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Abstract

The vast majority of statistical theory on binary classification characterizes per-
formance in terms of accuracy. However, accuracy is known in many cases to
poorly reflect the practical consequences of classification error, most famously
in imbalanced binary classification, where data are dominated by samples from
one of two classes. The first part of this paper derives a novel generalization of
the Bayes-optimal classifier from accuracy to any performance metric computed
from the confusion matrix. Specifically, this result (a) demonstrates that stochastic
classifiers sometimes outperform the best possible deterministic classifier and (b)
removes an empirically unverifiable absolute continuity assumption that is poorly
understood but pervades existing results. We then demonstrate how to use this gen-
eralized Bayes classifier to obtain regret bounds in terms of the error of estimating
regression functions under uniform loss. Finally, we use these results to develop
some of the first finite-sample statistical guarantees specific to imbalanced binary
classification. Specifically, we demonstrate that optimal classification performance
depends on properties of class imbalance, such as a novel notion called Uniform
Class Imbalance, that have not previously been formalized. We further illustrate
these contributions numerically in the case of k-nearest neighbor classification.

1 Introduction

Many binary classification problems exhibit class imbalance, in which one of the two classes vastly
outnumbers the other. Classifiers that perform well with balanced classes routinely fail for imbalanced
classes, and developing reliable techniques for classification in the presence of severe class imbalance
remains a challenging area of research [He and Ma, 2013, Krawczyk, 2016, Fernández et al., 2018].
Many practical approaches have been proposed to improve performance under class imbalance,
including reweighting plug-in estimates of class probabilities [Lewis, 1995], resampling data to
improve class imbalance [Chawla et al., 2002], or reformulating classification algorithms to optimize
different performance metrics [Dembczynski et al., 2013, Fathony and Kolter, 2019, Joachims, 2005].
Extensive discussion of practical methods for handling class imbalance are surveyed in the books of
He and Ma [2013] and Fernández et al. [2018].

Despite the pervasive challenge of class imbalance, our theoretical understanding of class imbalance
is limited. The vast majority of theoretical performance guarantees for classification characterize
classification accuracy or, equivalently, misclassification risk [Mohri et al., 2018], which is typically
an uninformative measure of performance for imbalanced classes. Under measures that are used with
imbalanced classes in practice, such as precision, recall, Fβ scores, and class-weighted scores [Van Ri-
jsbergen, 1974, 1979], existing theoretical guarantees are limited to statistical consistency, in that the
algorithm under consideration asymptotically optimizes the metric of choice [Koyejo et al., 2014,
Menon et al., 2013, Narasimhan et al., 2014]; specifically, there is no finite-sample theory that would
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allow comparison of an algorithm’s performance to that of other algorithms or to theoretically optimal
performance levels. Additionally, existing theory for classification does not explicitly model the
effects of class imbalance, especially severe imbalance (i.e., as the proportion of samples from the rare
class vanishes), and hence sheds little light on how severe imbalance influences optimal classification.

This paper provides two main contributions. First, in Section 4, we provide a novel characterization of
classifiers optimizing general performance metrics that are functions of a classifier’s confusion matrix.
This characterization generalizes a classical result, that the Bayes classifier optimizes classification
accuracy, to a much larger class of performance measures, including those commonly used in
imbalanced classification, while relaxing certain empirically unverifiable distributional assumptions
that pervade existing such results. Interestingly, we show that, in general, a Bayes classifier always
exists if one considers stochastic classifiers, but not if one considers only deterministic classifiers. We
then use this result to provide relative performance guarantees under these more general performance
measures, in terms of the error of estimating the class probability (regression) function under uniform
(L8) loss.

This motivates our second main contribution: an analysis of k-nearest neighbor (kNN) classification
under uniform loss. In doing so, we also propose an explicit model of a sub-type of class imbalance,
which we call Uniform Class Imbalance, and we show that the kNN classifier behaves quite differently
under Uniform Class Imbalance than under other sub-types of class imbalance. To the best of our
knowledge, such sub-types of class imbalance have not previously been distinguished in either the
theoretical or practical literature, and we hope that identifying such relevant features of imbalanced
datasets may facilitate development of classifiers that perform well on specific imbalance problems
of practical importance. Collectively, these contributions provide some of the first finite-sample
performance guarantees for nonparametric binary classification under performance metrics that
are appropriate for imbalanced data and show how optimal performance depends on the nature of
imbalance in the data.

2 Related Work

Here, we discuss how our results relate to existing theoretical guarantees for imbalanced binary
classification and prior analyses of kNN methods.

2.1 Theoretical Guarantees for Imbalanced Binary Classification

Statistical learning theory has studied classification extensively in terms of accuracy [Mohri et al.,
2018]. However, when classes are severely imbalanced, accuracy ceases to be an informative measure
of performance [Cortes and Mohri, 2004], necessitating guarantees in terms of other performance
metrics. Several papers have sought to address this [Narasimhan et al., 2014, 2015, Koyejo et al.,
2014, Yan et al., 2018, Wang et al., 2019a] by generalizing the Bayes optimal classifier, a well-known
classifier that provably optimizes accuracy, to more general performance measures better reflecting
the desiderata of imbalanced classification. Relatedly, several works have investigated relationships
between these different performance measures and demonstrated that they differ essentially in how
they determine the optimal threshold between the two classes [Flach, 2003, Hernández-Orallo et al.,
2013, Flach, 2016]. However, existing results make empirically unverifiable assumptions about
the distribution of the data, leaving questions about their relevance to real data. We discuss these
assumptions in detail in Section 4, where our main result, Theorem 3, leverages the idea of stochastic
thresholding to relax these assumptions.

Another body of closely related theoretical work studies Neyman-Pearson classification, which
attempts to minimize misclassification error on one class subject to constraints on misclassification
error on other classes, analogous to the approach of statistical hypothesis testing. While substantial
theoretical guarantees do exist for Neyman-Pearson classification [Rigollet and Tong, 2011, Tong,
2013, Tong et al., 2016], these focus on performance within the Neyman-Pearson framework, rather
than under general performance measures as in our work, and we know of no work considering
stochastic classification under the Neyman-Pearson framework. Interestingly, our use of stochastic
classifiers in Theorem 3 parallels classical results in hypothesis testing [Lehmann and Romano, 2006],
and our proof of Theorem 3 involves a reduction (Lemma 22 in the Appendix) of optimization of
general classification performance measures to Neyman-Pearson classification.
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Meanwhile, many practical approaches to handling class imbalance, such as class-weighting and
resampling have been proposed, but the theoretical understanding of these methods is limited.
Class-weighting is a natural choice in applications where costs, or cost ratios [Flach, 2003], can be
explicitly assigned and, in the case of binary classification, is statistically equivalent to threshold
selection, which we discuss later in this paper [Scott, 2012]. In practice, resampling appears to be
the most popular approach to handling class imbalance [He and Ma, 2013]. Undersampling the
dominant class is straightforward and can provide computational benefits with little loss in statistical
performance [Fithian and Hastie, 2014], while interest in oversampling rare classes, sometimes
referred to as data augmentation, has grown with the advent of sophisticated generative models to
produce additional data [Mariani et al., 2018]. However, the theoretical ramifications of oversampling
techniques used for imbalanced classification, most commonly variants of SMOTE [Chawla et al.,
2002], are poorly understood.

2.2 kNN Classification and Regression

The kNN classifier is one of the oldest and most well-studied nonparametric classifiers Fix and
Hodges [1951]. Early theoretical results include, Cover and Hart [1967], who showed that the
misclassification risk of the kNN classifier with k “ 1 is at most twice that of the Bayes-optimal
classifier, and Stone [1977], who showed that the kNN classifier is Bayes-consistent if k Ñ 8 and
k{n Ñ 0. Extensive literature on the accuracy of kNN classification has since developed [Devroye
et al., 1996, Györfi et al., 2002, Samworth, 2012, Chaudhuri and Dasgupta, 2014, Gottlieb et al.,
2014, Biau and Devroye, 2015, Gadat et al., 2016, Döring et al., 2018, Kontorovich and Weiss, 2015,
Gottlieb et al., 2018, Cannings et al., 2019, Hanneke et al., 2020].

Rather than accuracy bounds for kNN classification, the bounds on uniform error we present in
Section 5 are most closely related to risk bounds for kNN regression, of which the results of Biau
et al. [2010] are representative. Biau et al. [2010] gives convergence rates for kNN regression in
L2 risk, weighted by the covariate distribution, in terms of noise variance and covering numbers of
the covariate space. While closely related to our bounds on uniform (L8) risk, their results differ in
at least three main ways. First, minimax rates under L8 risk are necessarily worse than under L2

risk by a logarithmic factor, as implied by our lower bounds. Second, the fact that Biau et al. [2010]
use a risk that is weighted by the covariate distribution allows them to avoid our assumption that
the covariate density is lower bounded away from 0, whereas, the lower boundedness assumption is
unavoidable under L8 risk. Finally, Biau et al. [2010] assume additive noise with finite variance;
Bernoulli noise is crucial for us to model severe class imbalance.

Extensive research on kNN for imbalanced classification has focused on algorithmic modifications,
which are surveyed by Fernández et al. [2018]. Examples include prototype selection [Liu and
Chawla, 2011, López et al., 2014, Vluymans et al., 2016], and gravitational methods [Cano et al.,
2013, Zhu et al., 2015]. We are aware of no statistical guarantees exist for such methods.

3 Setup and Notation

Let pX , ρq be a separable metric space, and let Y “ t0, 1u denote the set of classes. For any
x P X and ϵ ą 0, Bpx, ϵq :“ tz P X : ρpx, zq ă ϵu denotes the open radius-ϵ ball around
x. Consider n independent samples pX1, Y1q, . . . , pXn, Ynq drawn from a distribution PX,Y on
X ˆ Y with marginals PX and PY . For positive sequences tanu8

i“1 and tbnu8
i“1, an — bn means

lim infnÑ8 an{bn ą 0 and lim supnÑ8 an{bn ă 8.

To optimize general performance metrics, we must consider stochastic classifiers. Formally, letting
B :“ tY „ Bernoullippq : p P r0, 1su denote the set of binary random variables, a stochastic
classifier can be modeled as a mapping pY : X Ñ B, where, for any x P X , ErpY pxqs is the probability
that the classifier assigns x to class 1. We use SC to denote the class of stochastic classifiers.

The true regression function η˚ : X Ñ r0, 1s is defined as η˚pxq :“ P rY “ 1|X “ xs “

E rY |X “ xs; that is, given an instance Xi, the label Yi is Bernoulli-distributed with mean ηpXiq. As
we show in the next section, an optimal classifier can always be written in terms of the true regression
function η, motivating estimates pη : X Ñ r0, 1s of η. Such estimates pη are referred to as “regressors”.
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4 Optimal Classification Beyond Accuracy

A famous result states that classification accuracy is maximized by the “Bayes” classifier

pY pxq „ Bernoulli p1tη˚pxq ą 0.5uq . (1)

Here, pY pxq is simply a constant (deterministic) random variable that takes either the value 0 or the
value 1 with probability 1 (depending on η˚pxq). Our reason for writing Eq. (1) in this seemingly
redundant way will become clear with Definition 2 below.

Although η˚ is unknown in practice, this result is a cornerstone of the statistical theory of binary
classification because it provides an optimal performance benchmark against which a classifier can be
evaluated in terms of accuracy [Devroye et al., 1996, Mitchell, 1997, James et al., 2013]. As discussed
previously, accuracy can be a poor measure of performance in the imbalanced case. Therefore, the
main contribution of this section, provided in Theorem 3 below, is to generalize this result to a
broad class of classification performance measures, including those commonly used in imbalanced
classification. First, we specify performance measures for which our results apply.

4.1 Confusion Matrix Measures (CMMs)

Nearly all measures of classification performance, including accuracy, precision, recall, Fβ scores, and
others, can be computed from the confusion matrix, which counts the number of test samples in each
ptrue class, estimated classq pair. Formally, let C :“ tC P r0, 1s2ˆ2 : C1,1`C1,2`C2,1`C2,2 “ 1u

denote the set of all possible binary confusion matrices. Given a classifier pY , the confusion matrix
C

pY P C and empirical confusion matrix pC
pY P C are given by

C
pY “

„

TN
pY FP

pY
FN

pY TP
pY

ȷ

, pC
pY “

„

xTN
pY

xFP
pY

xFN
pY

xTP
pY

ȷ

, (2)

wherein the true positive probability TP
pY and empirical true positive probability xTP

pY are given by

TP
pY “ E

”

η˚pXqpY pXq

ı

,xTP
pY “

1

n

n
ÿ

i“1

Yi
pY pXiq, (3)

and the true and empirical false positive (FP
pY and xFP

pY ), false negative (FN
pY and xFN

pY ), and true
positive (TP

pY and xTP
pY ) probabilities are defined similarly. Note that the expectation in Eq. (3) is

over randomness both in the data and in the classifier.

Intuitively, measures of a classifier’s performance should improve as TN and TP increase and FN and
FP decrease. We therefore define the class of Confusion Matrix Measures (CMMs) as follows:

Definition 1 (Confusion Matrix Measure (CMM)). A function M : C Ñ R is called a confusion
matrix measure (CMM) if, for any confusion matrix

C “

„

TN FP
FN TP

ȷ

P C, ϵ1 P r0,FPs, ϵ2 P r0,FNs, we have MpCq ď M

ˆ„

TN ` ϵ1 FP ´ ϵ1
FN ´ ϵ2 TP ` ϵ2

ȷ˙

.

Essentially, correcting an incorrect classification should not reduce a CMM. This is true of any
reasonable measure of classification performance, and hence analyzing CMMs allows us to obtain
theoretical guarantees for all performance measures used in practice. Specifically, by evaluating
their gradients in the directions

“

1 ´1
0 0

‰

and
“

0 0
´1 1

‰

, one can verify that most performance measures,
such as weighted accuracy, precision, recall, Fβ scores, and Matthew’s Correlation Coefficient are
CMMs. We note that the area under receiver operating characteristic (AUROC) and area under
precision-recall curve (AUPRC) are not CMMs because they evaluate (R-valued) scoring functions
rather than (t0, 1u-valued) classification functions. However, both AUROC and AUPR are averages
of CMMs computed at various classification thresholds, and, as we discuss in Appendix A.1, our
results for CMMs thus imply similar results for these measures. We next present our main result of
Section 4, which generalizes the Bayes classifier (1) to arbitrary CMMs.
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4.2 Generalizing the Bayes Classifier

The Bayes classifier thresholds the regression function deterministically at the value 0.5. The
following generalizes this to a stochastic threshold:

Definition 2 (Regression-Thresholding Classifier (RTC)). A classifier pY : X Ñ B is called a
regression-thresholding classifier (RTC) if, for some p, t P r0, 1s and η : X Ñ r0, 1s,

pY pxq „ Bernoullipp ¨ 1tηpxq “ tu ` 1tηpxq ą tuq, for all x P X .

In the sequel, we will denote such classifiers pYp,t,η , and refer to the pair pt, pq as the threshold.

Now we can state the main result of this paper:

Theorem 3. For any CMM M and stochastic classifier pY , there is an RTC pYp,t,η with MppYp,t,ηq ě

MppY q. In particular, if M is maximized by any stochastic classifier, then M is maximized by a RTC.

As a special case of Theorem 3, the classical Bayes classifier corresponds to MpCq “ TN ` TP,
p “ 0, and t “ 0.5. However, as discussed in the next paragraph, without stronger assumptions,
Theorem 3 does not hold for deterministic classifiers. Since RTCs generalize both the RTC structure
and optimality properties of the Bayes classifier, we also refer to them as generalized Bayes classifiers.
We note that existence of any maximizer pY of MpC

pY q may depend on specific properties, such as
(semi)continuity or convexity of M , which we do not investigate here.

We emphasize that Theorem 3 makes absolutely no assumptions on the distribution of the data. In
particular, all prior characterizations of optimal classifiers under general performance metrics assume
that the distribution of the class probability ηpXq is absolutely continuous [Narasimhan et al., 2014,
2015, Koyejo et al., 2014, Yan et al., 2018, Wang et al., 2019a]2, and Wang et al. [2019a] claim
that regularity assumptions on ηpXq such as absolute continuity “seem to be unavoidable”. Our
Theorem 3 is the first result to omit such assumptions, and we specifically show that this comes at the
cost of the optimal classifier possibly being non-deterministic for a single atom of ηpXq. Figure 1
visually compares the stochastic thresholding classifier in Theorem 3 to prior approaches.
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Figure 1: Examples of four different approaches to thresholding the regression function. Classical
Bayes thresholding (Eq. (1)) always thresholds deterministically at ηpxq “ 0.5 to optimize accuracy.
Koyejo et al. [2014], Narasimhan et al. [2014] and others have suggested using other Deterministic
thresholds (e.g., ηpxq “ 0.3, shown here) to optimize other CMMs, assuming ηpXq is absolutely
continuous. Wang et al. [2019a] showed that the optimal classifier can always be written as a Mixture
of Deterministic (MD) classifiers (e.g., a p0.3, 0.7q-mixture of thresholds at ηpxq “ 0.2 and ηpxq “

0.4, shown here). Finally, we propose using a single Stochastic threshold (e.g., pt, pq “ p0.3, 0.75q,
shown here). Only MD and Stochastic approaches are optimal in general (for arbitrary CMMs,
without ηpXq absolutely continuous), while Stochastic thresholding is strictly simpler than MD.

The generality of Theorem 3 necessitates a significantly more complex proof than prior work. In
particular, we prove Theorem 3 in Appendix A using a series of variational arguments. Roughly
speaking, given a classifier pY , we construct a perturbation pY 1 of pY such that either MpC

pY q ă

2Exceptions for the case of F1 score are Zhao et al. [2013, Lemma 12] and Lipton et al. [2014, Theorem 1].
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MpC
pY 1 q or pY 1 is an RTC and MpC

pY q ď MpC
pY 1 q. Since, the classifier pY might be quite poorly

behaved (e.g., its behavior on sets of PX -measure 0 could be arbitrary), the technical complexity lies
in constructing admissible perturbations (i.e., those that are well-defined classifiers). For this reason,
the proof of Theorem 3 involves a series of constructions of increasingly well-behaved classifiers.

Theorem 3 tells us that a generalized Bayes classifier can always be written in terms of the regression
function η and two scalar parameters pt, pq depending on the distribution of ηpXq and the CMM M .
The next example shows that this characterization cannot be simplified without stronger assumptions:
Example 4. Suppose X “ t0u is a singleton, ηp0q P p0, 1q, and, for some θ ą 0, MpCq “

pTPqθTN. One can check that M is a valid CMM. Suppose pY is an RTC. It is straightforward
to compute that MpC

pY q “ ppηp0qqθp1 ´ pqp1 ´ ηp0qq1tt “ ηp0qu, and that MpC
pY q is uniquely

maximized by p “ θ
θ`1 P p0, 1q and t “ ηp0q P p0, 1q. This shows that both threshold parameters p

and t in an RTC are necessary, in the absence of further assumptions on M or η. This example also
illustrates the need for stochasticity to optimize general CMMs. Specifically, for any deterministic
classifier pY , either pY p0q “ 0 (so TP “ 0) or pY p0q “ 1 (so TN “ 0); in either case, MpC

pY q “ 0.

This performance gap between stochastic and deterministic classifiers is closely related to Theorem
1 of Cotter et al. [2019b], which provides a closely related lower bound on how well a stochastic
classifier can be approximated by a deterministic one, in terms of the probability assigned to atoms of
ηpXq. However, Cotter et al. [2019b] only study how well stochastic classifiers can be approximated
by deterministic ones (with the motivation of derandomizing classifiers), not whether stochastic
classifiers can systematically outperform deterministic ones, as we show here.

4.3 Relative Performance Guarantees in terms of the Generalized Bayes Classifier

Theorem 3 motivates a two-step approach to imbalanced classification in which one first estimates
the regression function η and then selects a stochastic threshold pt, pq that optimizes empirical
performance Mp pC

pY q. Such an approach has many practical advantages. For example, as we show
in Appendix D, a simple algorithm can exactly optimize the threshold pt, pq over large datasets in
Opn log nq time. Additionally, one can address covariate shift or retune a classifier trained under one
CMM to perform well under another CMM, simply by re-optimizing pt, pq, which is statistically and
computationally much easier than retraining a classifier from scratch. In this section, we focus on an
advantage for theoretical analysis, namely that the error of such a classifier decomposes into errors in
selecting pt, pq and errors in estimating η, allowing the derivation of performance guarantees relative
a generalized Bayes classifier. All results in this section are proven in Appendix B.

We first bound the performance difference of thresholding two regressors in terms of their L8

distance. This will allow us to bound error due to using a regressor pη instead of the true η.

Lemma 5. For p, t P r0, 1s, η, η1 : X Ñ r0, 1s,
›

›

›
C

pYp,t,η
´ C

pYp,t,η1

›

›

›

8
ď P r|ηpXq ´ t| ď }η ´ η1}8s.

Intuitively, Lemma 5 bounds the largest difference in the confusion matrices of pYp,t,η and pYp,t,η1

by the probability that the threshold t lies between η and η1. As we will show later, under a margin
assumption, this can be bounded by the L8 distance between η and η1.

Our next lemma bounds the worst-case error over thresholds pt, pq P r0, 1s of the empirical confusion
matrix. This allows us to bound error due to using an empirical threshold ppt, ppq instead of the
threshold pt˚, p˚q that is optimal for the true regression function.
Lemma 6. Let η : X Ñ r0, 1s be any regression function. Then, with probability at least 1 ´ δ,

sup
p,tPr0,1s

›

›

›

pC
pYp,t,η

´ C
pYp,t,η

›

›

›

8
ď

c

8

n
log

32p2n ` 1q

δ
.

Lemma 6 follows from Vapnik-Chervonenkis (VC) bounds on the complexity of the set tpYp,t,η :
p, t P r0, 1su of possible RTCs with fixed regression function η. In fact, Appendix B proves a more
general bound on the error between empirical and true confusion matrices uniformly over any family
F of stochastic classifiers in terms of the growth function of F . Consequently, when F has finite VC
dimension, we obtain uniform convergence at the fast rate

a

logpn{δq{n. As we formalize later, this
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suggests that the difficulty in tuning an imbalanced classifier to optimize a CMM M comes not from
difficulty in estimating the confusion matrix but rather from the sensitivity of commonly used CMMs
to the selected threshold. Because Theorem 3 shows that any CMM can be optimized by a RTC, we
state here only the specific result for RTCs.

Before combining Lemmas 5 and 6 to give the main result of this section, we note a margin assumption,
which characterizes separation between the two classes:
Definition 7 (Tsybakov Margin Condition). Let C, β ě 0, t P p0, 1q. A classification problem
with covariate distribution PX and regression function η satisfies a pC, βq-margin condition around t
if, for any ϵ ą 0, P r|ηpXq ´ t| ď ϵs ď Cϵβ .

The Tsybakov margin condition, introduced by Mammen and Tsybakov [1999] for t “ 0.5, is widely
used to establish convergence rates for classification in terms of accuracy [Audibert and Tsybakov,
2007, Arlot and Bartlett, 2011, Chaudhuri and Dasgupta, 2014]. Together with the margin condition
and a Lipschitz condition on the M , Lemmas 5 and 6 give the following bound on sub-optimality of
an RTC if the threshold is selected by maximizing M over the empirical confusion matrix:
Corollary 8. Let η : X Ñ r0, 1s be the true regression function and pη : X Ñ r0, 1s be any regressor.

Let
`

pp,pt
˘

:“ argmax
pt,pqPr0,1s2

M
´

pC
pYp,t, pη

¯

and pp˚, t˚q :“ argmax
pt,pqPr0,1s2

M
´

C
pYp,t,η

¯

denote the empirical and true optimal thresholds, respectively. Suppose M is Lipschitz continuous
with constant LM with respect to the uniform (L8) metric on C. Finally, suppose PX and η satisfy a
pC, βq-margin condition around t˚. Then, with probability ě 1 ´ δ,

M
´

C
pYp˚,t˚,η

¯

´ M
´

C
pY
pp,pt, pη

¯

ď LM

˜

C }η ´ pη}
β
8 ` 2

c

8

n
log

32p2n ` 1q

δ

¸

.

5 Uniform Error of the kNN Regressor

In the previous section, we bounded relative performance of an RTC in terms of uniform (L8) loss of
the regression function estimate. Here, we bound uniform loss of one such regressor, the widely used
k-nearest neighbor (kNN) regressor. Our analyses include a parameter r, introduced in Section 5,
that characterizes a novel sub-type of class imbalance, which we call Uniform Class Imbalance. This
leads to insights about how the behavior of the kNN classifier depends not only on the degree, but
also on the structure, of class imbalance in a given dataset. We begin with some notation:
Definition 9 (k-Nearest Neighbor Regressor). Given a point x P X , let σpxq denote a permuta-
tion of t1, ..., nu such that Xσipxq is the ith-nearest neighbor of x among X1, ..., Xn. For integers
k P r1, ns, the kNN regressor pηk : X Ñ r0, 1s is defined as

pηkpxq “
1

k

k
ÿ

i“1

Yσipxq, for all x P X . (4)

We now formalize a novel sub-type of class imbalance:
Definition 10 (Uniform Class Imbalance (UCI)). Write the regression function as η “ rζ, where
r P p0, 1s and ζ : X Ñ r0, 1s is a regression function with supxPX ζpxq “ 1. A classification
problem has Uniform Class Imbalance (UCI) in the number of samples n if r Ñ 0 as n Ñ 8.

Intuitively, in UCI, the class Y “ 1 is rare regardless of X . This includes “difficult” classification
problems where the covariate X provides only partial information about the class Y and examples
from the rare class lie deep within the distribution of the common class. Examples include rare
disease diagnosis [Schaefer et al., 2020] or fraud detection [Awoyemi et al., 2017]. In practice, the
classifier’s role is often to flag “high-risk” samples X , those with ηpXq relatively high, for follow-up
investigation. UCI can be distinguished from “easier” problems in which, for some x P X , ηpXq « 1
and so, given enough training data, a classifier can confidently assign the label Y “ 1. These include
well-separated classes or deterministic problems (e.g., protein structure prediction; Noé et al. [2020]).

To our knowledge, such notions of class imbalance have not previously been distinguished. In the
particular case of data drawn from a logistic model, UCI reduces to the notion of class imbalance
described in Wang [2020]; however, UCI applies in more general contexts.
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5.1 Uniform Risk Bounds

We now present bounds (proven in Appendix C.1) on uniform error }η ´ pη}8 “ supxPX |ηpxq´pηpxq|

of the kNN regressor pηk. First, recall two standard quantities, covering numbers and shattering
coefficients, by which we measure complexity of the feature space:

Definition 11 (Covering Number). Suppose pX , ρq is a totally bounded metric space. Then, for
any ϵ ą 0, the ϵ-covering number Npϵq of pX , ρq is the smallest integer such that there exist Npϵq

points x1, ..., xNpϵq P X satisfying X Ď
ŤNpϵq

i“1 Bpxi, ϵq.

Definition 12 (Shattering Coefficient). For integers n ą 0, the shattering coefficient of balls in
pX , ρq is Spnq “ sup

x1,...,xnPX
|ttx1, ..., xnu X Bpx, ϵq : x P X , ϵ ě 0u|.

We now state two assumptions data distribution PX,Y :

Assumption 13 (Dense Covariates Assumption). For some p˚, ϵ
˚, d ą 0, the marginal distri-

bution PX of covariates is lower bounded, for any x P X and ϵ P p0, ϵ˚s, by PXpBϵpxqq ě p˚ϵ
d.

Assumption 13 ensures that each query point’s nearest neighbors are sufficiently near to be informative.
We also assume that the regression function ζ is smooth:

Assumption 14 (Hölder Continuity). For some α P p0, 1s, L :“ supx‰x1PX
|ζpxq´ζpx1

q|
ραpx,x1q

ă 8.

We now state our upper bound on uniform error:

Theorem 15. Under Assumptions 13 and 14, whenever k{n ď p˚pϵ˚qd{2, for any δ ą 0, with

probability at least 1 ´ N
´

p2k{pp˚nqq
1{d

¯

e´k{4 ´ δ, we have

}η ´ pη}8 ď 2αLr

ˆ

2k

p˚n

˙α{d

`
2

3k
log

2Spnq

δ
`

c

2r

k
log

2Spnq

δ
. (5)

If r P O pplogSpnq{nq, this bound is minimized by k — n, giving }η ´ pη}8 P OP pplogSpnqq{nq.
Otherwise, this bound is minimized by k — n

2α
2α`d plogSpnqq

d
2α`d r´ d

2α`d , giving

}η ´ pη}8 P OP

´

pplogSpnqq{nq
α

2α`d r
α`d
2α`d

¯

.

Of the three terms in (5), the first term, of order rpk{nqα{d, comes from smoothing bias of the kNN
classifier. The second and third terms are due to label noise, with the second term dominating under
extreme class imbalance r P O plogSpnq{nq and the third term dominating otherwise. Theorem 5
shows that, under UCI, one should use a much larger choice of the tuning parameter k than in the
case of balanced classes; indeed, setting k — n

2α
2α`d plogSpnqq

d
2α`d , which is optimal in the balanced

case, gives a rate that is suboptimal by a factor of r´d{p4α`dq.

The following example demonstrates how to apply Theorem 15 in a concrete setting of interest:

Corollary 16 (Euclidean, Absolutely Continuous Case). Suppose pX , ρq “ pr0, 1sd, } ¨ }2q is the
unit cube in Rd, equipped with the Euclidean metric, and PX has a density that is lower bounded away
from 0 on X . Then, for k — n

2α
2α`d plog nq

d
2α`d r´ d

2α`d , }η ´ pη}8 P OP

´

pplog nq{nq
α

2α`d r
α`d
2α`d

¯

.

The most problematic term in this bound is the exponential dependence on the dimension d of the co-
variates. Fortunately, since Theorem 15 utilizes covering numbers, it improves if the covariates exhibit
structure, such as that of a low-dimensional manifold. We illustrate this in detail in Appendix C.1.

We close with a minimax lower bound, proven in Appendix C.2, on the uniform error of any estimator,
over pα,Lq-Hölder regression functions. Up to a polylogarithmic factor in r, the rate of this lower
bound matches that in Theorem 15, suggesting that both bounds are quite tight.

Theorem 17. Suppose X “ r0, 1sd is the d-dimensional unit cube and X „ UniformpX q. Let
ΣαpLq denote the family of pα,Lq-Hölder continuous regression function. Then, there exist constants
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n0 and c ą 0 (depending only on α, L, and d) such that, for all n ě n0 and any estimator pη,

sup
ζPΣαpLq

P

«

}η ´ pη}8 ě c

ˆ

logpnrq

n

˙
α

2α`d

r
α`d
2α`d

ff

ě
1

8
.

Discussion Plugging the above upper bounds on }η ´ pη}8 into Corollary 8 provides error bound
under arbitrary CMMs, in terms of the sample size n, hyperparameter k, UCI degree r, and complexity
parameters (margin β, smoothness α, intrinsic dimension d, etc.) of X and PX,Y . Thus, these results
collectively give some of the first complete finite-sample guarantees under general performance
metrics used for imbalanced classification. Our analysis shows that, under severe UCI, the optimal
k is much larger than in balanced classification, whereas this same k leads to sub-optimal, or even
inconsistent, estimates of the regression function under other (nonuniform) forms of class imbalance.

6 Numerical Experiments

We provide two numerical experiments to illustrate our results from Sections 4 and 5. We
repeat each experiment 100 times and present average results with 95% confidence intervals
computed using the central limit theorem. Python implementations and instructions for re-
producing each experiment can be found at https://gitlab.tuebingen.mpg.de/shashank/
imbalanced-binary-classification-experiments. Further technical details regarding the
experiments can be found in Appendix E, while Appendix F explores some predictions of our
theoretical results on real data from a credit card fraud detection problem.

Experiment 1 Example 4 showed that, under general CMMs, deterministic RTCs are sometimes
unable to approach optimal classification performance, necessitating stochastic RTCs. This experi-
ment demonstrates this gap numerically. Suppose X “ r0, 1s, over which X is uniformly distributed,
and for all x P X , ηpxq “ 0.5 ¨ 1t1{3 ď x ă 2{3u ` 1t2{3 ď xu.

Consider the CMM MpCq “ TP ¨ TN. Similar to the analysis in Example 4, the optimal value
of MpCq “ p5{12q2 “ 25

144 is achievable only by a stochastic classifier, whereas as deterministic
classifiers achieve at most MpCq “ 1{6 ă 25{144.

For 10 logarithmically spaced values of n between 102 and 104, we drew n independent samples of
pX,Y q according the above distribution. Using this training data, we selected optimal deterministic
and stochastic thresholds t P r0, 1s and pt, pq P r0, 1s2 for the kNN classifier by maximizing
Mp pCq over 104 uniformly spaced values in r0, 1s and r0, 1s2, respectively. Since, in this example,
α “ d “ 1, we set k “ tn2{3u as suggested by Theorem 16. As another point of comparison, we also
include a very different deterministic classifier, a random forest, trained with default parameters of
Python’s scikit-learn package. We estimated MpCq using 1000 more independently generated
test samples of pX,Y q. Figure 2a shows regret, i.e., sub-optimality of each classifier relative to
the optimal classifier, in terms of MpCq. Consistent with our analysis, regrets of the deterministic
classifiers are bounded away from 0, while regret of the stochastic classifier vanishes as n increases.

Experiment 2 This experiment demonstrates that making classifiers robust to severe class imbalance
requires distinguishing different sub-types of class imbalance, such as UCI. Suppose X “ r0, 1s,
X „ Uniformpr0, 1sq, and r P p0, 1q. Consider two regression functions η1pxq “ rp1 ´ xq and
η2pxq “ maxt0, 1 ´ x{ru. η1 and η2 exhibit the same overall class imbalance, with r{2 proportion
of samples from class 1. The regression function η1 satisfies UCI of degree r, whereas η2 does not
satisfy a nontrivial degree of UCI. For sufficiently small r P p0, 1q, specifically r P o

`

n´d{p2α`2dq
˘

,
Theorem 15 gives that the optimal choice of k under η1 satisfies k P ωprnq. On the other hand, if
k P ωprnq, then, under η2, E rpηkp0qs Ñ 0, so that pηkp0q is an inconsistent estimate of η2p0q “ 1.

For 10 logarithmically spaced values of n between 102 and 104, we drew n independent samples of
pX,Y q according the joint distributions corresponding to each of η1 and η2. Since, in this example,
α “ d “ 1, to ensure r P o

`

n´d{p2α`2dq
˘

, we set r “ n´1{2. As indicated by Corollary 16, we set
k “ tn2{3r´1{3u. We then computed L8 and L1 distances between the kNN regressor (Eq. (4)) and
true regression function. We also drew 1000 independent test samples of pX,Y q and used these to
estimate the F1 score of thresholding the kNN regressor at a threshold t determined by optimizing the
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Figure 2: (a) Regret of deterministically and stochastically thresholding the kNN classifier, under the
CMM MpCq “ TP ¨ TN. (b) Uniform (L8) and average (L1) errors of kNN regressor, as well as F1

regret of estimating regression functions η1 and η2. Error bars indicate 95% confidence intervals.

empirical F1 score (over the training data) over 100 uniformly-spaced values of t P r0, 1s. Figure 2b
shows the uniform (L8) error, the average (L1) error, and the F1 regret, which we bounded in
Corollary 8. Consistent with our analysis above, the uniform (L8) error decays to 0 under η1 but
not under η2. Meanwhile, the average error (L1) decays to 0 under both η1 and η2. Consistent with
Corollary 8, the F1 regret of the thresholded classifier, which decays to 0 under η1 but not under η2,
mirrors performance of the regressor in uniform (L8) error rather than average (L1) error.

7 Conclusions

Our main conclusions are as follows. First, without any assumptions on the data-generating distribu-
tion, the Bayes-optimal classifier generalizes from accuracy to other performance metrics using a
stochastic thresholding procedure, while, in general, deterministic classifiers may not achieve Bayes-
optimality. This generalized Bayes classifier provides an optimal performance benchmark relative to
which one can analyze classifiers that threshold estimates of the regression function. This includes the
kNN classifier, for which we provided new guarantees, including minimax-optimally under uniform
loss in the presence of Uniform Class Imbalance. Our results imply that the parameter k needs to
be tuned differently for different sub-types of imbalanced classification, suggesting that developing
reliable classifiers for severely imbalanced classes may require a more nuanced understanding of
the data at hand. Further work is needed to (a) understand how sub-types of class imbalance can be
distinguished in practice, (b) develop adaptive classifiers that perform well under multiple imbalance
sub-types, and (c) extend our results to the multiclass case.

While this paper focused on statistical properties of stochastic classification, we should point out
that using stochastic classifiers in real applications may require careful consideration of possible
downstream consequences. On one hand, Theorem 3 provides justification for using (a limited
degree of) stochasticity to break certain ties between classes: sometimes, this is provably necessary
to optimize performance according to certain metrics. Stochastic classifiers can also be easier to
train [Cotter et al., 2019a, Lu et al., 2020] or more robust to adversarial examples [Pinot et al., 2022].
However, stochastic classifiers have risks, including being harder to interpret, explain, or debug,
and being vulnerable to manipulation by downstream users (e.g., a user might query the classifier
multiple times to produce a desired prediction). Stochastic classifiers may also violate certain notions
of fairness, as individuals with identical features might be assigned to different classes. Techniques
for derandomizing classifiers [Cotter et al., 2019b, Wu et al., 2022] may help address these issues.

Acknowledgments and Disclosure of Funding

This work was supported by the German Federal Ministry of Education and Research (BMBF)
through the Tübingen AI Center (FKZ: 01IS18039B).

10



References
Sylvain Arlot and Peter L Bartlett. Margin-adaptive model selection in statistical learning. Bernoulli,

17(2):687–713, 2011.

Jean-Yves Audibert and Alexandre B Tsybakov. Fast learning rates for plug-in classifiers. The Annals
of Statistics, 35(2):608–633, 2007.

John O Awoyemi, Adebayo O Adetunmbi, and Samuel A Oluwadare. Credit card fraud detection
using machine learning techniques: A comparative analysis. In 2017 International Conference on
Computing Networking and Informatics (ICCNI), pages 1–9. IEEE, 2017.

George Bennett. Probability inequalities for the sum of independent random variables. Journal of the
American Statistical Association, 57(297):33–45, 1962.

Gérard Biau and Luc Devroye. Lectures on the Nearest Neighbor Method. Springer, 2015.

Gérard Biau, Frédéric Cérou, and Arnaud Guyader. Rates of convergence of the functional k-nearest
neighbor estimate. IEEE Transactions on Information Theory, 56(4):2034–2040, 2010.

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities: A Nonasymp-
totic Theory of Independence. Oxford University Press, 2013.

Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Introduction to statistical learning theory.
In Summer School on Machine Learning, pages 169–207. Springer, 2003.

Timothy I Cannings, Thomas B Berrett, and Richard J Samworth. Local nearest neighbour clas-
sification with applications to semi-supervised learning. arXiv preprint arXiv:1704.00642 v3,
2019.

Alberto Cano, Amelia Zafra, and Sebastián Ventura. Weighted data gravitation classification for
standard and imbalanced data. IEEE Transactions on Cybernetics, 43(6):1672–1687, 2013.

Kamalika Chaudhuri and Sanjoy Dasgupta. Rates of convergence for nearest neighbor classification.
In Advances in Neural Information Processing Systems, pages 3437–3445, 2014.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. SMOTE: synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research, 16:321–357, 2002.

Corinna Cortes and Mehryar Mohri. AUC optimization vs. error rate minimization. Advances in
Neural Information Processing Systems, 16(16):313–320, 2004.

Andrew Cotter, Heinrich Jiang, and Karthik Sridharan. Two-player games for efficient non-convex
constrained optimization. In Algorithmic Learning Theory, pages 300–332. PMLR, 2019a.

Andrew Cotter, Harikrishna Narasimhan, and Maya R Gupta. On making stochastic classifiers
deterministic. Advances in Neural Information Processing Systems (NeurIPS), 2019b.

Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, 13(1):21–27, 1967.

Krzysztof Dembczynski, Arkadiusz Jachnik, Wojciech Kotlowski, Willem Waegeman, and Eyke
Huellermeier. Optimizing the F-measure in multi-label classification: Plug-in rule approach versus
structured loss minimization. In Proceedings of the 30th International Conference on Machine
Learning. PMLR, 2013.
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