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Abstract

Neural network models trained on text data have been found to encode undesirable
linguistic or sensitive concepts in their representation. Removing such concepts is
non-trivial because of a complex relationship between the concept, text input, and
the learnt representation. Recent work has proposed post-hoc and adversarial meth-
ods to remove such unwanted concepts from a model’s representation. Through an
extensive theoretical and empirical analysis, we show that these methods can be
counter-productive: they are unable to remove the concepts entirely, and in some
cases may fail severely by destroying all task-relevant features. The reason is the
methods’ reliance on a probing classifier as a proxy for the concept. Even under
the most favorable conditions for learning a probing classifier when a concept’s rel-
evant features in representation space alone can provide 100% accuracy, we prove
that a probing classifier is likely to use non-concept features and thus post-hoc or
adversarial methods will fail to remove the concept correctly. These theoretical im-
plications are confirmed by experiments on models trained on synthetic, Multi-NLI,
and Twitter datasets. For sensitive applications of concept removal such as fairness,
we recommend caution against using these methods and propose a spuriousness
metric to gauge the quality of the final classifier.

1 Introduction

Neural models in text classification have been shown to learn spuriously correlated features [16, 27]
or embed sensitive attributes like gender or race [8, 7, 6] in their representation layer. Classifiers that
use such sensitive or spurious concepts (henceforth concepts) raise concerns of model unfairness and
out-of-distribution generalization failure [39, 2, 15]. Removing the influence of these concepts is
non-trivial because the classifiers are based on hard-to-interpret deep neural networks. Moreover,
since many concepts cannot be modified at the input tokens level, removal methods that work at the
representation layer have been proposed: 1) post-hoc removal [7, 49, 14] on a pre-trained model (e.g.,
null space projection [32]), and 2) adversarial removal [15, 48, 12] by jointly training the main task
classifier with an (adversarial) classifier for the concept.

In this paper, we theoretically show that both these classes of methods can be counter-productive
in real-world settings where the main task label is often correlated with the concept. Examples
include natural language inference (main task) where the presence of negation (spurious concept)
may be correlated with the “contradicts” label; or tweet sentiment classification (main task) where the
author’s gender (sensitive concept) maybe correlated with the sentiment label. Our key result is based
on the observation that both these methods internally use an auxiliary (or probing) classifier [1, 42]
that aims to predict the spurious concept based on the representation learnt by the main classifier.

We show that an auxiliary classifier cannot be a reliable signal on whether the representation includes
features that are causally derived from the concept. As previous work has argued [4, 44, 40, 2], if
the representation features causally derived from the concept are not predictive enough, the probing
classifier for the concept can be expected to rely on correlated features to obtain a higher accuracy.
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However, we show a stronger result: this behavior holds even when there is no potential accuracy
gain and the concept’s features are easily learnable. Specifically, even when the concept’s causally-
related features alone can provide 100% accuracy and are linearly separable with respect to a binary
probing task label, the probing classifier may still learn non-zero weights for the correlated main-task
relevant features. Based on this result, under some simplifying assumptions, we prove that both
post-hoc and adversarial training methods can fail to remove the undesired concept, remove useful
task-relevant features in addition to the undesired concept, or do both. As a severe failure mode, we
show that post-hoc removal methods can lead to a random-guess main-task classifier by removing all
task-relevant information from the representation.

Empirical results on four datasets—natural language inference, sentiment analysis, tweet-mention
detection, and a synthetic task—confirm our claims. Across all datasets, as the correlation between
the main task and the concept increases, post-hoc removal using null space projection removes a
higher amount of the main-task features, eventually leading to a random-guess classifier. In particular,
for a pre-trained classifier that does not use the concept at all, the method modifies the representation
to yield a classifier that either uses the concept or has lower main-task accuracy, irrespective of the
correlation between the main task and the concept. Similarly, for the adversarial removal method, we
find that it does not remove all concept-related features. For most datasets, the concept features left
within an classifier’s representation are comparable to that for a standard main-task classifier.

Our theoretical analysis complements past empirical critiques of adversarial methods for concept
removal [12]. More generally, we extend the literature on probing classifiers and their unreliability [4].
Adding to known limitations of explainability methods [19, 35] based on the accuracy of a probing
classifier, our results show that recent causally-inspired methods like amnesic probing [13] are also
flawed because they depend on access to a good quality concept classifier. Our contributions include:

• Theoretical analysis of null space and adversarial removal methods showing that they fail to remove
an undesirable concept from a model’s representation, even under favorable conditions.

• Empirical results on four datasets showing that the methods are unable to remove a spurious
concept’s features fully and end up unnecessarily removing task-relevant features.

• A practical spuriousness score for evaluating the output of concept removal methods.

2 Concept removal: Background and problem statement

For a classification task, let (xi, yim)ni=1 be set of examples in the dataset Dm, where xi ∈ X are
the input features and yim ∈ Ym the label. We call this the main task and label yim the main task
label. The main task classifier can be written as cm(h(x)) where h : X → Z is an encoder mapping
the input x to a latent representation z := h(x) and cm : Z → Ym is the classifier on top of the
representation Z. Additionally, we are given labels for a spurious or sensitive concept, yp ∈ Yp, i.e.,
(xi, yip)

n′

i=1 in a dataset Dp, and our goal is to ensure that the representation h(x) learnt by the main
classifier does not include features causally derived from the concept. Below we define what it means
to be “causally derived”: the representation should not change under an intervention on concept.
Definition 2.1. (Concept-causal feature) A feature Zj ∈ Z (jth dimension of h(x)) at the repre-
sentation layer is defined to be causally derived from a concept (concept-causal for short) if upon
changing the value of the concept, the corresponding change in the input’s value x will lead to a
change in the feature’s (Zj) value.

For simplicity, we assume that the non-concept-causal features are the main task features. Often, the
main task and the concept label are correlated; hence the learnt representation h(x) for the main task
may include concept-causal features too. A concept removal algorithm is said to be successful if it
produces a clean representation h′(x) to be used by the main-classifier that has no concept-causal
features and it does not corrupt or removes the main-task features. If the representation does not
contain such features, the main classifier cannot use them [12]. In practice, it is okay if the concept-
causal features are not completely removed, but our key criterion is that the removal process should
not remove the correlated main task features.

Existing concept removal methods. When the text input can be changed based on changing the
value of concept label, methods like data augmentation [23, 50, 41] have been proposed for concept
removal. However, for most sensitive or spurious concepts, it is not possible to know the correct
change to apply at the input level corresponding to a change in the concept’s value.
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Instead, methods based on the representation layer have been proposed. To determine whether
features in a representation are causally derived by the concept, these methods train an auxiliary,
probing classifier cp : Z → Yp where yp ∈ Yp is the label of the concept we want to remove from
the latent space z ∈ Z. The accuracy of the classifier indicates the predictive information about the
concept embedded in the representation. This probing classifier is then used to remove the sensitive
concept from the latent representation which will ensure that the main-task classifier cannot use them.
Two kinds of feature removal methods have been proposed: 1) post-hoc methods such as null space
removal [32, 13, 24, 20], with removal after the main-task classifier is trained; 2) adversarial methods
that jointly train the main task with the probing classifier as the adversary [15, 48, 33, 34].

For adversarial removal, recent empirical results cast doubt on the method’s capability to fully remove
the sensitive concept from the model’s representation [12]. We extend those results with a rigorous
theoretical analysis and provide experiments for both adversarial and post-hoc removal methods.

3 Attribute removal using probing classifier can be counter-productive

As mentioned above, both removal methods internally use a probing classifier as a proxy for the
concept’s features. In §3.1, we start off by showing that for any classification task be it probing or
main-task classification, it is difficult to learn a clean classifier which doesn’t use any spuriously
correlated feature (Lemma 3.1 and Lemma B.1). Hence the key assumption driving the use of
predictive classifiers within both removal methods is incorrect. Next in §3.2 and 3.3, we will show
how these individual components’ failure leads to the failure of both removal methods. Finally, in
§3.4, we propose a practical spuriousness score to assess the output classifier from any of the removal
methods. Throughout this section, we assume that both the main task label ym and probing task label
yp are binary (∈ {−1, 1}) and there is a basic, fixed encoder h converting the text input to features in
the representation space (e.g., a pre-trained model like BERT [10]).

3.1 Fundamental limits to learning a clean classifier: Probing and Main Classifier

Given z = h(x) and the concept label yp, the goal of the probing task is to learn a classifier cp(z)
such that it only uses the concept-causal features and the accuracy for yp is maximized. We assume
that the main task and concept labels are correlated, so it can be beneficial to use main-task features
to maximize accuracy for yp. As argued in the probing literature [19, 4], if there are features in z
outside concept-causal that help improve the accuracy of the classifier, a classifier trained on standard
losses such as cross-entropy or max-margin is expected to use those features too. Below we show a
stronger result: even when there is no accuracy benefit of using non concept-causal features, we find
that a probing classifier may still use those features.

Creating a favorable setup for the probing classifier. Specifically, we create a setting that is the
most favorable for a probing classifier to use only concept-causal features: 1) no accuracy gain
on using features outside of concept-causal because concept-causal features are linearly separable
for concept labels , and 2) disentangled representation so that no further representation learning is
required. Yet we find that a trained probing classifier would use non-concept-causal features.
Assumption 3.1 (Disentangled Latent Representation). The latent representation z is disentangled
and is of form [zm, zp], where zp ∈ Rdp are the concept-causal features and zm ∈ Rdm are the
main task features. Here dm and dp are the dimensions of zm and zp respectively.
Assumption 3.2 (Concept-causal Feature Linear Separability). The concept-causal features (zp) of
the latent representation (z) are linearly separable/fully predictive for the concept labels yp, i.e.,
yip · (ϵ̂p · zi

p + bp) > 0, ∀(xi, yip) in training dataset Dp for some ϵ̂p ∈ Rdp and bp ∈ R.

The effect of spurious correlation between concept and label. Now we are ready to state the key
lemma which will show that if there is a spurious correlation between the main task and concept labels
such that the main-task features zm are predictive of the concept label for only a few special points,
then the probing classifier cp(z) will use those features. We operationalize spurious correlation as,
Assumption 3.3 (Spurious Correlation). For a subset of training points S ⊂ Dp in the training
dataset for a probing classifier, zm is linearly-separable with respect to concept label yp, i.e.,
yip · (ϵ̂m · zi

m + bm) > 0 ∀i ∈ S , where ϵ̂m ∈ Rdm and bm ∈ R.

For simplicity, we assume that the encoder h(·) which maps the input X to latent representation
Z is frozen or non-trainable. Following [29], we assume max-margin as training loss; under some
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Figure 1: Failure mode of null space removal. Consider a main task (Profession) classifier where
Gender is the spurious concept to be removed. Assume a 2-dimensional latent representation z, where
one dimension corresponds to profession and the other to the gender feature. (a) A “clean” (fair) main
task classifier that only uses the Profession feature, shown by its vertical projection direction, that is
input to INLP for concept removal. Its decision boundary is orthogonal to the projection direction.
(b) From Lemma 3.1, INLP trains a probing classifier for gender with a slanted projection direction
(ideal gender projection direction would be horizontal). (c) For two points having the same profession
but different gender features (marked ‘1’), projection to the null-space (‘2’) has their profession
feature reversed (‘3’), thus making the fair pretrained classifier become unfair (also see §3.2).

mild conditions on separable data, a classifier trained using logistic/exponential loss converges to
max-margin classifier given infinite training time [43, 21].
Lemma 3.1. Let the latent representation be frozen and disentangled such that z = [zm, zp]
(Assm 3.1), and concept-causal features zp are fully predictive for the concept label yp (Assm 3.2). Let
c∗p(z) = wp · zp where wp ∈ Rdp be the desired clean linear classifier trained using the max-margin
objective (§B.1) that only uses zp for its prediction. Let zm be the main task features, spuriously
correlated s.t. zm are linearly-separable w.r.t. probing task label yp for the margin points of c∗p(z)
(Assm 3.3). Then, assuming a zero-centered latent space (bp = 0), a concept-probing classifier cp
trained using the max-margin objective will use spurious features, i.e., cp(z) = wp · zp +wm · zm
where wm ̸= 0 and wm ∈ Rdm .

Proof Sketch. Starting from c∗p(z), we show that there always exists a perturbed classifier which uses
the main task features and has a bigger margin than c∗p(z). Within some range of perturbation, for all
margin points of c∗p, using the main task features increases the margin by Assm 3.3, and does not
reduce the margin for non-margin points s.t. it becomes the same as the margin of c∗p. Proof in §B.3.

Our result shows that not just accuracy, even geometric skews in the dataset can yield an incorrect
probing classifier. In §B.4 we prove that the assumptions for Lemma 3.1 are both sufficient and
necessary for a classifier to use non-concept-features zm when zp is 1-dimensional. Lemma 3.1
generalizes a result from [29] by using fewer assumptions (we do not restrict zm to be binary, do
not assume that zm and zp are conditionally independent given y, and do not assume monotonicity
of classifier norm with dataset size). We present a similar result for the main task classifier: under
spurious correlation of concept and main task labels, the main task classifier would use concept-causal
features even when 100% accuracy can be achieved using only main task features (Lemma B.1, §B.2).

3.2 Failure mode of post-hoc removal methods: Null-space removal (INLP)

The null space method [32, 13], henceforth referred as INLP, removes a concept from latent space by
projecting the latent space to a subspace that is not discriminative of that concept. First, it estimates
the subspace in the latent space discriminative of the concept we want to remove by training a probing
classifier cp : Z → Yp, where Yp is the concept label. Then the projection is done onto the null-space
of this probing classifier which is expected to be non-discriminative of the concept. For instance,
[32] use a linear probing classifier cp(z) to ensure that the any linear classifier cannot recover the
removed concept from modified latent representation z′ and hence the main task classifier (cm(z′))
becomes invariant to removed concept. Also, they recommend running this removal step for multiple
iterations to ensure the unwanted concept is removed completely (details are in §C.1). Below we state
the failure of the null-space method using zi(k) to denote the representation zi after k steps of INLP.
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Theorem 3.2. Let cm(z) be a pre-trained main-task classifier where the latent representation
z = [zm, zp] satisfies Assm 3.1 and 3.2. Let cp(z) be the probing classifier used by INLP to remove
the unwanted features zp from the latent representation. Under Assm 3.3, Lemma 3.1 is satisfied for
the probing classifier cp(z) such that cp(z) = wp · zp +wm · zm and wm ̸= 0. Then,

1. Damage in the first step of INLP. The first step of linear-INLP will corrupt the main-task features
and this corruption is non-invertible with subsequent projection steps of INLP.

(a) Mixing: If wp ̸= 0, the main task zm and concept-causal features zp will get mixed such that
zi(1) = [g(zi

m, z
i
p), f(z

i
p, z

i
m)] ̸= [g(zi

m), f(zi
p)] for some function “f” and “g”. Thus, the

latent representation is no longer disentangled and removal of concept-causal features will
also lead to removal of main task features.

(b) Removal: If wp = 0, then the first projection step of INLP will do opposite of what is
intended, i.e., damage the main task features zm (in case zm ∈ R, it will completely remove
zm) but have no effect on the concept-causal features zp.

2. Removal in the long term: The L2-norm of the latent representation z decreases with every projec-
tion step as long as the parameters of probing classifier (wk) at a step “k” does not lie completely
in the space spanned by parameters of previous probing classifiers, i.e., span(w1, . . . ,wk−1),
zi(k−1), zi(0) and zi(0) in direction of wk is not trivially zero. Thus, after sufficiently many steps,
INLP can destroy all information in the representation s.t. zi(∞) = [0,0].

Proof Sketch. From Lemma 3.1, in the first step, probing classifier for zp will use zm in addition to
zp. Consequently, the projection matrix for INLP based on the probing classifier will be incorrect,
hence corrupting the main task features zm with zp (1a) or damage zm without any effect on zp (1b).
Next, we show that each step of the projection operation reduces the norm of latent representation z;
thus the latent representation can go to 0 as the number of steps increases (2). Proof in §C.

Failure Mode: Fig. 1a-1c demonstrate the mixing problem stated in Theorem 3.2, where a fair
classifier becomes unfair after the first step of projection. Note that after first step the main task
classifier’s accuracy will drop because of this mixing of features, affecting INLP-based probing
methods like Amnesic Probing [13] that interpret a drop in the main classifier’s accuracy after INLP
projection as evidence that the main classifier was using the sensitive concept.

3.3 Failure mode of adversarial removal methods

To remove the unwanted features zp from the latent representation, adversarial removal methods
jointly train the main classifier cm : Z → Ym and the probing classifier cp : Z → Yp by specifying
cp’s loss as an adversarial loss. For details refer to §D.1.

As in Lemma 3.1, we assume that the encoder h : X → Z mapping the input to the latent
representation Z is frozen. To allow for the removal of the unwanted features zp , we introduce
additional representation layers after it. For simplicity in the proof, we assume a linear transformation
to the latent representation h2 : Z → ζ. This layer is followed by the linear main-task classifier
cm : ζ → Ym, as before. The probing classifier cp : ζ → Yp is trained adversarially to remove zp
from the latent representation ζ. Thus, the goal of the adversarial method can be stated as removing
the information of zp from ζ. Let the main-task classifier satisfy assumptions of the generalized
version of Lemma 3.1 (Lemma B.1, §B.2). We also need an additional assumptions on the hard-to-
classify margin points to ensure that main-task labels and concept labels are correlated on the margin
points of a clean main-task classifier. Proof of the Theorem 3.3 stated below is in §D.
Assumption 3.4 (Label Correlation on Margin Points). For the margin points of a clean classifier
for the main task, the adversarial-probing labels yp and the main task labels ym are correlated, i.e.,
w.l.o.g., yim = yip for all margins points of the clean main task classifier.

Theorem 3.3. Let the latent representation z satisfy Assm 3.1 and be frozen, h2(z) be a linear
transformation over Z s.t. h2 : Z → ζ, the main-task classifier be cm(ζ) = wcm · ζ, and the
adversarial probing classifier be cp(ζ) = wcp · ζ. Let all the assumptions of Lemma B.1 be satisfied
for main-classifier cm(·) when using z directly as input and Assm 3.2 be satisfied on z w.r.t. the
adversarial task. Let h∗2(z) be the desired encoder which is successful in removing zp from ζ. Then
there exists an undesired/incorrect encoder hα2 (z) s.t. hα2 (z) is dependent on zp and the main-task
classifier cm(hα2 (z)) has bigger margin than cm(h∗2(z)) and has,
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Figure 2: Failure mode of adversarial removal. As in Fig. 1, the main task label is Profession and
Gender is the spurious concept, each corresponding to one of the dimensions of the 2-dimensional
feature representation z. Assume that the shared representation is a scalar value obtained by projecting
the two features in some direction. The adversarial goal is to find a projection direction such that the
concept (gender) classifier obtains a random-guess accuracy of 50% but has good accuracy on the
main task label (profession). (a) Two projection directions, shown by vertical and slanted lines, that
yield random-guess 50% accuracy on gender prediction, and (b) have the same 100% accuracy for
profession prediction. (c) However, the slanted projection direction has a bigger margin for the main
task and will be preferred, thus leading to a final classifier that uses the gender concept (see §3.3).

1. Accuracy(cp(hα2 (z)), yp) = Accuracy(cp(h
∗
2(z)), yp); when adversarial probing classifier

cp(·) is trained using any learning objective like max-margin or cross-entropy loss. Thus, the
undesired encoder hα2 (z) is indistinguishable from desired encoder h∗2(z) in terms of adversarial
task prediction accuracy but better for main-task in terms of max-margin objective.

2. Lh2

(
cm(hα2 (z)), cp(h

α
2 (z))

)
< Lh2

(
cm(h∗2(z)), cp(h

∗
2(z))

)
; when Assm 3.4 is satisfied and

concept-causal features zM
p of any margin point zM of cm(h∗2(z)) are more predictive of the

main task label than zP
p of any margin point zP of cp(h∗2(z)) is predictive for the probing label

(Assm D.1). Thus, undesired encoder hα2 (z) is preferable over desired encoder h∗2(z) for both
main and combined adversarial objective. Here Lh2

= L(cm(·)) − L(cp(·)) is the combined
adversarial loss w.r.t. to h2 and L(c(·)) is the max-margin loss for a classifier “c” (see §D.1).

Proof Sketch. (1) The proof is by construction. Using Lemma B.1, we show that there exists hα2 s.t.
L(cm(hα2 )) < L(cm(h∗2)), and that accuracy of the probing classifier remains the same when using
either encoder. (2) Compared to h∗2, we show that the improvement in main task loss when using zp
features is larger than the improvement in the probing loss for hα2 , thus preferred by overall objective.

3.4 Implications for real-world data: A metric for quantifying degree of spuriousness

Our theoretical analysis shows that probing-based removal methods fail to make the main task
classifier invariant to unwanted concepts. However, to verify whether the final classifier is using the
concept or not, the theorem statements require knowledge of the concept’s features zp. For practical
usage, we propose a metric that quantifies the degree of failure or spuriousness for both the main and
probing classifier. For simplicity, we define it assuming that both main and concept labels are binary.

Let Dm,p be the dataset where for every input xi we have both the main task label ym and the
concept label yp. We define 2 × 2 groups, one for each combination of (ym, yp). Without loss of
generality, assume that the main-task label ym = 1 is spuriously correlated with concept label yp = 1
and similarly ym = 0 is correlated with yp = 0. Thus, (ym = 1, yp = 1) and (ym = 0, yp = 0)
are the majority group Smaj while groups (ym = 1, yp = 0) and (ym = 0, yp = 1) make up the
minority group Smin. We expect the main classifier to exploit this correlation and hence perform
badly on Smin where the correlation breaks. Following [39], we posit that minority group accuracy
i.e Acc(Smin) can be a good metric to evaluate the degree of spuriousness. We bound the metric by
comparing it with the accuracy on Smin of a “clean” classifier that does not use the concept features.
Definition 3.1 (Spuriousness Score). Given a dataset, Dm,p = Smin ∪ Smaj with binary task label
and binary concept, let Accf (Smin) be the minority group accuracy of a given main task classifier
(f ) and Acc∗(Smin) be the minority group accuracy of a clean main task classifier that does not use
the spurious concept. Then spuriousness score of f is: ψ(f) = |1−Accf (Smin)/Acc

∗(Smin)|.
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To estimate Acc∗(Smin), we subsample the dataset such that yp takes a single value in the sample
and train the main classifier on it, as in [35]. Here the probing label yp no longer is correlated with
the main task label ym. The spuriousness score of a probing classifier can be defined analogously to
Def 3.1, by swapping the task and concept label (see Def E.1). For creating a clean probing classifier,
we subsample the dataset such that ym takes a single value and train the probing classifier.

4 Experimental Results

Theorems 3.2 and 3.3 show the failure of concept removal methods under a simplified setup and
max-margin loss. But current deep-learning models are not trained using max-margin objective
and might not satisfy the required assumptions (Assm 3.1,3.2,3.3,3.4). Thus, we now verify the
failure modes on three real-world datasets and one synthetic dataset, without making any restrictive
assumptions. We use RoBERTa [25] as default encoder and fine-tune it over each real-world dataset.
For Synthetic-Text dataset we use the sum of pre-trained GloVe embeddings [30] of words in a
sentence as the default encoder. For details on the experimental setup, refer §E.

4.1 Datasets: Main task and spurious/sensitive concept
Real-world data. We use three datasets: MultiNLI [46], Twitter-PAN16 [31] and Twitter-AAE [6].
In MultiNLI, given two sentences—premise and hypothesis—the main task is to predict whether
hypothesis entails, contradicts or is neutral with respect to premise. We simplify to a binary
task of predicting whether a hypothesis contradicts the premise or not. Since negation words like
nobody,no,never and nothing have been reported to be spuriously correlated with the contradiction
label [16], we create a ‘negation’ concept denoting the presence of these words. The goal is to remove
the negation concept from an NLI model’s representation space. In Twitter-PAN16, the main task is
to detect whether a tweet mentions another user or not, as in [12]. The dataset contains gender label
for each tweet, which we consider as the sensitive concept to be removed from the main model’s
representation. In Twitter-AAE, again following [12], the main-task is to predict binary sentiment
labels from a tweet’s text. The tweets are associated with race of the author, the sensitive concept to
be removed from the main model’s representation.

Synthetic-Text. To understand the reasons for failure, we introduce a Synthetic-Text dataset where it
is possible to change the input text based on a change in concept (thus implementing Def. 2.1). Here
we can directly evaluate whether the concept is being used by the main-task classifier by intervening
on the concept (adding or removing) and observing the change in model’s prediction. The main-task
is to predict whether a sentence contains a numbered word (e.g., one, fifteen, etc.). We introduce a
spurious concept (length) by increasing the length of sentences that contain numbered words.

Predictive correlation. To assess robustness of removal methods, we create multiple datasets with
different predictive correlation between the two labels ym and yp. The predictive correlation (κ) is a
practical measure for the spurious correlation defined in Assm 3.3, that does not require access to
zm features. It measures how informative one label is for predicting the other, κ = Pr(ym · yp >
0) =

∑N
i=1 1[ym·yp>0]

N , where N is the size of dataset and 1[·] is the indicator function that is 1 if
the argument is true otherwise 0. Predictive-correlation lies in κ ∈ [0.5, 1] where κ = 0.5 indicates
no correlation and κ = 1 indicates that the attributes are fully correlated. For more details on the
datasets and how we vary the predictive-correlation, refer to §E; and for additional results see §F.

Measuring spuriousness of a classifier. We use the Spuriousness Score (Def 3.1) to measure the
degree of reliance of the main task classifier on the spurious concept, and vice-versa for the probing
classifier. In addition, for the Synthetic-Text dataset, we use a metric ∆Prob that exactly implements
Def 2.1 for estimating a model’s reliance on the spurious concept. Since we can modify the concept
directly in input space for Synthetic-Text, ∆Prob changes the parts of a input sentence corresponding
to spurious concept and measures the change in the main task classifier’s prediction probability. As
a sanity check, on the Synthetic-Text dataset, ∆Prob and Spuriousness Score are highly correlated
(Pearson correlation=0.83, §G). For all real-world datasets, we use the Spuriousness Score.

4.2 Results: Null space removal
In general, for any model given as input to INLP, it may be difficult to verify whether INLP removed
the correct features. Hence, we construct a benchmark where the input classifier is clean, i.e., it
does not use the concept at all. We do so by training on a subset of data with one particular value of
spurious concept label, as in [35]. Since the input classifier does not use the concept-causal features,
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Figure 3: Null space removal failure. Top row corresponds to the Synthetic-Text dataset and bottom
row shows the failure on three real-world datasets. In each figure, the x-axis shows the INLP iteration
and y-axis shows different evaluation metrics. Colored lines correspond to the different levels of
predictive correlation (κ) in the datasets used by INLP. (a), (d), (e), (f) show that as INLP removal
progresses, main-task classifier is getting corrupted which leads to drop in its accuracy (see §4.2).

we expect that INLP should not have any effect on the main task classifier. Note that we keep the
main task classifier frozen in all the experiments described below. For the setting where the main task
classifier is retrained after every projection step of INLP, refer §F.2 and Fig. 9.

Eventually all task-relevant features are destroyed. We start with the Synthetic-Text dataset
by training a clean classifier on the main-task and inputting it to INLP for removing the spurious
concept. To keep the conditions favorable for INLP, both the main task and concept-probing task can
achieve 100% accuracy using their causally derived features respectively. In Fig. 3a, colored lines
show datasets with different levels of predictive correlation κ that are provided to INLP and iterations
21-40 show individual steps of null-space removal. Since, the given pre-trained classifier was clean,
i.e., not using the concept features, null-space removal shouldn’t have any effect on it. We observe
that for all values of κ, the main-task classifier’s accuracy eventually goes to 50% random guess
accuracy implying that the main-task related attribute has been removed by INLP, as predicted by
Theorem 3.2. Higher the value of correlation κ, faster the removal of main-task attribute happens. We
obtain a similar pattern over real-world datasets. Fig. 3d,3e and 3f show a decrease in the main-task
accuracy even when the input classifier for each dataset is ensured to be clean: except for κ = 0.5
(no correlation), all values of κ yield a random-guess classifier after applying INLP on MultiNLI
while they yield classifiers with less than 60% accuracy for Twitter-PAN16 and Twitter-AAE.

Early stopping increases the reliance on spurious features. To avoid full collapse of the main-task
features, a stopping criterion in INLP is to stop when the main-task classifier’s performance drops [32].
In Fig. 3b we measure spuriousness, sensitivity of the Synthetic-Text main task classifier w.r.t. to the
spurious concept, using ∆Prob (see §4.1 and E.8). At lower iterations of INLP, ∆Prob is higher than
that of the input classifier. For example, for κ = 0.8, when the main-task classifier’s performance
drops at iteration 27, the classifier has a high ∆Prob ≈ 25%, higher than the input classifier (Fig. 3b).
Hence it is possible that stopping prematurely will lead us to a classifier that is more reliant on the
spurious concept than it was before, consistent with the statement 1(a) in Theorem 3.2. The reason is
the mixing of the main task and concept-causal features in each iteration, as shown in Fig. 3c using
the spuriousness score of the probing classifier (Def 3.1). At lower iterations, the spuriousness score
of probing classifier increases to a very high value (close to max value 1), for all values of κ.

Failure of causally-inspired probing. Amnesic Probing [13] declares that a sensitive concept is
being used by the model if, after removal of the concept from from the latent representation using
INLP, there is a drop in the main-task performance. But Fig. 3a, 3d, 3e and 3f show that even
when the input classifier for its corresponding main task is clean, i.e., does not use the sensitive
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Figure 4: Adversarial Removal Failure. Top row explains failure of the AR method on MultiNLI.
Bottom row shows the failure on Twitter-PAN16, Twitter-AAE, and Synthetic-Text datasets. In
each figure, the x-axis shows different levels of predictive-correlation (κ) between the main task and
concept labels in the dataset used by AR and the y-axis shows different evaluation metrics. Orange
lines denote the ERM model and the blue lines denote the model trained using AR. (b), (d), (e), (f)
show that AR is unable to completely remove the spurious concept from the main task classifier. (c)
shows a stronger failure where the AR method introduces spuriousness into a clean input classifier.

concept, INLP leads to drop in performance of the main-classifier. Hence, removal-based methods
like Amnesic probing will falsely conclude that the sensitive concept is being used.

4.3 Results: Adversarial removal
We now demonstrate failure of the adversarial-removal method (AR) in removing the spurious concept
from the main classifier. We train a separate main-task classifier without any adversarial objective
with standard cross-entropy loss objective (referred as ERM). Then we compare standard ERM
training of the main classifier with the AR method over the same number of epochs (20). We follow
the training procedure of [12] and conduct a hyper-parameter sweep on the adversarial training
strength to select the value which is most effective in removing the concept. For details, refer to §E.
Cannot remove the spurious concept fully. For MultiNLI, Fig. 4a shows the spuriousness score
(Def 3.1) of ERM and AR classifiers as we vary the predictive correlation (κ) between the main-task
label and sensitive concept label in the training dataset. While the spuriousness score for classifier
trained using AR (blue curve) is lower than that of ERM for all values of κ, it is substantially away
from zero. Thus, the AR method fails to completely remove the spurious concept completely from
the latent representation. By inspecting the concept probing classifier accuracy for ERM and AR
in Fig. 4b, we obtain a possible explanation. The probe accuracy after adversarial training doesn’t
decrease to 50% but stops at accuracy proportional to the predictive correlation κ. This is expected
since even if the AR would have been successful in removing the concept-causal features, the main-
task features would still be predictive of the concept label by κ due to the spurious correlation between
them. However, the converse is not true: an accuracy of κ does not imply that the concept is fully
removed. The results substantiate the first statement of Theorem 3.3: given two representations where
one (desired) does not have concept features while the other (undesired) contains the concept features,
the undesired one may be better for the main task accuracy even as both may have the same probing
accuracy. Fig. 4d, 4e and 4f show the spuriousness score of AR in comparison to classifier trained
with ERM on Twitter-PAN16, Twitter-AAE and Synthetic-Text datasets respectively. The failure of
AR is worse here: there is no significant reduction in spuriousness score for AR in comparison to
ERM. For the Synthetic-Text dataset, ERM has zero spuriousness score but AR has non-zero score.
We expand more on this observation and include additional results on adversarial removal in §F.3.

AR makes a clean classifier use the spurious concept. In Fig. 4c we provide a clean main task
classifier (see §F.3 for training details) as input to AR method. For all values of κ, the input classifier’s
spuriousness score is low (iteration 1-6). From iteration 7 onwards, the AR method corrupts the clean
classifier as shown by increasing spuriousness scores. For more results, see Fig. 12b in §F.3.
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Comparison with previous work. If post-removal the latent representation used by the main-task
classifier is still predictive of the removed concept, [12] claimed it as a failure of the adversarial
removal method. However, this claim may not be correct since a feature could be present in the latent
space and yet not used by model [35]. Our proposed spuriousness score metric avoids this limitation.

Ablations. In Appendix, we report results on using BERT instead of RoBERTa as the input encoder
(§F.2, F.3), the effect of using different modeling choices like loss-function, regularization, e.t.c.
(§F.4), and the behavior of probing classifiers when concept is not present in latent space (§F.1).

5 Related work
Concept removal methods. When the removal of a concept can be simulated in input space (e.g.,
in tabular data or simpler concepts), removing a concept directly using data augmentation [23] or
gradient regularization [38, 22] can work. However, concept removal is non-trivial when change in
a concept cannot be propagated via change in input tokens. Combining the ideas of null space and
adversarial removal [32, 24, 48, 12], methods like [33, 34] restrict the adversarial function to be a
projection operation and derive a closed form solution. Other approaches use explanations of the
classifier’s prediction for concept removal [17]. Our work highlights the difficulty of building an
estimator for the features causally derived from a concept, as a general limitation for concept removal.

Limitations of a probing classifier for model interpretability. We also contribute to the growing
literature on the limitations of a probing classifier’s accuracy in capturing whether the main classifier
is using a concept [4]. It is known that probing classifiers capture not just the concept but any other
features that may be correlated with it [39, 2, 23, 45]. As a result, many improvements have been
proposed to better estimate whether a concept is being used, including the use of control labels or
datasets [19, 35]. Parallelly, new causality-inspired probing methods [13] compare the main task
accuracy on a representation without the concept constructed using the null space removal method.
The hope is that such improvements can make probing more robust. Our results question this direction.
To demonstrate the fundamental unreliability of probing classifier, we construct a setup that is most
favorable for learning only the concept’s features and still find that learned probing classifier includes
non-zero weight for other features, limiting effectiveness of any interpretation method based on it.

6 Conclusion
Our theoretical and empirical evaluations show that it is difficult to create a probing-based explain-
ability and removal method due to the fundamental limitation of learning a “clean” probing classifier.
We recommend two tests for validating removal methods. First, we provide a sanity-check: any
reasonable removal method should not modify a “clean” classifier that does not use any spurious
features to produce a final classifier that uses those features. Second, we propose a spuriousness score
that can be used to evaluate the dependence of any classifier on spurious features. As a future step,
we encourage the community to develop more such sanity-check tests to evaluate proposed methods.

Alternatively, we point attention to other approaches that may provide better guarantees for concept re-
moval. An example is extending data augmentation techniques like counterfactual data augmentation
([23, 9]) to non-trivial concepts. For a given training point that may include a spurious correlation, a
new data point is generated that breaks the correlation but keeps the semantics of the rest of the text
identical (hence the name, “counterfactual”). This can be done by human labeling or handcrafted
rules for modifying text (e.g., Checklists [37]). Then the main classifier is regularized to have the
same representation for such pairs of inputs ([3, 26]). By construction, with good quality pairs,
such a method will not remove task-relevant features and will satisfy the sanity checks listed above.
That said, a limitation is that the removal quality will depend on the diversity of the counterfactual
examples generated and whether they capture all aspects of the spurious concept. Another direction
is to take inspiration from the algorithmic fairness literature [18, 28] and focus on the predictions of
the classifier rather than the representation. Compared to removal in latent space, enforcing certain
fairness properties on model predictions is a more well-formed task, more interpretable, and definitely
more relevant if the final goal is fair decision making.

Limitations. A limitation of our theoretical work is assuming frozen or non-trainable latent
representation which makes the analysis of task-classifier trained on top of them relatively easier. We
address this limitation in our empirical work where we do not make such assumptions. Also, our
work addresses failure modes of two popular methods, null space removal and adversarial removal.
We conjecture that any other method based on probing classifiers will lead to similar failure modes.
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