
A The Training Algorithm of COP-Gen

Algorithm 1 summarizes the proposed COP-Gen approach.

Algorithm 1 COP-Gen training algorithm.

Input: pretrained generative model G(·), prior distribution pz, batch size K, initialized latent
space navigator Tz(·), data space augmentations Tx, encoder f(·)
Output: trained latent space navigator Tz(·)
for number of training iterations do

for k = 1 toK do
sample zk from noise prior pz
z′
k = Tz(zk) # latent transformation

if d(zk, z′
k) > δ # semantic constraint is violated

return Tz(·), and discard f(·)
xk = G(zk),x

′
k = G(z′

k) # generate images
draw two data augmentations tx∼Tx, t

′
x∼Tx

vk = tx(xk),v
′
k = t′x(x

′
k) # data transformation

hk = f(vk),h
′
k = f(v′

k) # representations
end for
# calculate InfoNCE loss for minibatch
define Lk = − log

exp(sim(hk,h
′
k))∑K

j=1 1[j ̸=k] exp(sim(hk,hj))+
∑K

j=1 exp(sim(hk,h′
j))

L = 1
K

∑K
k=1 Lk

update encoder f to minimize L
update latent space navigator Tz to maximize L

end for
return Tz(·), and discard f(·)

B Implementation of Semantic Consistency Constraint

The semantic consistency constraint, i.e. d(z, z′) ≤ δ, needs to be held during the whole training
process of COP-Gen.

Initialization of z′. In practice, z′ is modeled as z′ = z+Tz(z) instead of z′ = Tz(z), since random
initializing the parameters of Tz may not guarantee d(z, z′) ≤ δ thus violate the semantic constraint.
In addition, for the initialization of parameters in the Tz (MLP), we use the method introduced by
[90], which satisfies the semantic consistency at the beginning of the training process and works well.

Termination of the training process. By default, we decide the termination of COP-Gen training
process by watching the image quality of generated positives, as shown in Figure 3 and discussed
in Section 4.3. In addition, as introduced in Section 3.3, we also monitor the mean and standard
deviation of all trajectories in the batch and compare them with the prior value investigated in [28].
This is used as an auxiliary monitor signal. A more elegant way is to terminate automatically. To this
end, one might introduce a metric for calculating the semantic consistency between G(Tz(z)) and
G(z). The time when it drops dramatically indicates the termination. LPIPS metric [91] or the feature
similarity of pretrained powerful CLIP encoder [92] applied on the triplet {G(z), G(Tz(z)init),
G(Tz(z)curr)} might be reasonable choices and we leave it as the future work.

C More Details and Results of Self-Supervised ImageNet Experiments

C.1 Implementation Details of Reproduced Baselines

We use the code5 (MIT license) of GenRep [28] to implement contrastive learning (both our method
and GenRep baselines). We follow their experimental setting and hyper-parameters as explained
in the last paragraph of Section 4.1 in the main text, except that we perform 100 and 200 (see
Appendix C.3) epochs of contrastive pretrainig on ImageNet-1K to get more convincing results, in
contrast to 20 epochs in GenRep.

5https://github.com/ali-design/GenRep
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The reproduction of InfoMin Aug. [20], NNCLR [25], and Neg FT [53] adopts the same setting
for fair comparisons where their hyper-parameters (learning rates in practice) are grid searched to
make them work. InfoMin Aug. is implemented based on the released code6, where additional
data augmentations (cf. SimCLR Aug.) are adopted. NNCLR uses nearest neighbors in the
learned representation space as the positives, and is implemented based on the open source codebase
Lightly7 [93] (MIT license). Neg FT creates hard (diverse) negatives through feature interpolation,
and is implemented based on the released code8.

C.2 More Visualization Results

Figure 4 in this subsection gives a smoother version of Figure 3 in the main text, where more examples
and training steps are shown for visualizing the evolution of generated anchor-specific positives by
COP-Gen for self-supervised contrastive learning.

Figure 4: Generated anchor-specific positives using ImageNet-1K pretrained unconditional BigBi-
GAN by our COP-Gen approach for self-supervised contrastive learning with respect to the training
steps.

6https://github.com/HobbitLong/PyContrast
7https://docs.lightly.ai/examples/nnclr.html
8https://github.com/DTennant/CL-Visualizing-Feature-Transformation
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C.3 Longer Contrastive Learning and Experiments with Multiple Runs

In this subsection, we perform contrastive learning over 200 epochs under the ImageNet-1K setting,
to see whether our method could benefit from longer training epochs. We compare our COP-Gen
with the baseline SimCLR [11] and the most competitive NNCLR [25]. All these experiments are
repeated for three times. For our method, the repetition is also conducted at the navigator training
(COP-Gen) stage.

The results with standard deviations are reported in Table 6. Although COP-Gen has relatively higher
standard deviations since the termination of navigator training is decided by simply monitoring
the quality of generated positives, it achieves overall good performance against the state-of-the-art
real-image-based method NNCLR. As for longer pretraining, NNCLR could benefit more from that,
since the “true positive rate” of nearest neighbours in the learned representation space increases
gradually as the training goes. Nevertheless, our method, fed with the learned optimal positive pairs,
converges quickly in contrastive pretraining (achieves competitive performance at 100 epochs).

Table 6: Top-1 accuracy of ImageNet-1K linear evaluation with respect to different contrastive
learning epochs. All the reported are our reproduced results.

Method Pretraining
Data Source Tz Tx

Top-1 w.r.t. Pretraining Epochs

100 200

SimCLR [11] ImgaeNet-1K N/A SimCLR Aug. 49.37±0.07 51.89±0.39
NNCLR [25] ImgaeNet-1K N/A SimCLR Aug. 52.18±0.19 53.88±0.25
COP-Gen (ours) BigBiGAN Optimal SimCLR Aug. 52.39±0.85 52.73±0.65

C.4 Combination with Non-Contrastive Frameworks

In this subsection, we check if our contrastive optimal positive generation method could be combined
with non-contrastive frameworks. To do so we change the contrastive self-supervised learning (SSL)
framework SimCLR to the non-contrastive BYOL [70], based on the open source codebase Lightly9

[93]. We conduct experiments on ImageNet-100-scale BigBiGAN synthetic images and evaluate
linear performance on ImageNet-100 (the setting in Section 4.3). Table 7 shows the results. It can be
seen that changing the SSL framework has little impact on pretraining with synthetic dataset. When
combining with non-contrastive BYOL, our COP-Gen could still improve the learned representations,
which empirically indicates that the optimal positive pairs for non-contrastive approaches might
share the same InfoMin principle [20] with contrastive approaches.

Table 7: Top-1 accuracy of ImageNet-100 linear evaluation with respect to different SSL frameworks.

Method SSL Framework Tz Tx Top-1

GenRep [28] SimCLR [11] None SimCLR Aug. 58.26
COP-Gen (ours) SimCLR [11] Optimal SimCLR Aug. 63.96
GenRep [28] BYOL [70] None SimCLR Aug. 59.30
COP-Gen (ours) BYOL [70] Optimal SimCLR Aug. 64.60

C.5 Does the Quality of the Generative Model Affect the Final Result?

In theory, the learned representation can be improved with a perfect pretrained generative model
as the data source. To simply check this, we use instance-conditioned GAN (IC-GAN) [94] as the
data source for self-supervised contrastive learning. IC-GAN learns to model the distribution of the
neighborhood of each data point, and achieves the state-of-the-art performance in Inception Score
(IS) [95] and Fréchet Inception Distance (FID) [96] on unlabeled ImageNet generation. We conduct
experiments on ImageNet-100-scale IC-GAN synthetic images and evaluate linear performance on
ImageNet-100 (the setting in Section 4.3). For our COP-Gen, we train the navigator in its stored-
instance-conditional sub-spaces, to ensure the semantic consistency between generated positives.

9https://docs.lightly.ai/examples/byol.html
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Results compared with training on BigBiGAN generated images are presented in Table 8. Inter-
estingly, for both GenRep baseline and our COP-Gen method, the learned representation does not
benefit much from the “better” pretrained generative model. This might be because of the mismatched
evaluation protocols between generative models’ training and their usage in representation learning.
We hope this could encourage the community to rethink the existing metrics of generative models.
And how to design a prefect generative model for representation learning remains an open issue.

Table 8: Top-1 accuracy of ImageNet-100 linear evaluation with respect to different pretraining data
sources. IS and FID scores are from [39, 94] respectively.

Method
Pretraining Data Source

Tz Tx Top-1
Generative Model Resolution IS (↑) FID (↓)

GenRep [28] BigBiGAN [39] 128 23.3±0.2 28.5±0.4 None SimCLR Aug. 58.26
GenRep [28] IC-GAN [94] 128 48.7±0.2 11.7±0.0 None SimCLR Aug. 58.26

COP-Gen (ours) BigBiGAN [39] 128 23.3±0.2 28.5±0.4 Optimal SimCLR Aug. 63.96
COP-Gen (ours) IC-GAN [94] 128 48.7±0.2 11.7±0.0 Optimal SimCLR Aug. 64.06

D Residual Flow Experiments

In this section, we use MNIST [49] pretrained Residual Flow [43] as the dataset to perform self-
supervised contrastive learning. Since the flow models strictly satisfy the invertibility like Lemma 3.3,
they can be adopted as the pretrained generative models in our COP-Gen method.

Contrastive Learning. We perform contrastive learning using both real and synthetic images with
image size of 28×28. The synthetic dataset contains the same number (60000) of anchor images with
the real MNIST. Data space transformation Tx (including random ±10◦ rotation, ±10% translation,
and 0.9 ∼ 1.1× scaling) is used for both real and synthetic pretraining. The temperature of InfoNCE
loss is set to 0.5. We adopt ResNet-50 as the backbone and report Top-1 linear evaluation accuracy
on MNIST test set. We conduct pretraining and linear evaluation over 100 and 60 epochs respectively,
with batch size of 64, initial learning rates of 0.1 and 0.5 for the real, 0.1 and 1.5 for the synthetic,
taking about 1.5 hours in total on 2 NVIDIA 2080 Ti GPUs.

Gaussian Baseline. Following [28], we perform grid searching for the optimal standard deviation of
the Gaussian transformation. We search over std = [0.01, 0.05, 0.1, 0.2, 0.4] and find the optimal is
0.05, which achieves the highest linear classification accuracy.

COP-Gen Training. The parameters of latent space navigator Tz are initialized to make the
standard deviation of the output vector around 0.01, in order to satisfy the semantic consistency
(Proposition 3.1) at the beginning of the training process. The sizes of the input, hidden and output
layers are all equal to the latent dimension (784-d) of the pretrained Residual Flow. The learning rate
is set to 1× 10−6 for f and 3× 10−7 for Tz. We train over 400K generated samples with batch size
of 64, which takes about 8 hours on 4 NVIDIA 40GB A100 GPUs.

Results. The comparison result is shown in Table 9. Using the positives generated by COP-Gen
outperforms the Gaussian transformation method. Unfortunately, COP-Gen falls slightly behind the
real-image-trained encoder, probably due to the quality gap between the real and synthetic images.

Table 9: MNIST linear evaluation with respect to different ways of contrastive positive pair generation.

Method Tz Tx Top-1

Training on MNIST real images:
SimCLR [11] N/A ✓ 99.35

Training on Residual Flow synthetic images:
GenRep [28] None ✓ 98.54
GenRep [28] Gaussian ✓ 98.83
COP-Gen (ours) Optimal ✓ 98.95
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E Supervised Contrastive Learning

We extend our COP-Gen approach to supervised contrastive learning in this section. Following
[28], we use the pretrained class-conditional BigGAN [36] as the data source. In Appendix E.1, we
introduce an additional latent space based positive10 generation baseline [28], and the theoretical
differences of this approach compared with that of the self-supervised version in the main text. Next,
we present the experimental results in Appendix E.2.

E.1 Method

Random Baseline. To construct supervised contrastive positives using class-conditional generative
models, Jahanian et al. [28] introduces an additional method that randomly draws a sample in the
class-conditional sub-space as the positive. Intuitively, this strategy is quite sensible and optimal to
some extent (Definition 2.1), since the positives are drawn independently and share the same class
label. However, we will show in Appendix E.2.2 that this strategy could not identify and remove
nuisance information in each anchor when compared with our COP-Gen.

COP-Gen. As for our supervised COP-Gen, there are two theoretical differences with the self-
supervised version in the main text. (1) Difference in Proposition 3.1. The semantic consistency
always holds in the supervised setting, since we perform COP-Gen latent transformation learning in
the class-conditional sub-spaces of G, wherein two samples have the same label. (2) No theoretical
guarantee of Lemma 3.3. Theoretically, the invertibility may not hold for the pretrained BigGAN
here. As a consequence, the navigator would be confused since there might be more than one
destination for a fixed starting point. Fortunately, we empirically find COP-Gen still learns meaningful
transformations and outperforms other latent space transformation methods (see Appendix E.2.2).

E.2 Experiments

E.2.1 Experimental Settings

Contrastive Learning. We perform supervised contrastive learning using both real and synthetic
images with image size of 128× 128. For the synthetic data source, we use ImageNet-1K pretrained
class-conditional BigGAN-deep-128 [36] with truncation set to 2.0, and randomly sample 1300
anchor images in 1000 classes (in total 1.3M to match the scale of ImageNet-1K). We use supervised
contrastive loss (the default “out” version) [50] with the temperature set to 0.1, which is optimized
using SGD with momentum of 0.9, learning rate of 0.03 × BatchSize/256, and weight decay of
10−4. We train with batch size of 224 for 100 epochs and decay the learning rate using cosine decay
schedule [55], which takes ∼3 days for ResNet-50 on 2 NVIDIA 2080 Ti GPUs.

COP-Gen Training. We use supervised contrastive loss as the adversarial training objective for f
and Tz, whose learning rates are both set to 1 × 10−5. Note that one of the key successes of the
supervised contrastive loss is due to introducing multiple positives with the same label in the batch
(Table 1 of Sec. 7 in Appendix of [50]). Unfortunately, due to the limitation of GPU resources, we
could not implement such large batch size of 6144 (or at least 2000) for 1000-class ImageNet, to
make sure that each image has at least another one positive comes from a different instance. To
alleviate this, we control the number of classes in the batch to be the half of the batch size (i.e., batch
size is set to 500 with images sampled from 250 classes, to mimic 2000 batch size for 1000-class
ImageNet). We train over 2M generated samples, which takes about 12 hours on 4 NVIDIA 40GB
A100 GPUs.

Methods for Comparison. We compare our COP-Gen with the following positive generation
methods. The baseline SupCon [50] method which leverages data space SimCLR augmentation to
create positive pairs performed on both real and synthetic images. Three latent space transformation
methods introduced in GenRep [28]: Gaussian transformation with standard deviation set to 1.0 here
as in [28], the “steering” method same as the self-supervised version in Section 4.1, and the random
method introduced in Appendix E.1.

10In this section, unless otherwise stated, “positive” refers to the other view of the anchor image, which is
consistent with the self-supervised setting in the main text. We clarify this because in supervised contrastive
learning [50], “positives” usually refer to all samples with the same label in the batch.
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Table 10: ImageNet-1K linear evaluation and PASCAL VOC object detection with different super-
vised contrastive positive generation methods. All the reported are our reproduced results.

Method Tz Tx

ImageNet Linear Evaluation VOC Object Detection

Top-1 Top-5 AP AP50 AP75

Training on ImageNet-1K real images:
SupCon [50] N/A SimCLR Aug. 66.40 87.57 52.18 79.15 56.77

Training on BigGAN synthetic images:
GenRep [28] None SimCLR Aug. 55.93 78.78 51.49 79.09 55.65
GenRep [28] Gaussian SimCLR Aug. 53.67 77.00 45.57 74.56 48.07
GenRep [28] Steering SimCLR Aug. 55.82 78.47 49.35 76.86 53.76
GenRep [28] Random SimCLR Aug. 56.23 79.17 49.07 77.00 52.58
COP-Gen (ours) Optimal SimCLR Aug. 57.16 79.58 52.10 78.46 56.83

E.2.2 Experimental Results

Linear Evaluation and Object Detection. In Table 10 we present the results for linear evaluation
on ImageNet-1K and object detection on PASCAL VOC. The protocols and hyper-parameters are the
same as in Section 4.2 in the main text. Among synthetic-image-trained encoders, COP-Gen ranks
the first on linear evaluation and is on par with others on object detection, indicating that COP-Gen
has produced more proper positive pairs for contrastive learning.

Discussion on Class-Conditional Generative Models. Compared with real-image-based method
SupCon [50], it can be seen that there is a gap between training on real and synthetic labeled images
(66.40 vs 57.16 Top-1 accuracy). This is probably due to the gap of image quality, as well as the lack
of intra-class diversity in BigGAN synthetic images. Similar analysis has been provided in [78], where
a classifier trained on BigGAN synthetic images gets similar results. This phenomenon is different
from that (using synthetic images sampled from a high quality unconditional generative model for
representation learning) in the main text, where the synthetic feature extractor can outperform the real
feature extractor, indicting that there is still a long way to go when using pretrained class-conditional
generative models for representation learning.

Visualization Analysis. In Figure 5, we give visualization comparison to analyze the behavior of our
COP-Gen and other latent transformation methods. Firstly, the “Gaussian” and “Steering” method
cause artifacts in a few images (e.g., row “park bench” column “Gaussian” and “Steering”) due to
some randomly picked aggressive transformations, which violets the input distribution of BigGAN.
Next, let us compare our COP-Gen with the intuitively optimal “Random” method. The “Random”
method looks well at first sight in most posted examples, since it draws independent samples as the
positives. However, this strategy cannot identify and remove the nuisance information in each anchor.
For example, in row “walking stick” and “little blue heron”, “Random” method generates similar
background with “Anchor”, while our learning-based COP-Gen can address this problem as explained
in the main text. Further, during the COP-Gen training process, it learns to create objects that is not
exactly the anchor but relevant to the current class (e.g., the last two rows).These phenomena show
that COP-Gen tries to use additional information to create more diverse positive pairs.

F Computing Resources

Most of our experiments are conducted on 1∼4 NVIDIA 2080 Ti GPUs. On ImageNet-1K, contrastive
learning of 100 epochs takes ∼3 days on 2 GPUs; linear evaluation on single GPU takes about 12
hours. Object detection on VOC takes ∼1 day on 2 GPUs. Training COP-Gen in the latent space of
pretrained BigBiGAN over 200K samples takes about 1 hour on 4 GPUs. Besides, sampling 1.3M
image pairs offline (for latent-space-based approaches) takes about 6 GPU hours.

In addition, a few experiments that require large GPU memory are conducted on 4 NVIDIA 40GB
A100 GPUs. These experiments include COP-Gen training in the latent space of pretrained Resid-
ual Flow and BigGAN. Other details are specified when introducing those experimental settings
respectively.
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Figure 5: Left: Randomly sampled anchors from ImageNet-1K pretrained class-conditional BigGAN
and their corresponding ImageNet labels. Middle: Generated anchor-specific positives by our COP-
Gen approach for supervised contrastive learning with respect to the training steps. Right: Results
by other latent transformation based positive generation methods.
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