
A Notation

Table 2 reports a summary on the notation used throughout the paper.

Table 2: Notation

Symbol Meaning

K Number of arms
M Number of fidelity
δ ∈ (0, 1) Confidence level
τ Stopping time of an algorithm
ρ(τ), c(τ) Sample/Cost complexity of an algorithm
Î(τ) Arm recommended by the algorithm when it stops
ν Bandit model
νi,m Distribution of arm i-th at fidelity m within bandit model ν
σ2 Pseudo-variance of sub-gaussian distributions
µi,m Mean of arm i-th at fidelity m
ξi,m :=µi,m−µi,M Bias of fidelity m for arm i
ξm≥maxi∈[K |ξi,m| Upper bound on the maximum bias introduced by fidelity m
λm Cost for querying an arm at fidelity m
It,mt, Rt Arm/Fidelity/Reward selected/observed by the agent at round t∈R
∆i :=µ1−µi Arm gap
S IISE’s set of active arms
µ̂i,m,t Empirical estimation of the mean of arm i-th at fidelity m using t samples
U(t, δ, ξ) Bound on the empirical mean used in the IISE elimination rule
B(t, δ) Anytime confidence interval with confidence δ and t samples
αm Thresholds used in IISE to decide when to switch to fidelity m+ 1
mi Smallest fidelity for which IISE ensures that arm i is eliminated
Y MDP’s state space
A MDP’s action space
p= {ph}h≥1 MDP’s set of transition kernel
r= {rh}h≥1 MDP’s set of reward function
η MDP’s discount factor
Λ MDP’s branching factor
ε Required precision in nearly-optimal identification
Kε Set of ε-optimal arms
γm := maxi,j∈[K]{ξi,m− ξj,m} Maximum bias variation of fidelity m
φm Upper-bound on maximum bias variation for fidelity m

B Lower Bound

Theorem 1. Consider a multi-fidelity bandit model ν with Gaussian distributions νi,m =N (µi,m, σ
2)

such that |µi,m−µi,M | ≤ ξm for every i∈ [K] and m∈ [M ]. Then, for any δ-correct algorithm and
δ≤ 0.15, it holds that:

E [c(τ)]≥
[

min
m∈M1

λm
KL(ν1,m, ν2,m)

+

K∑
i=2

min
m∈Mi

λm
KL(νi,m, ν1,m)

]
log

(
1

2.4δ

)
,

where KL(p, q) is the Kullback-Leibler divergence between distributions p and q, ν2,m =N (µ2,M +
ξm, σ

2), ν1,m =N (µ1,M − ξm, σ2),M1 := {m∈ [M ] :µ1,m>Ex∼ν2,m
[x]} andMi := {m∈ [M ] :

Ex∼ν1,m
[x]>µi,m} for i> 1.

Proof. In our proof, we consider a multi-fidelity bandit model ν and create a new instance ν′ by
modifying the reward distribution at fidelity M of a given i∈ [K]. The goal is creating a new bandit
model ν′ in which the optimal arm is different. We notice that, due to the modification of a considered
arm at fidelity M , we need to modify also distributions at fidelity m<M , so that the new instance
ν′ satisfies the constraint on the maximum bias introduced by approximators m<M . Then, we
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show that any δ-correct algorithm requires a certain amount of cost to distinguish between the two
problems. In the rest of this proof, we denote with Eν ,Pν ,Eν′ ,Pν′ expectations and probabilities in
bandit models ν and ν′ respectively.

We begin with the construction of the alternative instance ν′. For all i∈ [K], we can always build an
alternative model ν′ in which we modify only distributions related to arm i (i.e., νi,1, νi,2, . . . , νi,M ).
We denote the distributions of the modified arms at a generic fidelity m with ν′i,m, and their mean
with µ′i,m. We split the construction of ν′ into two parts: i 6= 1 and i= 1.

Focus on i 6= 1. We can set ν′i,M =N (µ′i,M , σ
2) where µ′i,M =µ1,M + ci,M with ci,M > 0. Then,

for εi,M that satisfies εi,M ≥ ci,M (ci,M + 2∆i), it holds that:

(µ′i,M −µi,M )2≤ (µ1,M −µi,M )2 + εi,M .

Moreover, since we are considering Gaussian distributions with the same variance σ2,6 it follows
that:

KL(νi,M , ν
′
i,M )≤KL(νi,M , ν1,M ) +

εi,M
2σ2

.

Now, since we have modified νi,M , we need to modify arm i at all the fidelity m<M in which
condition |µi,m−µ′i,M | ≤ ξm is no longer respected. This is equivalent to µi,m /∈ [µ′i,M − ξm, µ′i,M +

ξm], that, in turn, reduces to µi,m<µ1,M + ci,M − ξm. In particular, we modify arm νi,m with ν′i,m =

N (µ′i,m, σ
2), where µ′i,m =µ′i,M − ξm. Notice that the new arm now satisfies the precision condition

on fidelity |µ′i,m−µ′i,M | ≤ ξm and KL(νi,m, ν
′
i,m) =

(µi,m−µ1,M−ci,M+ξm)2

2σ2 . Finally, notice that the
optimal arm in ν′ is arm i.

Now, consider arm i= 1 and focus on fidelity M . We set ν′1,M =N (µ′1,M , σ
2) where µ′1,M =

µ2,M − c1,M with c1,M > 0. Then, for ε1,M that satisfies ε1,M ≥ c1,M (c1,M + 2∆i) we have:

(µ1,M −µ′1,M )2≤ (µ1,M −µ2,M )2 + ε1,M .

Moreover, by exploiting the fact that the distributions are Gaussians, we have:

KL(ν1,M , ν
′
1,M )≤KL(ν1,M , ν2,M ) +

ε1,M
2σ2

.

Now, since we have modified ν1,M , we need to modify distributions of arm 1 at all the fidelitym<M
in which condition |µ1,m−µ′1,M | ≤ ξm is no longer respected. This is equivalent to µ1,m /∈ [µ2,M −
c1,M − ξm, µ2,M − c1,M + ξm], that, in turn, reduces to µ1,m>µ2,M − c1,M + ξm. In particular,
we build an arm ν′1,m =N (µ′1,m, σ

2) where µ′1,m =µ2,M − c1,M + ξm. Notice that the precision
condition on the fidelity is now satisfied for the new arm. Moreover, we have that KL(ν1,m, ν

′
1,m) =

(µ1,m−µ2,M−ξm+c1,M )2

2σ2 . Finally, notice that the optimal arm in ν′ is no longer arm 1.

Denote withMi(ci,M ) the set of modified fidelity for arm i; that isM1(c1,M ) := {m∈ [M ] :µ1,m>
µ2,M − c1,M + ξm}, andMi(ci,M ) := {m∈ [M ] :µi,m<µ1,M + ci,M − ξm} for i 6= 1. Moreover,
for all i 6= 1 and for each fidelity m∈Mi(ci,M ), define νi,m(ci,M ) =N (µ1,M + ci,M − ξm, σ2).
For i= 1, and each fidelity m∈M1(c1,M ), define ν1,m(c1,M ) =N (µ2,M − c1,M + ξm, σ

2).7

We introduce the event I := {Î(τ) = 1}. Then, for any δ-correct algorithm it holds that Pν (I)≥ 1− δ
and Pν′ (I)≤ δ. Lemma 1 of [24] applied to stopping time τ in the alternative instance ν′ in which
arm i is modified leads to:∑

m∈Mi(ci,M )

Eν [Ti,m(τ)]KL(νi,m, ν
′
i,m)≥ log

(
1

2.4δ

)
. (10)

6We recall that the KL divergence between two Gaussian distributions p=N (µp, σ
2) and q=N (µq, σ

2) is

given by KL(p, q)=
(µp−µq)2

2σ2 .
7For all i, in the limit condition ci,M→ 0, we adopt the following abbreviations: Mi(ci,M )→Mi,

νi,m(ci,M )→ ν1,m, and ν1,m(c1,M )→ ν2,m.
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Now, focus on the left-hand term of Equation (10):∑
m∈Mi(ci,M )

Eν [Ti,m(τ)]KL(νi,m, ν
′
i,m) =

∑
m∈Mi(ci,M )

λmEν [Ti,m(τ)]
KL(νi,m, ν

′
i,m)

λm

≤ max
m∈Mi(ci,M )

KL(νi,m, ν
′
i,m)

λm

∑
k∈Mi(ci,M )

λkEν [Ti,k(τ)].

Plugging this result into Equation (10), we obtain:∑
m∈Mi(ci,M )

λmEν [Ti,m(τ)]≥ min
m∈Mi(ci,M )

λm log
(

1
2.4δ

)
KL(νi,m, ν′i,m)

.

Now, we can further lower bound the right-hand term using the definition of the alternative instance
ν′ that we discussed at the beginning of the proof. For i 6= 1, we obtain:∑

m∈Mi(ci,M )

λmEν [Ti,m(τ)]

≥min

{
λM log

(
1

2.4δ

)
KL(νi,M , ν1,M ) +

εi,M
2σ2

, min
m∈Mi(ci,M )\{M}

λm log
(

1
2.4δ

)
KL(νi,m, νi,m(ci,M ))

}
.

For i= 1, similarly:∑
m∈M1(c1,M )

λmEν [T1,m(τ)]

≥min

{
λM log

(
1

2.4δ

)
KL(ν1,M , ν2,M ) +

ε1,M
2σ2

, min
m∈M1(c1,M )\{M}

λm log
(

1
2.4δ

)
KL(ν1,m, ν1,m(c1,M ))

}
.

Now, letting ci,M→ 0 and εi,M→ 0 for all i∈ [K] and summing over the arms, we conclude the
proof.

C Upper Bound

C.1 Proof of Theorem 2

We begin our proofs with the standard concentration results. For completeness, we report the
Hoeffding inequality [4] for σ2-subgaussian random variables.

Lemma 1 (Hoeffding inequality). Let X1, X2, . . . , Xn be independent σ2-subgaussian random
variables with mean µ1, µ2, . . . , µn respectively. Let µn := 1

n

∑n
i=1 µi and µ̂n := 1

n

∑n
i=1Xi. Then,

∀ε> 0, it holds that:

P(|µ̂n−µn|>ε)≤ 2 exp

(
−nε

2

2σ2

)
.

We now continue with bounding the probability of the failure event.

Lemma 2 (Failure event). Consider δ ∈ (0, 1) and B (t, δ) :=

√
2σ2 log

(
4t2

δ

)
t , and let:

E :=

K⋃
i=1

M⋃
m=1

+∞⋃
t=1

{
|µ̂i,m,t−µi,m| ≥B

(
t,

δ

KM

)}
.

Then, P(E)≤ δ.
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Proof. By the union bound we can write:

P(E)≤
K∑
i=1

M∑
m=1

P

(
+∞⋃
t=1

{
|µ̂i,m,t−µi,m| ≥B

(
t,

δ

MK

)})
.

Now, focus on a single term within the summation. Recall that for all i∈ [K] and m∈ [M ], µ̂i,m,t
denotes the expectation with t samples of µi,m. Applying a union bound together with Lemma 1, we
obtain:

P

(
+∞⋃
t=1

{
|µ̂i,m,t−µi,m| ≥B

(
t,

δ

MK

)})
≤

+∞∑
t=1

2 exp

− t

2σ2

2σ2 log
(

4t2KM
δ

)
t


≤

+∞∑
t=1

δ

2t2KM
≤ δ

KM
.

Thus, P(E)≤∑K
i=1

∑M
m=1

δ
KM = δ, which concludes the proof.

Now, we focus on the properties of Algorithm 1. We begin by showing that the optimal arm remains
in the active set with high probability. Denote with E the complementary of event E .

Lemma 3 (Non-elimination of the optimal arm). With probability at least 1− δ, the optimal arm
remains in the active set S until termination.

Proof. We notice that, considering a generic active fidelity m∈ [M ] and t≥ 1, arm i 6= 1 is removed
from S if and only if there exists j ∈S and j 6= i for which it holds that:

µ̂j,m,t−U
(
t,

δ

KM
, ξm

)
≥ µ̂i,m,t +U

(
t,

δ

KM
, ξm

)
.

However, due to Lemma 2, we know that with probability at least 1− δ the following conditions
hold:

µ̂j,m,t≤µj,m +B

(
t,

δ

KM

)
≤µj,M +U

(
t,

δ

KM
, ξm

)
,

µ̂i,m,t≥µi,m−B
(
t,

δ

KM

)
≥µi,M −U

(
t,

δ

KM
, ξm

)
.

Plugging these inequalities into the elimination condition, we obtain that i is eliminated with proba-
bility at 1− δ only if it exists j 6= i for which:

µj,M ≥ µ̂j,m,t−U
(
t,

δ

KM
, ξm

)
≥ µ̂i,m,t +U

(
t,

δ

KM
, ξm

)
≥µi,M

which is never satisfied for i= 1, thus concluding the proof.

We now proceed with a technical lemma that will be useful in bounding the duration of a given phase
m and the maximum number of samples that are necessary to discard a sub-optimal arm i 6= 1.

Lemma 4 (Technical Lemma). If:

t≥ 128σ2

n2
log

(
128σ2

n2δ

)
,

then n≥ 4B (t, δ) is satisfied.
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Proof. First of all, rewrite n≥ 4B (t, δ) = 4

√
2σ2 log

(
4t2

δ

)
t in the following way:

tn2≥ 32σ2 log

(
4t2

δ

)
= 64σ2 log

(
2t√
δ

)
.

Then, we proceed by contradiction and analyze: tn2< 64σ2 log
(

2t√
δ

)
. The proof follows from a di-

rect application of Lemma 12 of [18]. In particular, due to Lemma 12 of [18], if tn2< 64σ2 log
(

2t√
δ

)
,

then, the following inequality holds as well:

t<
1

n2

64σ2 log

 2

n4
√
δ

(
64σ2

√
2√
δ

)2
 .

With some basic manipulations, we obtain:

t<
128σ2

n2
log

(
128σ2

n2δ

)
.

Then, as soon as t≥ 128σ2

n2 log
(

128σ2

n2δ

)
, n≥ 4B (t, δ) holds, which concludes the proof.

The next result is crucial to Theorem 2 and provides guarantees on when (i.e., at which fidelity), at
worst, sub-optimal arms will be eliminated, and the number of samples required to take this decision
in that given phase.

Lemma 5 (Arm elimination). Consider αm> 0 for all m∈ [M − 1] and αM = 0. Suppose |S|> 2
at the beginning of a given phase m∈ [M ]. Consider i∈ [K] such that i 6= 1. With probability at
least 1− δ:

• if i∈S and ∆i≥ 4ξm +αm, then, arm i will be removed from S during phase m using, at
most

⌈
128σ2

(∆i−4ξm)2 log
(

128KMσ2

(∆i−4ξm)2δ

)⌉
samples at arm i;

• if i /∈S and m> 1, then ∆i<minm<m{4ξm +αm}.

Proof. Let us focus on i∈S, i 6= 1, and ∆i≥ 4ξm +αm. First of all, we notice that with probability
at least 1− δ the optimal arm remains in S until termination (Lemma 3). Therefore, one of the events
that eliminate arm i from S is given by:

µ̂1,m,t−U
(
t,

δ

KM
, ξm

)
≥ µ̂i,m,t +U

(
t,

δ

KM
, ξm

)
. (11)

Moreover, due to Lemma 2, with probability at least 1− δ, the following holds:

µ̂1,m,t≥µ1,m−B
(
t,

δ

KM

)
≥µ1,M −U

(
t,

δ

KM
, ξm

)
,

µ̂i,m,t≤µi,m +B

(
t,

δ

KM

)
≤µi,M +U

(
t,

δ

KM
, ξm

)
.

Plugging these results into Equation (11), we obtain:

µ̂1,m,t−U
(
t,

δ

KM
, ξm

)
≥µ1,M − 2U

(
t,

δ

KM
, ξm

)
≥µi,M + 2U

(
t,

δ

KM
, ξm

)
≥ µ̂i,m,t +U

(
t,

δ

KM
, ξm

)
.
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It follows that event of Equation (11) is guaranteed to occur if

µ1,M − 2U

(
t,

δ

KM
, ξm

)
≥µi,M + 2U

(
t,

δ

KM
, ξm

)
,

which, in turn, is equivalent to ∆i− 4ξm≥ 4B
(
t, δ
KM

)
. Due to Lemma 4, this inequality is satisfied

as soon as:

t≥
⌈ 128σ2

(∆i− 4ξm)2
log

(
128KMσ2

(∆i− 4ξm)2δ

)⌉
.

What remains to prove is that the condition that guarantees to eliminate i from S (i.e., ∆i− 4ξm≥
4B
(
t, δ
KM

)
) activates before switching to the next phase, that happens when α≥ 4B

(
t, δ
KM

)
.

However, since ∆i≥ 4ξm +αm, this is always true.

Focus now on i /∈S and m> 1. The proof follows as a direct consequence of the previous claim.

We are now ready to prove Theorem 2.

Theorem 2. If αm> 0 for every m∈ [M − 1] and αM = 0, then, with probability at least 1− δ, IISE
returns the optimal arm 1 with cost complexity c(τ) upper bounded by:

c(τ)≤O
(

K∑
i=2

λmiσ
2

(∆i− 4ξmi)
2

log

(
σ2MK

(∆i− 4ξmi)
2δ

)
+
∑
m<mi

λmσ
2

α2
m

log

(
σ2MK

α2
mδ

))
,

where mi is the smallest m∈ [M ] for which ∆i≥ 4ξm +αm holds.

Proof. Consider i 6= 1. Due to Lemma 5, using fidelity mi, arm i will be discarded from the active
set with probability at least 1− δ, using a number of samples upper bounded by:

Ti,mi(τ)≤
⌈ 128σ2

(∆i− 4ξmi)
2

log

(
128KMσ2

(∆i− 4ξmi)
2δ

)⌉
.

Since mi, by definition, is the first phase at which Lemma 5 guarantees elimination of arm i, we have
Ti,k(τ) = 0 for k >mi. At this point, to derive the total cost required by IISE to discard i, we need
to consider also the number of pulls at fidelity m<mi. This is provided by Lemma 4, which yields
an upper bound on the maximum duration of a given fidelity. More specifically:

Ti,m(τ)≤
⌈128σ2

α2
m

log

(
128KMσ2

α2
mδ

)⌉
.

Given that αm> 0 for all m<M , we notice how the duration of each phase is finite. Together with
Lemma 3, and αM = 0, this guarantees that IISE is δ-correct.

To obtain the upper bound on the cost complexity, it is sufficient to multiply the number of pulls with
their related cost. Summing over the arms concludes the proof.

C.2 Proofs concerning Assumption 1

We now provide evidence of the theoretical claims made that regards Assumption 1. More specifically:

• First, in Proposition 2, we show that the linear cost increase rate combined with the ξ’s
decay rate discussed in Section 4 provides sufficient conditions for Assumption 1.

• Then, in Proposition 3, we provide bounds on the maximum bias for the planning problem
presented in Section 4.

• Finally, we prove Proposition 1.

Finally, at the end on this Section, we provide final remarks on Assumption 1.
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Proposition 2. If the following conditions hold:

∀i, j ∈ [M − 1], i < j
(√

λi+1−
√
λi

)2

≤
(√

λj+1−
√
λj

)2

, (12)

∀m∈ [M ]
∑
m<m

1

(ξm− ξm+1)2
≤ 1

(ξm)2
. (13)

Then, Assumption 1 is verified.

Proof. The proof follows from simple upper bound arguments. Consider a generic fidelity m∈
[M − 1], and proceed from the left-hand term of Equation (5)∑

m<m

min
k>m

(
√
λk −

√
λm)2

(ξm− ξk)2
≤
∑
m<m

(
√
λm+1−

√
λm)2

(ξm− ξm+1)2

≤ (
√
λm−

√
λm−1)2

∑
m<m

1

(ξm− ξm+1)2

≤ (
√
λm−

√
λm−1)2

(ξm)2

≤ (
√
λm+1−

√
λm)2

(ξm)2
,

where, in the second and last inequality we have used Equation (12), while in third one we have
used Equation (13). At this point, denote km ∈ argmink>m

(
√
λk−
√
λm)2

(ξm−ξk)2 . Then, we proceed in the
following way:

(
√
λm+1−

√
λm)2

(ξm)2
≤ (
√
λkm −

√
λm)2

(ξm− ξkm)2
= min
k>m

(
√
λk −

√
λm)2

(ξm− ξk)2
,

where in the second step we have used λkm ≥λm+1, together with the fact that ξm≥ ξm− ξkm >
0.

Before diving into the maximum bias bounds for the planning problem described in Section 4, let
us introduce some notation. We define a policy πm := (πm,h)mh=1 as a sequence of m probability
distributions over the action set A. We denote with πm,h the h-th element in πm. More specifically,
given y ∈Y , πm,h(y) represents a probability distributions overA in state y at depth h. We define the
cumulative expected reward associated with policy πm as Eπ,p [

∑m
t=1 η

trt]. We define the optimal
policy π∗m as the one that maximizes Eπ,p [

∑m
t=1 η

trt]. Given this initial setup, we now show how
the mean of the arms are defined in our MF-BAI problem. Fix y0 ∈Y , and set, for all i∈ [K] and
m∈ [M ]:8

µi,m := r0(y0, i) +Eπ∗m,p

[
m∑
t=1

ηtrt

]
. (14)

Equation (14) states that the mean of a given initial action i is given by two components. The first
one is the immediate reward for taking action i in state y0 at depth 0. The second one, is the expected
cumulative discounted reward that will be collected by an agent that maximizes the cumulative
discounted reward over the next m steps. It follows that, selecting the optimal arm within this
problem is equivalent to identifying the action that maximizes the the cumulative discounted reward
starting from state y0. Finally, we notice that, to obtain a sample from π∗m it is sufficient to apply any
Monte Carlo algorithm (e.g., depth-first search) to the planning problem and cutting the depth of the
search at m. This is equivalent to set reward 0 (i.e., the minimum value of the reward) to all actions
at step m>m.

We are now ready to provide maximum bias bounds on µi,m.
Proposition 3. Consider the stochastic planning problem described in Section 4, and consider for
all i∈ [K] and m∈ [M ], µi,m as specified in Equation (14). Then, for all m∈ [M ] and i∈ [K] it

8In this stochastic planning application, we assume fidelity to be indexed starting from 1.
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holds that:

|µi,M −µi,m| ≤ ξm :=
ηm+1− ηM+1

1− η .

Proof. We start by considering |µi,M −µi,m|. Due to Equation (14), we have that:

|µi,M −µi,m|=Eπ∗M ,p

[
M∑
t=1

ηtrt

]
−Eπ∗m,p

[
m∑
t=1

ηtrt

]

≤Eπ∗m,p

[
m∑
t=1

ηtrt

]
+ max

π
Eπ,p

[
M∑

t=m+1

ηtrt

]
−Eπ∗m,p

[
m∑
t=1

ηtrt

]

≤
M∑

t=m+1

ηt =
ηm+1− ηM+1

1− η ,

where in the first inequality we have upper bounded the maximum of π∗M over the entire depth M
into the maximimization of two components (i.e., from 1 to m and from m+ 1 to M ), and, in the
second inequality we have used |rh(·, ·)| ≤ 1.

Proposition 1. Consider Λ≥ 2. If λm = Λm and ξm = (ηm+1− ηM+1)/(1− η) for all m∈ [M ],
then Assumption 1 holds.

Proof. Consider a generic fidelity m∈ [M − 1] and plug the definition of λ and ξ within
mink>m

(
√
λk−
√
λm)2

(ξm−ξk)2 :

min
k>m

(
√
λk −

√
λm)2

(ξm− ξk)2
=

(
1− η
η

)2

min
k>m

(√
Λk −

√
Λm

ηm− ηk

)2

. (15)

The proof follows in two steps. First, we prove that k=m+ 1 is the minimizer of

mink>m

(√
Λk−

√
Λm

ηm−ηk

)2

, then, we use this result to show that Assumption 1 is satisfied.

Let us proceed with the first step. Consider l≥ 1, we need to show that:

(Λ
m+l

2 −Λ
m
2 )2

(ηm− ηl+m)2
≥ (Λ

m+1
2 −Λ

m
2 )2

(ηm− ηm+1)2
. (16)

That is equivalent to:

Λ
l
2 − 1

1− ηl ≥
Λ

1
2 − 1

1− η . (17)

Let us recall the Bernoulli’s inequality. For all n> 0 and x≥−1, it states that: (1 +x)n≥ 1 +nx.
Now, consider:

Λ
l
2 − 1 =

(
1 + (

√
Λ− 1)

)l
− 1≥ 1 + l(

√
Λ− 1)− 1 = l(

√
Λ− 1),

where we applied the Bernoulli inequality since
√

Λ− 1≥−1. Moreover, since η− 1≥−1, we
apply the same reasoning to ηl− 1:

ηl− 1 = (1 + (η− 1))
l− 1≥ 1 + l(η− 1)− 1 = l(η− 1),

At this point, we can plug these two results to lower bound the left-hand term of Equation (17):

Λ
l
2 − 1

1− ηl ≥
l(Λ

1
2 − 1)

l(1− ηl) =
Λ

1
2 − 1

1− ηl .

Therefore, Equation (16) is always true. More specifically, since it holds for all l≥ 1, we have proved

that k=m+ 1 is the minimizer of mink>m

(√
Λk−

√
Λm

ηm−ηk

)2

.
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We now continue the proof to show that Assumption 1 is satisfied. Fix an m∈ [M − 1]. We start by
plugging Equation (15) into the left-hand term of Equation (5):∑

m<m

min
k>m

(
√
λk −

√
λm)2

(ξm− ξk)2
=

(
1− η
η

)2 ∑
m<m

min
k>m

(Λ
k
2 −Λ

m
2 )2

(ηm− ηk)2

=

(
1− η
η

)2 ∑
m<m

(Λ
m+1

2 −Λ
m
2 )2

(ηm− ηm+1)2
.

Thus, we can further rewrite as:(
1− η
η

)2
(

Λ
1
2 − 1

1− η

)2 ∑
m<m

(
Λ

1
2

η

)2m

=

(
1− η
η

)2
(

Λ
1
2 − 1

1− η

)2

(

Λ
η2

)m
− 1

Λ
η2 − 1

− 1

 . (18)

At this point, consider Equation (15) with m=m:(
1− η
η

)2

min
k>m

(√
Λk −

√
Λm

ηm− ηk

)2

=

(
1− η
η

)2
(√

Λm+1−
√

Λm

ηm− ηm+1

)2

=

(
1− η
η

)2
(

Λ
1
2 − 1

1− η

)2(
Λ

η2

)m
,

and compare it with Equation (18). Define q= Λ
γ2 , we obtain:

qm− 1

q− 1
− 1≤ qm.

That is, 2qm−1− 1≤ qm, which is always true for Λ≥ 2, which concludes the proof.

C.2.1 Remarks on Assumption 1

Now, we remark our contributions concerning Assumption 1. The purpose of Assumption 1 is to
make the multi-fidelity structure provably convenient. Assumptions, in the multi-fidelity literature,
are typical in many settings. In many optimization works [20, 22, 39, 40, 11], assumptions were
required on the smoothness/structure of the target function to be optimized at each of the different
fidelity. In the context of finite armed bandits [21], instead, assumptions were required on the values
of ξ to limit the cumulative regret that is introduced by the adversarial behavior that fidelity might
have in the unstructured setting of finite-armed bandit (i.e., there is no prior knowledge on the arm
space). More specifically, [21], assumed, that for each m∈ [M ] the following holds:∑

k<m

1

ξ2
k

≤ 1

ξ2
m

, (19)

that states a decay rate on the maximum bias function. We remark that also in [21] a subset of fidelity
on which the assumption holds can be pre-selected so that the algorithm enjoys nice theoretical
properties.

In our work, we provably confirm the adversarial behavior of fidelity in the fixed-confidence setting
(i.e., Theorem 1). However, Assumption 1 significantly differs from Equation (19), since, as already
remarked in Section 4, it states a direct relationships between costs and biases. This is as expected
since, in MF problems, the goal is to trade-off cheaper but biased samples with more expensive
(but more accurate) ones. As a straight consequence, compared to Equation (19), Assumption 1,
depending on the values of λ’s, is valid with ξ’s whose decay is slower (e.g., linear) w.r.t. to the one
of Equation (19).

Moreover, in this paper, we further discussed the meaning and relevance of Assumption 1 with two
sets of sufficient conditions:
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• in Proposition 2, we derived sufficient conditions for Assumption 1 to hold that do not
put a direct relationships between costs and biases, but that allows for an easy to grasp
interpretation that has been discussed in Section 4;

• in Proposition 1, instead, we have shown that with exponential increasing costs (i.e., λm =
Λm) and exponential decreasing biases (i.e., ξm = (ηm+1− ηM+1)/(1− η)), Assumption 1
is always satisfied. This is the practical case of the stochastic planning application discussed
in Section 4.

Furthermore, as we will see in Lemma 6, Assumption 1, is not necessary in the entire proofs of
Theorem 2. Indeed, mi is the cost minimizer among the fidelity subset for which ∆i> 4ξm holds,
without any regard to Assumption 1. The purpose of Assumption 1 (that is used in the last step of the
proofs only) is to limit the cost at previous fidelity that were not useful to discard arm with small
enough gaps (which are unknown to the agent).

As a final recap of this remark:

• we have discussed why assumptions are necessary (i.e., Theorem 1 and previous literature);

• we have discussed the interpretation of Assumption 1 by deriving two set of sufficient
conditions. Moreover, we have analyzed the relationship with typical assumptions of the MF
literature (i.e., Section 4), with a particular focus on [21], that studies finite-armed bandits
without any structured assumption on the arm space;

• we have discussed that Assumption 1 is not necessary in the entire proof of Theorem 3, but
it is necessary only for the last step of the proof (see Lemma 6).

C.3 Proof of Theorem 3

The proof follows in two steps. First, we prove that mi is the minimizer of the identification cost.9
Then, we make a direct use of Assumption 1 to prove Theorem 3.

Lemma 6 (Cost minimizer). Consider i 6= 1. Choose αM = 0 and αm as in Equation (8). Define mi

as the smallest m∈ [M ] for which ∆i≥ 4ξm +αm holds. Then:

λmi
(∆i− 4ξmi)

2
= min
m∈[M ]:∆i>4ξm

λm
(∆i− 4ξm)2

.

Proof. We proceed by contradiction. Suppose there exists m∈ [M ] such that ∆i> 4ξm for which it
holds that:

λm
(∆i− 4ξm)2

< min
m∈[M ]\{m}:∆i>4ξm

λm
(∆i− 4ξm)2

≤ λmi
(∆i− 4ξmi)

2
. (20)

We split the proof into two parts. Let us first consider m>mi and consider:

λmi
(∆i− 4ξmi)

2
≤ min
M≥m>mi

λm
(∆i− 4ξm)2

.

That holds if ∆i≥ 4ξmi +αmi , which we know to be satisfied by the definition of mi, thus Equation
(20) is false.

Now, consider m<mi. If Equation (20) holds, then, it would imply ∆i≥ 4ξm +αm. However, we
know by definition of mi, that mi is the smallest m for which the previous condition holds; thus
Equation (20) is false.

Theorem 3. Under Assumption 1, selecting the thresholds αm as in Equation (8), with probability
at least 1− δ, IISE returns the optimal arm with cost complexity c(τ) upper bounder by:

c(τ)≤ Õ
(

K∑
i=2

min
m∈[M ]:∆i>4ξm

λmσ
2

(∆i− 4ξm)2

)
≤ Õ

(
K∑
i=2

λMσ
2

∆2
i

)
9Notice that this holds without any regard to Assumption 1.
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Proof. First of all, notice that, choosing αM = 0 and αm = maxM≥m>m
4(ξm−ξm)

√
λm√

λm−
√
λm

for m<M ,
satisfies the requirement of Theorem 2, i.e., αm> 0, since ξm>ξm. Therefore, IISE returns the
optimal arm with probability at least 1− δ with cost complexity upper bounded by:

c(τ)≤ Õ
(

K∑
i=2

(
λmiσ

2

(∆i− 4ξmi)
2

+
∑
m<mi

λmσ
2

α2
m

))

= Õ

 K∑
i=2

 λmiσ
2

(∆i− 4ξmi)
2

+
∑
m<mi

λmσ
2(

maxM≥m>m
4(ξm−ξm)

√
λm√

λm−
√
λm

)2


 .

Consider an arm i 6= 1 and us focus on the sum at previous fidelity m<mi:∑
m<mi

λmσ
2(

maxM≥m>m
4(ξm−ξm)

√
λm√

λm−
√
λm

)2 =
∑
m<mi

min
m>m

σ2(
√
λm−

√
λm)2

16(ξm− ξm)2
.

With some basic manipulations and applying Assumption 1, we can rewrite this summation as:∑
m<mi

min
m>m

σ2(
√
λm−

√
λm)2

16(ξm− ξm)2
=

∑
m<mi−1

min
m>m

σ2(
√
λm−

√
λm)2

16(ξm− ξm)2

+ min
m>mi−1

σ2(
√
λm−

√
λmi−1

)2

16(ξmi−1 − ξm)2

≤ 2 min
m>mi−1

σ2(
√
λm−

√
λmi−1)2

16(ξmi−1 − ξm)2

= 2
σ2λmi−1

((4ξmi−1
+αmi−1

)− 4ξmi−1
)2
.

At this point, consider the following general equation of the form:

λmi−1

(d− 4ξmi−1
)2
≤ λmi

(d− 4ξmi)
2
, (21)

with d> 4ξm. This is equivalent to:

λ
1
2
mi−1(d− 4ξmi)≤λ

1
2
mi(d− 4ξmi−1),

which in turn can be rewritten as:

d≥ 4(ξmi−1

√
λmi − ξmi

√
λmi−1

)√
λmi −

√
λmi−1

= 4ξmi−1
+

4(ξmi−1
− ξmi)

√
λmi−1√

λmi −
√
λmi−1

.

Therefore, Equation (21) holds for d≥ 4ξmi−1
+

4(ξmi−1
−ξmi )

√
λmi−1√

λmi−
√
λmi−1

. However, due to the defini-

tion of the thresholds as in Equation (8), we know that:

αmi−1 = max
M≥m>mi−1

4(ξmi−1
− ξm)

√
λmi−1√

λm−
√
λmi−1

≥ 4(ξmi−1
− ξmi)

√
λmi−1√

λmi −
√
λmi−1

.

Therefore, Equation (21) holds also for d= 4ξmi−1
+αmi−1

. It follows that:

2
σ2λmi−1

((4ξmi−1 +αmi−1)− 4ξmi−1)2
≤ 2

σ2λmi
((4ξmi−1 +αmi−1)− 4ξmi)

2
.

At this point, due to Lemma 5, we know that ∆i< 4ξmi−1
+αmi−1

, otherwise, arm i would have
already been discarded at phase mi−1. Moreover, ∆i> 4ξmi due to the definition of mi. Conse-
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Algorithm 2 Near-optimal Iterative Imprecise Successive Elimination (IISE).
Require: Multi-fidelity bandit model ν, confidence δ, thresholds {αm}Mm=1, bounds {ξm}Mm=1, accuracy ε

1: S← [K]
2: m← 1 and t← 0
3: while |S|> 1 do
4: if ε− 4ξm≥ 4B

(
t, δ
KM

)
then

5: return S
6: end if
7: if αm≥ 4B

(
t, δ
KM

)
then

8: m←m+1 and t← 0
9: end if

10: Pull all arms in S at fidelity m and t← t+1
11: Update µ̂j,m,t for all j ∈ [S]
12: S←S \

{
i∈S : ∃j ∈S : µ̂j,m,t−U

(
t, δ
KM

, ξm
)
≥ µ̂i,m,t+U

(
t, δ
KM

, ξm
)}

13: end while
14: return S

quently:

2
σ2λmi

((4ξmi−1
+αmi−1

)− 4ξmi)
2
≤ 2

σ2λmi
(∆i− 4ξmi)

2
.

Applying the previous reasoning for each i 6= 1, we can rewrite the upper bound on the cost complexity
of IISE as:

c(τ)≤ Õ
(

K∑
i=2

λmiσ
2

(∆i− 4ξmi)
2

)
.

What is left is proving that mi satisfies the minimum condition on all m∈ [M ] such that ∆i> 4ξm,
which is guaranteed by Lemma 6 (indeed, notice that, given our threshold choice, ∆i≥ 4ξm +αm
implies ∆i> 4ξm). Therefore:

λmi
(∆i− 4ξmi)

2
= min
m∈[M ]:∆i>4ξm

λm
(∆i− 4ξm)2

,

with which we can further the cost complexity:

c(τ)≤ Õ
(

K∑
i=2

λmiσ
2

(∆i− 4ξmi)
2

)
≤ Õ

(
K∑
i=2

min
m∈[M ]:∆i>4ξm

λmσ
2

(∆i− 4ξm)2

)
≤ Õ

(
K∑
i=2

λMσ
2

∆2
i

)
,

which concludes the proof.

C.4 Pseudocode and Analysis of Near-Optimal Identification

We now provide the pseudocode and the analysis of a modification of IISE that allows identifying
ε-optimal arms. Algoritm 2 reports the pseudocode. As we can appreciate, the only modification
required is the new if branch at line 4− 6. Everything else is left unchanged. Due to this observation,
we notice that Lemma 2 10 and Lemma 3 still hold. What changes, instead, is the arm elimination
lemma (Lemma 5).
Lemma 7 (Near-optimal arm elimination). Consider αm> 0 for all m∈ [M − 1] and αM = 0.
Suppose that Algorithm 2 has not terminated at the beginning of a given phase m∈ [M ]. Consider
i∈ [K] such that i 6= 1. With probability at least 1− δ:

• if i∈S and ∆i≥max{ε, 4ξm +αm}, then, arm i will be removed from S during phase m

using, at most
⌈

128σ2

(∆i−4ξm)2 log
(

128KMσ2

(∆i−4ξm)2δ

)⌉
samples at arm i;

• if i /∈S and m> 1, then ∆i<minm<m{4ξm +αm}.
10Log factors could be optimized since, in ε-optimal arm identification problems, anytime-confidence intervals

are not needed. For the sake of simplicity of exposition of the proofs, we continue to use Lemma 2.
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Moreover, if m is such that ε≥ 4ξm +αm, then, Algorithm 2 will terminate in, at most,⌈
128σ2

(ε−4ξm)2 log
(

128KM
(ε−4ξm)2δ

)⌉
rounds in phase m.

Proof. We begin by focusing on the last claim. From Lemma 4, the ε-stopping condition at Line 4 of
Algorithm 2 activates as soon as:

t≥
⌈ 128σ2

(ε− 4ξm)2
log

(
128KMσ2

(ε− 4ξm)2δ

)⌉
,

provided that ε> 4ξm and ε≥ 4ξm +αm. These conditions are satisfied by hypothesis.

For what concerns on i∈S, i 6= 1, and ∆i≥max{ε, 4ξm +αm}, the proof follows from a direct
extension of Lemma 5. The only difference is that we need to prove that the condition that guarantees
to remove i from S (i.e., ∆i− 4ξm≥ 4B

(
t, δ
KM

)
) activates sooner w.r.t. both the time at which the

phase change happens (this is already proved in Lemma 5), and also the time at which Algorithm 2
terminates due to Line 4. This second point directly follows from the fact that ∆i≥ ε by assumption.

Finally, if i /∈S and m> 1, the proof follows as a direct consequence of the previous claim.

Theorem 4. If αm> 0 for every m∈ [M − 1] and αM = 0, then, with probability at least 1− δ,
Algorithm 2 returns a subset S ∈ [K] such that for all i∈S, it holds that µi≥µ1− ε. Its cost
complexity c(τ) is upper bounded by:

c(τ)≤O
( ∑
i/∈Kε

λmiσ
2

(∆i− 4ξmi)
2

log

(
σ2MK

(∆i− 4ξmi)
2δ

)
+
∑
m<mi

λmσ
2

α2
m

log

(
σ2MK

α2
mδ

)
+ (22)

∑
i∈Kε

λmiσ
2

(ε− 4ξmi)
2

log

(
σ2MK

(ε− 4ξmi)
2δ

)
+
∑
m<mi

λmσ
2

α2
m

log

(
σ2MK

α2
mδ

))
, (23)

where Kε := {i∈ [K] :µi>µ1− ε}. For i /∈Kε, mi is defined as the smallest phase for which
∆i≥ 4ξm +αm holds; for i∈Kε, instead, it is defined as the first phase at which ε≥ 4ξm +αm
holds.

Moreover, under Assumption 1:

c(τ)≤ Õ

∑
i/∈Kε

min
m:∆i>4ξm

λmσ
2

(∆i− 4ξm)2
+
∑
i∈Kε

min
m:ε>4ξm

λmσ
2

(ε− 4ξm)2

 .

Proof. Let us focus on the result given under generic thresholds αm. Consider i 6= 1. Due to Lemma
7, mi is, by definition, the first phase at which Lemma 7 guarantees elimination of arm i. It follows
that Ti,k(τ) = 0 for k >mi. For what concerns Ti,mi(τ), instead, Lemma 7 provides, with probability
at least 1− δ an upper bound on this quantity that is given by:

Ti,mi(τ)≤O
(

128σ2

(∆i− 4ξm)2
log

(
128KMσ2

(∆i− 4ξm)2δ

))
,

for i /∈Kε, and:

Ti,mi(τ)≤O
(

128σ2

(ε− 4ξm)2
log

(
128KMσ2

(ε− 4ξm)2δ

))
,

for i∈Kε.
At this point, to derive the total cost required by Algorithm 2 to discard i, we need to consider also
the number of pulls at fidelity m<mi. This is provided by Lemma 4, which yields an upper bound
on the maximum duration of a given fidelity. More specifically:

Ti,m(τ)≤O
(

128σ2

α2
m

log

(
128KMσ2

α2
mδ

))
.
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Algorithm 3 Iterative Imprecise Successive Elimination with Maximum Bias Variation (IISE-γ).
Require: Multi-fidelity bandit model ν, confidence δ, thresholds {αm}Mm=1, bounds {γm}Mm=1

1: S← [K]
2: m← 1 and t← 0
3: while |S|> 1 do
4: if αm≥ 4B

(
t, δ
KM

)
then

5: m←m+1 and t← 0
6: end if
7: Pull all arms in S at fidelity m and t← t+1
8: Update µ̂j,m,t for all j ∈ [S]
9: S←S \

{
i∈S : ∃j ∈S : µ̂j,m,t−B

(
t, δ
KM

)
≥ µ̂i,m,t+B

(
t, δ
KM

)
+ γm

}
10: end while
11: return S

Given that αm> 0 for all m<M , we notice how the duration of each phase is finite. Together with
Lemma 3, αM = 0, and Lemma 7 this implies that, than all arms i∈S returned by Algorithm 2 are
ε-optimal, with probability at least 1− δ.

To obtain the upper bound on the cost complexity, it is sufficient to multiply the number of pulls with
their related cost. Summing over the arms concludes the proof. For what concern the statement under
Assumption 1, it easily follow using the same analysis of Theorem 3 applied to Equation (22).

D Order-Aware BAI

D.1 IISE-γ: pseudocode and analysis

In this section, we provide pseudocode and analysis of IISE-γ. We notice that everything is left
unchanged in the case in which we have knowledge on φm≥ γm. We will highlight this equivalence
throughout the proofs. Algorithm 3 reports the pseudo-code: as we can see, the only modification
lies in the elimination rules.

We now dive into the analysis of IISE-γ. First of all, notice that Lemma 2 holds unchanged.

Lemma 8 (Order-aware non-elimination of the optimal arm). With probability at least 1− δ, the
optimal arm remains in the active set S of IISE-γ until termination.

Proof. We notice that, considering a generic active fidelity m∈ [M ] and t≥ 1, arm i 6= 1 is removed
from S if and only if there exists j ∈S and j 6= i for which it holds that:

µ̂j,m,t−B
(
t,

δ

KM

)
≥ µ̂i,m,t +B

(
t,

δ

KM

)
+ γm.

However, due to Lemma 2, we know that with probability at least 1− δ the following conditions
holds:

µ̂j,m,t≤µj,m +B

(
t,

δ

KM

)
=µj,M +B

(
t,

δ

KM

)
+ ξj,m,

µ̂i,m,t≥µi,m−B
(
t,

δ

KM

)
=µi,M −B

(
t,

δ

KM

)
+ ξi,m.

Plugging these inequalities into the elimination condition, we obtain:

µj,M + ξj,m− ξi,m≥µi,M + γm.

Since, ξj,m− ξi,m≤ γm by definition11, we have that:

µj,M + γm≥µi,M + γm,

which is never satisfied for i= 1, thus concluding the proof.

11Note that this also holds for φm≥ γm.
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Lemma 9 (Order-aware arm elimination). Consider αm> 0 for all m∈ [M − 1] and αM = 0. Sup-
pose |S|> 2 at the beginning of a given phase m∈ [M ] of IISE-γ. Consider i∈ [K] such that i 6= 1.
With probability at least 1− δ:

• if i∈S and ∆i≥ 2γm +αm, then, arm i will be removed from S during phase m using, at
most

⌈
128σ2

(∆i−2γm)2 log
(

128KMσ2

(∆i−2γm)2δ

)⌉
samples at arm i;

• if i /∈S and m> 1, then ∆i<minm<m{2γm +αm}.

Proof. Let us focus on i∈S, i 6= 1, and ∆i≥ 2γm +αm. First of all, we notice that with probability
at least 1− δ the optimal arm remains in S until termination (Lemma 8). Therefore, one of the events
that eliminate arm i from S is given by:

µ̂1,m,t−B
(
t,

δ

KM

)
≥ µ̂i,m,t +B

(
t,

δ

KM

)
+ γm. (24)

Moreover, due to Lemma 2, with probability at least 1− δ, the following holds:

µ̂1,m,t≥µ1,m−B
(
t,

δ

KM

)
=µ1,M −B

(
t,

δ

KM

)
+ ξ1,m,

µ̂i,m,t≤µi,m +B

(
t,

δ

KM

)
=µi,M +B

(
t,

δ

KM

)
+ ξi,m.

It follows that event of Equation (24) is guaranteed to occur if:

µ1,M − 2B

(
t,

δ

KM

)
+ ξ1,m≥µi,M + 2B

(
t,

δ

KM

)
+ ξi,m + γm,

which, can be rewritten as:

∆i + (ξ1,m− ξi,m)− γm≥ 4B

(
t,

δ

KM

)
,

or, more strongly:12

∆i− 2γm≥ 4B

(
t,

δ

KM

)
.

Due to Lemma 4, this inequality is satisfied as soon as:

t≥
⌈ 128σ2

(∆i− 2γm)2
log

(
128KMσ2

(∆i− 2γm)2δ

)⌉
.

What is left, is proving that the condition that guarantees to remove i from the active set S (i.e.,
∆i− 2γm≥ 4B

(
t, δ
KM

)
) activates before switching to next phase. For the case m=M this is

trivially true. Consider now m<M . Line 4 of IISE-γ states that it will proceed to the next phase
only if αm≥ 4B

(
t, δ
KM

)
. It follows that, if ∆i≥ 2γm +αm, then arm i will be eliminated in phase

m, which concludes the first part of the proof.

Focus now on i /∈S and m> 1. The proof follows as a direct consequence of the previous claim.

Now, before moving to the proof of the cost complexity result, we introduce the equivalent of
Assumption 1 for the maximum bias variation metric.

Assumption 2 (Costs and Maximum Bias Variation Relationship). For every fidelity m∈ [M − 1], it
holds that: ∑

m<m

min
k>m

(
√
λk −

√
λm)2

(γm− γk)2
≤min
k>m

(
√
λk −

√
λm)2

(γm− γk)2
. (25)

12Notice that this passage could be carried out with φm instead of γm. This would lead to a final results
whose order is given by 1

(∆i−2φm)2
.
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The interpretation behind Equation (25) is the same as the one provided in Section 4 of the main text
for the maximum biases ξ’s. In the case in which φm≥ γm is available to the learner, the assumption
required to make the multi-fidelity provably convenient becomes:
Assumption 3 (Costs and Upper Bounds on Maximum Bias Variation Relationship). For every
fidelity m∈ [M − 1], it holds that:∑

m<m

min
k>m

(
√
λk −

√
λm)2

(φm−φk)2
≤min
k>m

(
√
λk −

√
λm)2

(φm−φk)2
. (26)

Notice that, Assumption 3 holds in the stochastic planning application presented in Section 4; and,
moreover, that in that case, we have knowledge on φm (see Section 5).

We are now ready to state the upper bound on cost complexity of IISE-γ. We present the result for γ,
but everything holds with φ as well.
Theorem 5. If αm> 0 for every m∈ [M − 1] and αM = 0, then, with probability at least 1− δ,
IISE-γ returns the optimal arm with cost complexity c(τ) upper bounded by:

c(τ)≤O
(

K∑
i=2

λmiσ
2

(∆i− 2γmi)
2

log

(
σ2MK

(∆i− 2γmi)
2δ

)
+
∑
m<mi

λmσ
2

α2
m

log

(
σ2MK

α2
mδ

))
, (27)

where mi is defined as the smallest phase for which ∆i≥ 2γm +αm holds.

Moreover, under Assumption 2:

c(τ)≤ Õ
(

K∑
i=2

min
m∈[M ]:∆i>2γm

λmσ
2

(∆i− 2γm)2

)
.

Proof. Let us first focus on proving Equation (27). Consider i 6= 1. Due to Lemma 9, using fidelity
mi, arm i will be discarded from the active set with probability at least 1− δ, using a number of
samples upper bounded by:

Ti,mi(τ)≤
⌈ 128σ2

(∆i− 2γmi)
2

log

(
128KMσ2

(∆i− 2γmi)
2δ

)⌉
.

Since mi, by definition, is the first phase at which Lemma 9 guarantees elimination of arm i, we have
Ti,k(τ) = 0 for k >mi. At this point, to derive the total cost required by IISE to discard i, we need
to consider also the number of pulls at fidelity m<mi. This is provided by Lemma 4, which yields
an upper bound on the maximum duration of a given fidelity. More specifically:

Ti,m(τ)≤
⌈128σ2

α2
m

log

(
128KMσ2

α2
mδ

)⌉
.

Given that αm> 0 for all m<M , we notice how the duration of each phase is finite. Together with
Lemma 8, and αM = 0, this guarantees that IISE-γ is δ-correct.

To obtain the upper bound on the cost complexity, it is sufficient to multiply the number of pulls with
their related cost. Summing over the arms concludes the proof of Equation (27). For what concern,
instead, the second part of the theorem, it follows directly applying the same proofs of Theorem 3,
replacing ξ’s with γ’s.

D.2 Practical relevance of maximum bias variation

In this section, we prove that in the setting highlighted in Section 5 we can use ξm as upper bound on
γm.
Proposition 4. Let µi,M −µi,m≥ 0 for all i∈ [K] and m∈ [M ]. Then, for each m∈ [M ]:

γm≤ ξm.

Proof. By definition, we know that µi,m =µi,M + ξi,m for all i∈ [K] and m∈ [M ] (with ξi,m< 0).
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Then, since fidelity m<M underestimates fidelity M , we can write:

µi,M −µi,m =−ξi,m≤max
i∈[K]

|ξi,m| ≤ ξm.

Now, by definition of γm:

γm := max
i,j∈[K]

{ξi,m− ξj,m}≤max
i∈[K]

|ξi,m| ≤ ξm,

where the first inequality follows from the fact that all ξi,m’s have the same sign.

E Experiment Details

We have run the experiments using 100 Intel(R) Xeon(R) Gold 6238R CPU @ 2.20GHz cpus and
256GB of RAM. The total time taken to have all the results was around 48 hours. To speed up
the running time, we have relied on a parallel implementation that allows us to compure several
independent runs in parallel on different cores.

E.1 Synthetic domains

We provide further details on the experiments on synthetic domains. As highlighted in Section 7, to
make the γ settings directly comparable with the one that uses ξ, we generated the arms in such a
way that the fidelity index m is left unchanged. The arm generation process is the following one.

First of all, we consider unit-variance Gaussian distributions; their means were generated at random
as follows. We first generate means for fidelity M , by sampling their value from a normal distribution.
Then, for each fidelity m∈ [M − 1], we first specify γm and a bias term bm> 0. Once this is done,
µi,m is sampled from a uniform distribution defined on the interval [µi,M − bm− γm

2 , µi,M − bm +
γm
2 ]. Since γm holds with the equality for two random arms k, j we fix µk,m =µk,M − bm− γm

2 and
µj,m =µj,M − bm + γm

2 Notice that this generation process provides upper bounds on maximum
bias ξm given by bm + γm

2 . Finally, we remark that setting γm>γm+1 and bm>bm+1 for all
m∈ [M − 1] guarantees ξm>ξm+1, thus the fidelity index is left unchanged.

Synthetic A setting parameters are: K = 2000, M = 4, λ= [1, 10, 100, 1000], ξ=
[1.15, 0.225, 0.015, 0], γ= [0.3, 0.05, 0.001, 0] and b= [1.0, 0.2, 0.01, 0]. For Synthetic B,
instead: K = 1000, M = 5, λ= [16, 64, 256, 1024, 4096], ξ= [1.15, 0.45, 0.105, 0.0105, 0],
γ= [0.3, 0.1, 0.01, 0.001, 0], and b= [1.0, 0.4, 0.1, 0.01, 0].

For what concerns MFE, we set αm := ξm(4.1). In both domains and for all algorithms, we used
δ= 0.001.

E.2 Yahtzee

The Yahtzee game has been proposed in [3] as a benchmark for sequential decision making problems.
The goal of this experiment is showing that IISE can successfully optimize the cost complexity of
a given planning algorithm in a stochastic domain. We notice that this is different w.r.t. to testing
the efficiency of the planning strategy in its original sense [18], i.e., we proposed a method and
an analysis for MF-BAI, not for MF stochastic planning. Indeed, given the simplification of the
multi-armed bandit setting, there is structure on the planning problem that our study did not aim at
optimizing (e.g., the re-use of experience at different depth m). This is the reason why we are not
taking a direct comparison with planning methods, but the most fair baseline is given by Successive
Elimination [10].

We now provide a more in depth description of the problem. The game proceeds in 13 rounds. At the
beginning of each round, the player will roll 5 dice and observes the result. After that, he can choose
to re-roll a subset of the 5 dice; this can be repeated up to 3 times. Once the final combination has
been rolled, the player needs to choose a particular move that maps dice combination to scores. As
already highlighted in Section 7, typical moves are:

• “Sixes”, with score given by the sum of dice with the number 6.
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• “Yahtzee”, that assigns 50 points if all the dice show the same number, and 0 otherwise.

The total number of these possible moves is 14; all of them provide scores that are always non-
negative. In its original version, the sequentiality within the problem arises from the fact that once a
given move has been selected at a certain round t, than, it cannot be selected at rounds t> t. The
goal of the player is to maximize the total sum of points.

In our setup, we consider the following modified version. First of all, it is not possible to re-roll
the 5 dice: once the initial combination has been rolled at the beginning of a given round, a move
needs to be selected. Secondly, we are interested in the discounted case: the goal of the player is to
maximize the sum of discounted of rewards (i.e., we are searching for an ε-optimal action). Finally,
we consider the variation in which the player can re-select moves that he already played, but all the
rewards gathered from that move on will be set to 0.

We apply our algorithm to choose the first move in this Yahtzee variation. In particular, the agent
observes the initial combination of 5 dice (which is fixed and known) and needs to understand which
move among the 14 available leads to the highest sum of discounted rewards. As problem setup,
we set η= 0.8. The initial and observed dice combination is the dice combination [1, 1, 1, 1, 1]. We
consider M = 8 fidelity with the following meaning: m= 1 stands for planning 6-step ahead from
the initial position, m= 2 stands for planning 7 step ahead from the initial position, and so on up to
M = 8 which means planning 13-step ahead, that is equal to length of entire game.

In our experiments, to ease the burden of the required computing power, we pre-compute the exact
expectation of each of the action in the initial position via backward induction. Then, to make the
problem more challenging, when running our experiments we add truncated Gaussian noise to each
expectation. In MFE, we set αm := ξm(4.005). For all algorithms we used δ= 0.001. Further details
can be found within the codebase.
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