
A On Relation between IIEFGs and Weakly Revealing POMGs

In this section, we consider imperfect-information extensive-form games with perfect recall, which
we call IIEFGs for simplicity. In this section, we will show that any IIEFG (of a polynomial size) is
also a weakly revealing POMG (of a polynomial size) that satisfies Assumption 1 with α = 1. As
a result, all the algorithms and the polynomial sample complexity results developed in this paper
immediately apply to learning IIEFGs using polynomial samples.

We note that the reverse is not true, we can easily construct a weakly-revealing POMGs of a
polynomial size that can not be represented by any IIEFGs with a polynomial size, due to the
restriction of tree-structured transition and deterministic transition in IIEFGs. Therefore, polynomial
sample complexity for learning IIEFGs does not imply polynomial sample complexity results for
learning POMGs.

A.1 Representing IIEFGs as 1-Weakly Revealing POMGs

We first introduce the definition of IIEFGs. There are many equivalent formulations of IIEFGs and
here we adopt the formulation used in [24], which allows a clearer comparison to POMGs.
Definition 13. An imperfect information extensive-form game with perfect recall4 is a
POMG(H,S, {Ai}ni=1,
{Oi}ni=1;T,O, µ1; {ri}ni=1) that additionally satisfies the followings:

• Tree-structured transition: for each s ∈ S and h ∈ [H−1], there is at most one state-action
pair (s′,a′) ∈ S × A such that Th(s | s′,a′) 6= 0. In other words, for any sh, there is a
unique history sequence (s1,a1, . . . , sh−1,ah−1) that leads to sh.

• Deterministic emission and perfect-recall: for each s ∈ S and h ∈ [H], ‖Oh(· | s)‖0 = 1.
That is, no state can emit two different observations. Moreover, for each player i and x ∈ Oi,
there is a unique history (oi,1, ai,1, . . . , oi,h = x) up to x from player i’s perspective. This
means player i can always retrieve her previous observations and actions solely from her
current-step observation. In IIEFGs, the observations are usually referred to as information
sets.

• Delayed and state-action-dependent reward: different from our definition of reward in
Section 2, now each ri,h is a random function from S × A to [0, 1], and the rewards are
revealed to each learner only at the end of each episode. In other words, player i gets to
observe rki,1, . . . , r

k
i,H after the kth episode is finished. 5

We now show that any IIEFG can be represented by 1-weakly-revealing POMGs.
Theorem 14. Any IIEFG(H,S, {Ai}ni=1, {Oi}ni=1;T,O, µ1; {ri}ni=1) can be represented as a
POMG with

∏
i |Oi| states, the same action space, the same observation space, stochastic rewards

which depend on the joint observation and action, and satisfying the single-step weakly revealing
condition (Assumption 1) with α = 1.

Theorem 14 shows that any IIEFG of a polynomial size can be efficiently represented by 1-weakly-
revealing POMGs with a polynomial size. Here, we consider the number of player n as constant
when discussing polynomial versus exponential.

Proof of Theorem 14. We consider an equivalent POMG formulation denoted as

(H, S̃, {Ai}ni=1, {Oi}ni=1; T̃, Õ, µ̃1; {r̃i}ni=1)

where we highlight the modified parts in blue and define them as following:

• State and transition. Notice that the joint observation in IIEFGs always satisfies the Markov
property because of the perfect-recall emission structure:

P(oh+1 | o1,a1, . . . ,oh,ah) = P(oh+1 | oh,ah).

4Strictly speaking, we restrict our attention to timeable IIEFGs. We remark that, as argued by [16], non-
timeable IIEFGs can not be implemented in practical systems.

5We WLOG consider the delayed reward since almost all algorithms in the IIEFG literature only use
information sets (i.e., do not use additional information in the intermediate reward) to make decisions.
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Therefore we can view the original joint observation space as the new state space S̃ :=
∏
iOi

and define the transition as

T̃h(s̃′ | s̃,a) := P(oh+1 = s̃′ | oh = s̃,ah = a).

And the initial distribution is defined as µ̃1 := P(o1 = · | s1 ∼ µ1).

• Emission. We define the emission so that player i always observes [s̃h]i (the ith entry in s̃h)
with probability 1 at step h. Formally for all h ∈ [H] and (o, s̃) ∈ O × S̃

Õh(o | s̃) = 1(o = s̃).

Clearly, in this case the joint emission is identity and therefore satisfies the single-step
weakly revealing condition (Assumption 1) with α = 1.

• Reward. As for the reward function, we let r̃i,h := 0 for h ≤ H − 1, and define
r̃i,H(oH ,aH) to be a random variable taking value

∑H
h=1 ri,h(sh,ah) with s1:H sampled

from
P(s1:H = · | o1,a1, . . . ,oH ,aH) = P(s1:H = · | oH ,aH).

Therefore, the reward r̃i,H is a random function of the joint observation and action (oH ,aH)
at step H .

It is direct to see any policy induces the same distribution over o1,a1, . . . ,oH ,aH and enjoys the
same value in this new formulation as in the original IIEFG. As a result, any algorithms designed for
weakly revealing POMGs also apply to learning IIEFGs.

Stochastic reward depending on the joint observation and action Recall when defining POMGs
in Section 2, we let the reward to be a deterministic function of individual observations. Nonetheless,
one can easily verify all our results in this paper still hold without non-trivial modifications when
the reward functions are stochastic and depend on the joint observation and action. As a result, we
conclude that any IIEFG with O observations, S latent states and A actions can be represented as
a 1-weakly revealing POMG with O observations, O latent states and A actions, to which all our
algorithms and theoretical guarantees directly apply.

Regarding the curse of multi-player Note that all the sample complexity results proved in this
paper scale exponentially with respect to n, the number of players. Therefore, they suffer from the
curse of multi-players when n is large. In particular, when specializing these results to the setting
of IIEFGs, we obtain sample complexity scaling with

∏
i∈[n] |Oi| instead of

∑
i∈[n] |Oi| where the

latter is achievable by algorithms specially designed for learning IIEFGs [e.g., 4]. Nonetheless, we
observe that the 1-weakly revealing POMG presentation of IIEFGs derived in Theorem 14 possesses
additional benign structures: the state space is factored and the emission is identity, which could
potentially be exploited to overcome the curse of dimensionality with sharper analysis or different
algorithm design (e.g., incorporate the idea of V-learning style algorithms [21, 38, 11]).

A.2 On Inefficiency of Representing POMGs using IIEFGs

We prove two theorems for representing POMGs using IIEFGs:

• First we show POMGs can be represented by IIEFGs with an exponentially large size. (Ex-
ponential large model is prohibitive in practice, more relevant question is for the polynomial
size).

• Then we prove a lower bound showing that there exists weakly revealing POMGs of constant
size, which can not be represented by any IIEFGs with a polynomial size. This implies
IIEFGs can not efficiently represent POMGs and polynomial results for learning IIEFGs
can not translate into efficiency guarantees for learning POMGs.

Theorem 15. A POMG(H,S, {Ai}ni=1, {Oi}ni=1;T,O, µ1; {ri}ni=1) can be represented as an IIEFG
with (

∏
i |Oi||Ai|)H states, the same action space, (|Oi||Ai|)H observations for each player i ∈ [n].
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Proof of Theorem 15. We consider an equivalent IIEFG formulation denoted as

(H, S̃, {Ai}ni=1, {Oi}ni=1; T̃, Õ, µ̃1; {r̃i}ni=1)

where we highlight the modified parts in blue and define them as following:

• State and transition. We view the entire interaction history as the state of IIEFG, that
is, s̃h = (o1,a1, . . . ,oh). Under such choice of latent state, the transition is clearly tree
structured and satisfies: for any s̃h = (o1,a1, . . . ,oh) and s̃h+1 = (o′1,a

′
1, . . . ,o

′
h+1)

T̃h(s̃h+1 | s̃h,ah) = P(o′h+1 | (o′,a′)1:h)× 1((o,a)1:h = (o′,a′)1:h).

• Emission. We define the emission so that player i always observes [s̃h]i (the ith entry in
s̃h) with probability 1 at step h. Formally for all h ∈ [H], if the environment is at state
s̃h = (o1,a1, . . . ,oh), then each player i will observe (oi,1, ai,1, . . . , oi,h) with probability
1. By the definition of state and transition, [s̃h]i is exactly equal to the interaction history of
player i. Therefore, such emission structure satisfies the perfect-recall condition.

• Reward. As for the reward function, we let r̃i,h := 0 for h ≤ H − 1. At step H , for any
s̃H = (o1,a1, . . . ,oH) and aH , we define

r̃i,H(s̃H ,aH) =

H∑
h=1

ri,h(oi,h, ai,h).

Theorem 16. There exists an Ω(1)-weakly revealing POMG of size O(1), which is not equivalent to
any perfect-recall IIEFG with maxi∈[n] |Oi| ≤ 4H−1.

Proof of Theorem 16. It suffices to prove the above theorem for the single-agent case, i.e., POMDPs.
Consider a POMDP with 2 states, 2 actions and 2 observations. The emission and transition is defined
as

Th,i =

(
αh,i 1− αh,i

1− αh,i αh,i

)
and Oh =

(
βh 1− βh

1− βh βh

)
,

where {αh,i}(h,i)∈[H]×[2] and {βh}h∈[H] are i.i.d. sampled from [0, 1/2]. To represent the above
POMDP as IIEFG with perfect recall, the size of the observation space must be at least 4H−1 since
there are 4H−1 different possible trajectories of form (o1, a1, . . . , oH−1, aH−1).

B Notations

We first introduce some notations that will be frequently used in the remainder of appendix.

• We will use µ ∈ Πdet to refer to a deterministic joint policy, and use µi ∈ Πdet
i to refer to a

deterministic policy of player i.

• Since each stochastic joint policy π ∈ Π is equivalent to a distribution over all the determin-
istic joint polices Πdet, with slight abuse of notation, we denote by µ ∼ π the process of
sampling a deterministic joint policy µ from the policy distribution specified by π. We can
similarly define µi ∼ πi for any stochastic policy π=i of player i.

• Given a policy π and a POMG model θ, denote by Pπθ the distribution over trajectories (i.e.,
τH ) produced by executing policy π in a POMG parameterized by θ. Since the reward per
trajectory is bounded by H , we always have

V πi (θ)− V πi (θ̂) ≤ H‖Pπθ − Pπ
θ̂
‖

for any policy π, POMG models θ, θ̂, and player i.

• Denote by θ? the parameters of the groundtruth POMG model we are interacting with.
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C Proofs for the Self-play Setting

C.1 Proof of Theorem 7

In this section, we prove Theorem 7 with a specific polynomial dependency as stated in the following
theorem.
Theorem 17. (Regret of OMLE-Equilibrium) Under Assumption 1, there exists an abso-
lute constant c such that for any δ ∈ (0, 1] and K ∈ N, Algorithm 1 with β =
c
(
H(S2A+ SO) log(SAOHK) + log(K/δ)

)
and EQUILIBRIUM being one of {Nash, CCE, CE}

satisfies (respectively) that with probability at least 1− δ,

Regret{Nash,CCE,CE}(k) ≤ Õ
(
S2AO
α2

√
k(S2A+ SO)× poly(H)

)
for all k ∈ [K].

The proof consists of three steps:

1. First we rewrite Algorithm 1 in an equivalent form that is perfectly compatible with the
analysis in [26].

2. After that we can directly import the theoretical guarantees from [26] and obtain a sublinear
upper bound for the cumulative error of density estimation.

3. Finally, we combine the game-theoretic analysis tailored for POMGs with the density
estimation guarantee derived in the second step, which gives the desired sublinear game-
theoretic regret.

C.1.1 Step 1

To begin with, we make the following observations about Algorithm 1:

• The sampling procedure in each episode k is equivalent to: first sample a deterministic joint
policy µk from πk and then execute µk to collect a trajectory τk.

• In constructing the confidence set Bk, we can replace πk with µk without making any
difference, because the dependency of the log-likelihood function on policy π are equal on
both sides of the inequality in Bk and thus they cancel with each other. Formally, for any
θ̂, θ′ ∈ Θ, we have

k∑
t=1

(
logPπ

t

θ̂
(τ t)− logPπ

t

θ′ (τ
t)
)

=

k∑
t=1

(
logPθ̂(o

t
1:H | at1:H)− logPθ′(ot1:H | at1:H)

)
=

k∑
t=1

(
logPµ

t

θ̂
(τ t)− logPµ

t

θ′ (τ
t)
)
.

Based on the above two observations, Algorithm 1 can be equivalently written in the form of
Algorithm 4 where we highlight the modified parts in blue.
Remark 18. The technical reason for rewriting Algorithm 1 in the form of Algorithm 4 is that in
the optimistic equilibrium subroutine (Subroutine 1) we utilize the optimistic value estimate for each
deterministic joint policy to construct the optimistic normal-form game and compute the optimistic
game-theoretic equilibria. As a result, in order to control the cumulative regret due to over-optimism,
we need guarantees on the accuracy of optimistic value estimates for deterministic joint policies.
This is why we want to explicitly insert the “dummy” deterministic policy µk in each episode.

C.1.2 Step 2

Now we can directly instantiate the analysis of optimistic MLE (Appendix E in [26]) on Algorithm 4,
which gives the following theoretical guarantee:
Theorem 19. ([26]) Under Assumption 1 and the same choice of β as in Theorem 7, with probability
at least 1− δ, Algorithm 4 satisfies that for all k ∈ [K] and all θ1 ∈ B1,. . . ,θK ∈ BK

• θ? ∈ Bk ,
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Algorithm 4 OMLE-Equilibrium

1: Initialize: B1 = {θ̂ ∈ Θ : minh σS(Ôh) ≥ α}, D = {}
2: for k = 1, . . . ,K do
3: compute πk =Optimistic_Equilibrium(Bk)
4: sample a deterministic joint plicy µk from πk, then follow µk to collect a trajectory τk
5: add (µk, τk) into D and update

Bk+1 =

{
θ̂ ∈ Θ :

∑
(π,τ)∈D

logPπ
θ̂
(τ) ≥ max

θ′∈Θ

∑
(π,τ)∈D

logPπθ′(τ)− β
}⋂

B1

•
∑k
t=1 ‖P

µt

θt − Pµ
t

θ?‖1 ≤ Õ
(
S2AO
α2

√
k(S2A+ SO)× poly(H)

)
.

We comment that there are two differences between the optimistic MLE algorithm in [26] and the
Algorithm 4 here: (i) the former one is designed for single-player POMGs, i.e., POMDPs while the
latter one is for multi-player POMGs; (ii) µt is computed using different criteria. Nonetheless, we
can still reuse their theoretical guarantees proved in their Appendix E without making any change
because: (i) in the self-play setting, multi-player POMGs can be viewed as POMDPs with a single
meta-player whose action space is of cardinality A = A1 × · · · × An and observation space is of
cardinality O = O1×· · ·×On; (ii) when proving the second statement in Theorem 19, [26] only use
the fact that τ t is sampled from µt but allow both µt and θt ∈ Bt to be arbitrarily chosen. (The only
place [26] need to use how µt and θt is computed is in relating the regret to

∑k
t=1 ‖P

µt

θt − Pµ
t

θ?‖1,
which has nothing to do with the proof of Theorem 19.)

C.1.3 Step 3

Now let us prove Theorem 17 conditioning on the two relations stated in Theorem 19 being true. To
proceed, we define

V
k,µ

i = max
θ̂∈Bk

V µi (θ̂) for any (µ, k, i) ∈ Πdet × [K]× [n].

Note that conditioning on the first relation in Theorem 19, we always have V
k,µ

i ≥ V µi for all
(µ, k, i) ∈ Πdet × [K]× [n] because by definition V µi = V µi (θ?).

Nash equilibrium When we choose EQUILIBRIUM in Subroutine 1 to be Nash equilibrium, by the
definition of Nash-regret,

RegretNash(K) =
∑
k

max
i

(
max
µi∈Πdet

i

V
µi×πk

−i

i − V π
k

i

)
=
∑
k

max
i

(
max
µi∈Πdet

i

Eµ−i∼πk
−i

[
V
µi×µ−i

i

]
− V π

k

i

)
≤
∑
k

max
i

(
max
µi∈Πdet

i

Eµ−i∼πk
−i

[
V
k,µi×µ−i

i

]
− V π

k

i

)
=
∑
k

max
i

(
Eµ∼πk

[
V
k,µ

i

]
− Eµ∼πk [V µi ]

)
,

(4)
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where the final equality uses the fact that πk is a Nash equilibrium of the normal-form game defined by
(V

k

1 , . . . , V
k

n) as described in Subroutine 1. By Jensen’s inequality and Azuma-Hoeffding inequality,∑
k

max
i

(
Eµ∼πk

[
V
k,µ

i

]
− Eµ∼πk [V µi ]

)
≤
∑
k

Eµ∼πk

[
max
i

(
V
k,µ

i − V µi
)]

≤
∑
k

max
i

(
V
k,µk

i − V µ
k

i

)
+ Õ(H

√
K)

=
∑
k

max
i

(
max
θ̂∈Bk

V µ
k

i (θ̂)− V µ
k

i

)
+ Õ(H

√
K)

≤ H
∑
k

max
θ̂∈Bk

∥∥∥Pµk

θ̂
− Pµ

k

θ?

∥∥∥
1

+ Õ(H
√
K),

where the last equality uses the definition of V
k

and the last inequality uses the fact that the
reward is an H-bounded function of the trajectory. Finally, we complete the proof by us-
ing the second relation in Theorem 19, which upper bounds

∑
k maxθ̂∈Bk

∥∥∥Pµk

θ̂
− Pµ

k

θ?

∥∥∥
1

by

Õ
(
S2AO
α2

√
K(S2A+ SO)× poly(H)

)
.

Coarse correlated equilibrium When we choose EQUILIBRIUM in Subroutine 1 to be CCE,
the proof is exactly the same as for Nash equilibrium, except that the last equality in Equation (4)
becomes “no larger than” by the definition of CCE.

Correlated equilibrium When we choose EQUILIBRIUM in Subroutine 1 to be CE, by the definition
of CE-regret,

RegretCE(K) =
∑
k

max
i

(
max
φi

V
(φi�πk

i )�πk
−i

i − V π
k

i

)
=
∑
k

max
i

(
max
φi

Eµ∼πk

[
V

(φi�µi)×µ−i

i

]
− V π

k

i

)
≤
∑
k

max
i

(
max
φi

Eµ∼πk

[
V
k,(φi�µi)×µ−i

i

]
− V π

k

i

)
=
∑
k

max
i

(
Eµ∼πk

[
V
k,µ

i

]
− Eµ∼πk [V µi ]

)
,

(5)

where the second equality uses the definition of strategy modification, and the final equality uses the
fact that πk is a CE of the normal-form game defined by (V

k

1 , . . . , V
k

n) as described in Subroutine 1.
The remaining steps are the same as of the proof for Nash-regret.

C.2 Proof of Theorem 9

In this section, we prove Theorem 9 with a specific polynomial dependency as stated in the following
theorem.
Theorem 20. (Total suboptimality of multi-step OMLE-Equilibrium) Under Assumption 2, there
exists an absolute constant c such that for any δ ∈ (0, 1] and K ∈ N, Algorithm 2 with

β = c
(
H(S2A+ SO) log(SAOHK) + log(K/δ)

)
and EQUILIBRIUM being one of {Nash, CCE, CE} satisfies (respectively) that with probability at
least 1− δ,

Regret{Nash,CCE,CE}(k) ≤ Õ
(
S2A3m−2

α2

√
k(S2A+ SO)× poly(H)

)
for all k ∈ [K],

where the regret is computed for policy π1, . . . , πk.
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Algorithm 5 multi-step OMLE-Equilibrium

1: Initialize: B1 = {θ̂ ∈ Θ : minh σS(M̂h) ≥ α}, D = {}
2: for k = 1, . . . ,K do
3: compute πk =Optimistic_Equilibrium(Bk) and sample µk from πk

4: for h = 0, . . . ,H −m do
5: execute policy µk1:h ◦ uniform(A) to collect a trajectory τk,h

then add (µk1:h ◦ uniform(A), τk,h) into D
6: update

Bk+1 =

{
θ̂ ∈ Θ :

∑
(π,τ)∈D

logPπ
θ̂
(τ) ≥ max

θ′∈Θ

∑
(π,τ)∈D

logPπθ′(τ)− β
}⋂

B1

The proof of Theorem 20 follows basically the same arguments as in the undercomplete setting,
except that we replace Algorithm 4 with Algorithm 5 6 and Theorem 19 with Theorem 21 in the first
two steps. And the third step is exactly the same. To avoid noninformative repetitive arguments, here
we only state Algorithm 5 and Theorem 21, while one can directly verify all the proofs in Section C.1
still hold after we make the aforementioned replacements.

Theorem 21. ([26]) Under Assumption 2 and the same choice of β as in Theorem 9, with probability
at least 1− δ, Algorithm 5 satisfies that for all k ∈ [K] and all θ1 ∈ B1,. . . ,θK ∈ BK

• θ? ∈ Bk ,

•
∑k
t=1 ‖P

µt

θt − Pµ
t

θ?‖1 ≤ Õ
(
S2A3m−2

α2

√
k(S2A+ SO)× poly(H)

)
.

We remark that Theorem 21 follows directly from instantiating the analysis of multi-step optimistic
MLE (Appendix F in [26]) on Algorithm 5.

D Proofs for Playing against Adversarial Opponents

D.1 Proof of Theorem 12

In this section, we prove Theorem 12 with a specific polynomial dependency as stated in the following
theorem.

Theorem 22. (Regret of OMLE-Adversary) Under Assumption 1, there exists an abso-
lute constant c such that for any δ ∈ (0, 1] and K ∈ N, Algorithm 3 with β =
c
(
H(S2A+ SO) log(SAOHK) + log(K/δ)

)
satisfies that with probability at least 1− δ,∑k

t=1

(
maxπ̃1 minπ̃2 V

π̃1×π̃2
1 − V πt

1

)
≤ Õ

(
S2AO
α2

√
k(S2A+ SO)× poly(H)

)
for all k ∈ [K].

To begin with, for the same reasons as explained in Section C.1.2, we can directly instantiate the
guarantees for optimistic MLE (Appendix E in [26]) on Algorithm 3 and obtain:

Theorem 23. ([26]) Under Assumption 1 and the same choice of β as in Theorem 12, with probability
at least 1− δ, Algorithm 3 satisfies that for all k ∈ [K] and all θ1 ∈ B1,. . . ,θK ∈ BK

• θ? ∈ Bk ,

•
∑k
t=1 ‖Pπ

t

θt − Pπt

θ?‖1 ≤ Õ
(
S2AO
α2

√
k(S2A+ SO)× poly(H)

)
.

6We remark that in each episode k of Algorithm 2, we sample the random seed ω used in πk only once
and then combine πk(ω, ·) with random actions starting from different in-episode steps to collect multiple
trajectories (Line 4-5 in Algorithm 2). Therefore, Algorithm 5 and Algorithm 2 are equivalent for the same
reasons as explained in Section C.1.1.
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Now conditioning on the two relations in Theorem 23 being true, we have

∑
k

(
max
π̂1

min
π̂−1

V
π̂1×π̂−1

1 − V π
k
1×π

k
−1

1

)
=
∑
k

(
max
π̂1

min
π̂−1

V
π̂1×π̂−1

1 (θ?)− max
θ̂∈Bk

max
π̂1

min
π̂−1

V
π̂1×π̂−1

1 (θ̂)

)
+
∑
k

(
max
θ̂∈Bk

max
π̂1

min
π̂−1

V
π̂1×π̂−1

1 (θ̂)− V π
k
1×π

k
−1

1 (θ?)

)
θ? ∈ Bk ≤

∑
k

(
max
θ̂∈Bk

max
π̂1

min
π̂−1

V
π̂1×π̂−1

1 (θ̂)− V π
k
1×π

k
−1

1 (θ?)

)
by the definition of πk1 =

∑
k

(
max
θ̂∈Bk

min
π̂−1

V
πk
1×π̂−1

1 (θ̂)− V π
k
1×π

k
−1

1 (θ?)

)
≤
∑
k

(
max
θ̂∈Bk

V
πk
1×π

k
−1

1 (θ̂)− V π
k
1×π

k
−1

1 (θ?)

)
reward per episode ∈ [0, H] ≤H

∑
k

max
θ̂∈Bk

∥∥∥Pπk

θ̂
− Pπ

k

θ?

∥∥∥
1

Theorem 23 ≤Õ
(
S2AO

α2

√
k(S2A+ SO)× poly(H)

)
.

D.2 Proof of Theorem 11

ℎ = 1
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𝒑 = 𝟎. 𝟓
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Figure 1: hard instance for Theorem 11.

The hard instance is best illustrated by Figure 1 where we sketch the transition dynamics of the
POMG. Below we elaborate the construction based on Figure 1.

• States and actions. Each circle and rectangle in Figure 1 represents a state. Each player has
two actions denoted by A = {a0, a1} and B = {b0, b1} respectively.

• Observations. The max-player can always directly observe the current latent state. The
min-player observes the same dummy observation onull in any black circle while directly
observes the current state in any red circle and any rectangle. It is easy to verify by
definition minh σmin(Oh) = 1 because the emission structure is a bijection between the
joint observation space and the latent state space.
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• Reward. Only the upper rectangle emits an observation containing reward 1 for the max-
player (thus reward −1 for the min-player). All other states emit observations with zero
reward.

• Transitions. At the beginning of each episode, the environment starts from u1 or l1
uniformly at random. The transition dynamics from step 1 to step H only depend on the
actions of the max-player while in the final step (H → H+ 1) the transitions are determined
by the min-player. Formally,

– When the environment is in the upper half of the POMG: for each step h ∈ [H−1], the
environment will transition to uh+1,0 if the max-player takes action a0 and transition
to uh+1,1 if the max-player takes action a1. At step H , the agent will transition to the
upper rectangle if the min-player takes action b1 and transition to the lower one if the
min-player picks b0.

– When the environment is in the lower half of the POMG: for each step h ∈ [H−1], the
environment will transition to lh+1,0 if the max-player takes action a0 and transition
to lh+1,1 if the max-player takes action a1. At step H , the agent will transition to the
upper rectangle if the min-player takes action b0 and transition to the lower one if the
min-player picks b1.

Min-player’s optimal strategy. It is direct to see the min-player’s optimal strategy is to take action
b0 in the upper half of the POMG and action b1 in the lower half, at step H . This stratety will lead to
zero-reward for the max-player. However, implementing this strategy requires the min-player to infer
which half the environment is in from her observations, which is possible only when the environment
has visited some red circles in the first H steps. This is because the min-player directly observes the
current state in red circles while observes the same observation onull in all black circles.

Max-player’s optimal strategy. To prevent the min-player from discovering which half the envi-
ronment currently lies in, the max-player’s optimal strategy is to avoid visiting any red circles.

Hardness. However, hardness happens if (a) the max-player cannot access the observations of the
min-player and (b) for each h ∈ {2, . . . ,H}, we uniformly at random pick one of {uh0, uh1} and
one of {lh0, lh1} to be red circles, and set the remaining ones to be black. From the perspective of
the max-player, she cannot directly tell which state is red or black because (a) the difference between
black circles and red circles only appear in the min-player’s observations, and (b) the max-player
cannot see what the min-player observes. As a result, the only useful information for the max-player
to figure out which circles are red is the action picked by the min-player in the final step.

Now suppose the min-player will play the optimal strategy when she knows which half the environ-
ment is in, and pick action b0 when she does not. In this case, for the max-player, identifying all the
red circles is as hard as learning a bandit with Ω(2H) arms where only one arm has reward 1/2 and
all other arms has reward 0. Therefore, by using standard lower bound arguments for bandits, we
can show the max-player’s cumulative rewards in the first K = Θ(2H) episodes is 0 with constant
probability. In comparison, the optimal strategy, which avoids visiting all red circles, can collect K/3
rewards with high probability. As a result, we obtain the desired Ω(min{2H ,K}) regret lower bound
for competing against the Nash value.

D.3 Playing against adversary in multi-step weakly-revealing POMGs is hard

In this section, we prove that competing with the max-min value is statistically hard even if (i) the
POMG is two-player zero-sum and satisfies Assumption 2 with m = 2 and α = 1, (ii) the opponent
keeps playing a fixed action, and (iii) the player can directly observe the opponents’ actions and
observations.
Theorem 24. Assume the player can directly observe the opponents’ actions and observations.
For any L, k ∈ N+, there exist (i) a two-player zero-sum POMG of size S,A,O,H = O(L) and
satisfying Assumption 2 with m = 2 and α = 1, and (ii) an opponent who keeps playing a fixed
action â2, so that with probability at least 1/2∑k

t=1

(
maxπ̃1 minπ̃2 V

π̃1×π̃2
1 − V π

t
1×â2

1

)
≥ Ω

(
min{2L, k}

)
,

where πt1 is the policy played by the learner in the tth episode.
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Proof. The hard instance is constructed as following:

• States and actions: There are four states: p0, p1 and q0, q1. Each player has two actions,
denoted by {a0, a1} and {b0, b1} respectively.

• Emission and reward: There are three different observations: odummy, o1 and o0. At step
h ∈ [H − 1], p1 and p0 emit the same observation odummy. At step H , p1 emits o1 while p0

emits o0. Regardless of h, q0 always emits o0 and q1 always emits o1. Importantly, all players
share the same observation. The reward function is defined so that r(odummy) = r(o0) = 0
and r(o1) = 1 for the max-player. Since the game is zero-sum, the reward function for the
min-player is simply −r(·).

• Transition: Let x1, . . . , xh be a binary sequence sampled independently and uniformly at
random from standard Bernoulli distribution. At step h = 1, the POMG always starts from
state p1. For each step h ∈ [H − 1]:

– If the current state is pi, then the environment will transition to p1 if and only if i = 1,
the max-player plays action axh

, and the min-player plays b0. Otherwise, if the min-
player plays b1, then the environment will transition to qi. Otherwise, the environment
will transition to p0.

– If the current state is qi, the next state will be q1 regardless of players’ actions.

We have the following observations:

• If the min-player keeps playing b0, then from the perspective of the max-player the POMG
essentially reduces to a multi-arm bandit problem with 2H−1 arms because in this case the
only useful feedback for the max-player is the reward observed at step H .

• The max-min (Nash) value is equal to 1, which is attained when the max-player picks axh

at step h with probability 1.

• The 2-step emission-action matrix at each step h ∈ [H − 1] is rank 4 and has minimum
singular value no smaller than 1, because we can always exactly identify the current state
(for step h ∈ [H − 1]) by the current-step observation and the next-step observation if the
min-player picks action b1 in the current step.

Based on the first two observations above, we immediately obtain a Θ(min{2H , k}) lower bound
for competing with the max-min (Nash) value. Using the third observation, we know the POMG is
2-step weakly revealing with α = 1, which completes the proof.
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