effect on test accuracy of the step size α that
RCAD takes while generating out-of-distribution examples along the adversarial direction. (Right) We compare
the negative log-likelihood on test samples for RCAD with baselines ERM and ME-ADA on five regression
datasets from the UCI repository. For the above we show the mean and 95% confidence intervals across 10 runs.

small training datasets of size 0.5k, 1k, 2k, 5k and 10k from the 50,000 training samples in CIFAR-
100. The test set for each is the same as that of CIFAR-100. We train the baseline regularizers
and RCAD on each of these datasets and compare the observed improvements in test accuracies
relative to ERM. We show our results for this experiment in Figure 3b. Straight away we observe
that RCAD yields positive improvements in test accuracy for any training dataset size. In contrast, in
line with the robust overfitting phenomena described in Raghunathan et al. [48, 47], Zhang et al. [70],
adversarial training (with FGSM [14]) is found to be hurtful in some settings. Next we observe that
compared to typical regularizers for supervised learning like label smoothing and data augmentation,
the regularization effect of RCAD has a stronger impact as the size of the training data reduces.
Notice that RCAD has a steeper upward trend (right→left) compared to the next best method label
smoothing, while outperforming each baseline in terms of absolute performance values.

4.4 Additional Results and Ablations

In addition to the experiments below on wider architectures, effect of step size α, and regression tasks,
we conduct more analysis and experiments for RCAD (e.g., evaluating its robustness to adversarial
perturbations and distribution shifts). For these and other experimental details refer to Appendix B, C.

Results on a larger architecture. We compare the test accuracies of RCAD and ME-ADA (most
competitive baseline from ResNet-18 experiments) when trained with the larger backbone Wide
ResNet 28-10 [67] (WRN) on CIFAR-100 and its derivatives. We plot these test accuracies relative to
ERM trained with WRN in Figure 4a. Clearly, the benefit of RCAD over ME-ADA still persists albeit
with slightly diminished absolute performance differences compared to ResNet-18 in Figure 3a.

Effect of step size α on test accuracy. In Figure 4b we plot the test accuracy of RCAD on CIFAR-
100-2k as we vary the step size α. We see that RCAD is effective only when the step size is sufficiently
large (> 0.5), so that new examples do not resemble the original ones. When the step size is small
(< 0.5), the perturbations are small and the new example is indistinguishable from the original, as in
adversarial training. Our theory in Section 5 also agrees with this observation.

Results on regression tasks. On five regression datasets from the UCI repository we compare the
performance of RCAD with ERM and ME-ADA in terms of test negative log-likelihood (NLL) (↓ is
better). To be able to compute NLL, we model the predictive distribution pw(y | x) as a Gaussian
and each method outputs two parameters (mean, variance of pw(y | x)) at each input x. For the
RCAD regularizer we use the differential form of entropy. Results are shown in Figure 4c from which
we see that RCAD matches/improves over baselines on 4/5 regression datasets.

5 Analysis: Why Does RCAD Improve Test Performance?

In this section, we present theoretical results that provide a more formal explanation as to why we
see a boost in test accuracy when we regularize a classifier using RCAD. We analyze the simplified
problem of learning l2-regularized linear predictors in a fully specified binary classification setting.
Specifically, our analysis will show that, while linear predictors trained with standard ERM can have
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Figure 5: RCAD corrects ERM solution: (Left) We plot the training data and high-dimensional decision
boundaries for all three estimates ŵerm and ŵrcad with α = 0.01, 0.70. Here, we plot the linear boundary
projected onto the set of planes {x1, xi}i=9

i=2 spanned by the true feature x1 and noisy features x2, . . . , x8.
Across the ERM and RCAD training iterations, we plot the weight norms along the true feature |w1| and noisy
dimensions ∥w2∥2 in the (Center) plot, and on the (Right) we plot the train/test accuracies.

a high dependence on spurious features, further optimization with the RCAD objective will cause the
classifier to unlearn these spurious features.

The intuition behind our result can be summarized as follows: when RCAD generates examples after
taking a large step along adversarial directions, a majority of the generated examples end up lying
close to the decision boundary along the true feature, and yet a portion of them would significantly
depend on the noisy spurious features. Thus, when RCAD maximizes the predictive entropy on
these new examples, the classifier weights that align with the spurious components are driven toward
smaller values. Detailed proofs for the analysis that follows can be found in Appendix A.

Setup. We consider a binary classification problem with a joint distribution D over (x, y) ∈
X × {0, 1} where X ⊆ Rd+1 with x = [x1,x2]

⊤, x1 ∈ R, x2 ∈ Rd and for some β > 0, D is:

y ∼ Unif{−1, 1}, x1 ∼ N (β · y, σ2
1), x2 ∼ N (0,Σ2), and let Σ̃ ≜

(
σ2
1 0
0 Σ2

)
. (3)

We borrow this setup from Chen et al. [7] which analyzes self-training/entropy minimization on
unlabeled out-of-distribution samples. While their objective is very different from RCAD, their setup
is relevant for our analysis since it captures two kinds of features: x1, which is the true univariate
feature that is predictive of the label y, and x2, which is the high dimensional noise, that is not
correlated with the label under the true distribution D, but w.h.p. is correlated with the label on finite
sampled training dataset D̂ = {(x(i), y(i))}ni=1 ∼ Dn. We wish to learn the class of homogeneous
linear predictorsW ≜ {w ∈ Rd+1 : ⟨w,x⟩ = w1 · x1 +w2 · x2, ∥w∥2 ⩽ 1}. For mathematical
convenience we make three modifications to the RCAD objective in Equation 2 that are common
in works analyzing logistic classifiers and entropy based objectives [55, 7]: (i) we minimize the
margin loss lγ(w; (x, y)) ≜ max(0, γ − y · ⟨w,x⟩) (instead of the negative log-likelihood) over D′

with some γ > 0; (ii) we consider the constrained optimization problem in Equation 4 as opposed
to the Lagrangian form of RCAD in Equation 2 [35]; and (iii) we use Lemma 5.1 and replace
Hw(x+α·∇xlγ(w; (x, y))) with exp(−|⟨w,x+α·∇xlγ(w; (x, y))⟩|). Note that the optimal w∗ ∈
W that has the best test accuracy and lowest population margin loss is given by w∗ ≜ [1, 0, . . . , 0]

⊤.

max
w
MD̂(w) ≜ ED̂ exp(−|⟨w,x+ α · ∇xlγ(w; (x, y))⟩|)

s.t. ED̂ 1(lγ(w; (x, y)) > 0) ⩽ ρ/2, w ∈ W (4)

Lemma 5.1 ([6, 55], informal). Hw(x) = Hbin((1 + exp(−⟨w,x⟩))−1) where Hbin(p) is the
entropy of Bern(p) distribution. ThusHw(x) ≈ exp(−|⟨w,x⟩|), as both exhibit same tail behavior.

We analyze the RCAD estimate ŵrcad ≜ w(T ) returned after T iterations of projected gradient
ascent on the non-convex objective in Equation 4, initialized with w(0) satisfying the constraints
in Equation 4. Given the projection ΠS onto the convex set S, and learning rate η > 0, the update
rule for w(t) is as follows: w̃(t+1) = w(t) + η · ∇w(t)MD̂(w), and w(t+1) = Π∥w∥2⩽1w̃

(t+1).
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Since the initialization w(0) satisfies the constraint in Equation 4, it has a low margin loss on training
samples and using margin based generalization gaps [27] we can conclude w.h.p. w(0) has low test
error (⩽ ρ). This, in turn tells us that w(0) should have learnt the true feature x1 to some extent
(Lemma 5.2). Intuitively, if the classifier is not trained at all, then adversarial directions would be less
meaningful since they may include a higher component of the true feature x1, as opposed to noisy x2.
To obtain w(0), we simply minimize loss lγ on D̂ using projected (onto ∥w∥2 ⩽ 1) gradient descent
and the ERM solution ŵerm serves as the initialization w(0) for RCAD’s gradient ascent iterations.
Note that ŵerm still significantly depends on spurious features (see Figure 5). Furthermore, this
dependence is unavoidable and worse when n is small, or when the noise dimension d is large.

Lemma 5.2 (true feature is partially learnt before RCAD). If w(0) satisfies constraint in Equation 4,

and when n >∼
β2+log(1/δ)·∥Σ̃∥op+∥Σ̃∥∗

γ2ρ2 , with probability 1− δ over D̂, w
(0)
1 ⩾ erfc−1(2ρ)·

√
2σmin(Σ̃)

β .

We are now ready to present our main results in Theorem 5.3 which states that after T = O(log(1/ϵ))
gradient ascent iterations of optimizing the RCAD objective ŵrcad is ϵ close to w∗, since it unlearns
the spurious feature (∥w(T )

2 ∥2 ⩽ ϵ) and amplifies the true feature (|w(T )
1 | ⩾

√
1− ϵ2). Note that

Theorem 5.3 suggests a minimum step size α in arriving at a sufficient condition for RCAD to unlearn
spuriousness and improve test performance This is also in line with our empirical findings (Figure 4b).
Since α = Θ(γ), most of the points generated by RCAD lie close to the decision boundary along x1,
except for the ones with noisy features that are correlated with the classifier weights.

Theorem 5.3 (ŵrcad → w∗). If β = Ω(∥Σ̃∥op) and ∃ c0,K > 0, such that β >∼ α >∼ max(γ, ∥Σ̃∥op)
and γ + c0 · σmin(Σ̃) ⩾ β, then with n >∼

β2+log(1/δ)·∥Σ̃∥op+∥Σ̃∥∗

γ2erfc
(
Kα/
√

2σmin(Σ̃)
)2 + log 1/δ

ϵ4 , after T = O (log(1/ϵ))

gradient ascent iterations, |w(T )
1 | ⩾

√
1− ϵ2 and ∥w(T )

2 ∥2 ⩽ ϵ, with probability 1− δ over D′.

The key idea behind our guarantee above is an inductive argument. We show that, if the class
separation β and step size α are sufficiently larger than any noise variance, then RCAD monotonically
increases the weight norm along the true feature and monotonically decreases it along the noisy
dimensions with each gradient ascent update. This is because at any given instant the gradient of
RCAD objectiveMD(w) with respect to w1 always points in the same direction, while the one with
respect to w2 is sufficiently anti-correlated with the direction of w2. We formalize this argument
in Lemma 5.4. It is also easy to see why the update will improve test accuracy monotonically, thus
satisfying the constraint in Equation 4 with high probability.
Lemma 5.4 (w1,w2 update). If α, β, γ and sample size n satisfy the noise conditions in Theo-
rem 5.3, then ⟨∂MD(w)

∂w
(t)
1

, w
(t)
1 ⟩ > 0, and |w̃(t+1)

1 | > |w(t)
1 |. On the other hand, ∃c1 > 0 such that

⟨∇
w

(t)
2
MD(w

(t)),w
(t)
2 ⟩ ⩽ −c1 · ∥w

(t)
2 ∥22. Consequently ∃η, such that ∥w̃(t+1)

2 ∥2/∥w(t)
2 ∥2 < 1.

Empirically validating our theoretical results in the toy setup. Now, using the same setup as our
theoretical study, we check if taking the ERM solution and updating it with RCAD truly helps in
unlearning the spurious feature x2 and amplifying the true feature x1. With d = 8, γ = 2.0, β =

0.5, σ1 = 0.1,Σ = Id we collect training dataset D̂ of size 20 according to the data distribution
in Equation 3. First, we obtain the ERM solution ŵerm by optimizing the margin loss on D̂ for
100 projected gradient descent iterations. Then, with ŵerm as initialization we optimize the RCAD
objective in Equation 4 for 100 additional projected gradient ascent iterations to obtain RCAD
estimate ŵrcad. For RCAD, we try both small (α = 0.01) and large (α = 0.7) values of the step size.
Using the results of this study in Figure 5 we shall now verify our main theoretical claims:

(i) RCAD unlearns spurious features learnt by ERM (Theorem 5.3): RCAD training with large
step size α = 0.7 corrects ERM’s decision boundaries across all noisy dimensions i.e., ŵrcad has
almost no dependence on noisy dimensions {xi}i=8

i=2 (Figure 5a). On the other hand, the ERM solution
has a significant non-zero component across all noisy dimensions (except x7).

(ii) RCAD is helpful only when step size is large enough (Theorem 5.3): In Figure 5a we see
that RCAD estimate with small step size α = 0.01 has a higher dependence on spurious features
compared to ERM. Thus optimizing RCAD with a very small α leads to an even poor solution than
ERM. This is because, the perturbed data point still has a significant component of the true feature,
which the model is forced to unlearn when RCAD tries to maximize entropy over the perturbed point.
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(iii) The weight norms |w1| and ∥w2∥2 change monotonically through RCAD iterations
(Lemma 5.4): In Figure 5b we see that the norm along the true feature |w1| increases monotonically
through RCAD iterations, whereas ∥w2∥2 decreases monotonically, until |w1| ≈ 1 and ∥w2∥2 ≈ 0.
Thus, RCAD successfully recovers optimal w∗. Based on this, we also see the test accuracy increase
monotonically through RCAD iterations; reaching 100% by the end of it (Figure 5c). In contrast,
since the ERM solution depends on spurious features, its accuracy does not improve beyond 70% in
the first 100 iterations. We find that training ERM for more iterations only improves training accuracy.

The analysis above explains why RCAD improves test performance in the linear setting and it is
inline with our intuition of RCAD’s ability to unlearn spurious features. To check if our intuition also
generalizes to deeper networks we further study RCAD’s behaviour in a non-linear setting using a
different toy example in Appendix D. Furthermore, while our analysis is restricted to linear classifiers,
linear models can provide a rough proxy for neural network learning dynamics via the neural tangent
kernel (NTK) approximation [24]. This strategy has been used in a number of prior works [40, 58, 3]
and extending the analysis to the NTK setting may be possible in future work.

6 Conclusion
In this paper we propose RCAD, a regularization technique that maximizes a model’s predictive
entropy on out-of-distribution examples. These samples lie along the directions that adversarially
maximize the loss locally around the training points. Our experiments on image classification
benchmarks show that RCAD not only improves test accuracy by a significant margin, but that it
can also seamlessly compose with prior regularization methods. We find that RCAD is particularly
effective when learning from limited data. Finally, we present analyses in a simplified setting to show
that RCAD can help the model unlearn noisy features. Some current limitations of our work are that
RCAD slows training by 30% and our theoretical analysis is limited to the linear case, which would
be interesting directions to address/expand on in future work—particularly in light of the significant
empirical benefits of RCAD for improving generalization.

Acknowledgements. The authors would like to thank Oscar Li, Ziyu Liu, Saurabh Garg at Carnegie
Mellon University and members of the RAIL lab at UC Berkeley for helpful feedback and discussion.
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2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] We provide them in

the Appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We document these in the Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] For our results in Section 4, we provide error bars for the
estimated test performance.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Details in Appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We use public datasets

and cite the creators.
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]
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(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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