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A Additional Algorithms

A.1 Expand Support by One More Feature

Algorithm 4 ExpandSuppBy1
Input: Dataset D, coefficient constraint C, and beam search size B, current coefficient vector
(w, w0), and a set of found supports F .
Output: a collection of solutions W = {(ut, ut

0)} with kutk0 = kwk0 +1, kutk1  C for 8t. All
of these solutions include the support of (w, w0) plus one more feature. None of the solutions have
the same support as any element of F , meaning we do not discover the same support set multiple
times. We also output the updated F .

1: Let Sc  {j | wj = 0} .Non-support of the given solution
2: w0  0
3: for p = 1, ..., 10 do .10 steps of parallel coordinate descent with projection
4: w0

j  w0
j �rjL(w + w0

jej , w0)/lj for 8j 2 Sc .lj is the smallest Lipschitz constant on
coordinate j with L(w + w0

jej + dej)� L(w + w0
jej)  ljd for any d 2 R.

5: w0
j  Clip(w0

j ,�C,C) for 8j 2 Sc .Clip(x, a, b) = max(a,min(x, b))
6: end for
7: Pick the B coords (j’s) in Sc with smallest logistic loss L(D,w + ejw0

j , w0), call this set J 0.
.We will use these supports, which include the support of w plus one more.

8: W  ;
9: for j 2 J 0 do .Optimize on the top B coordinates

10: If supp(w + ejw0
j) 2 F , continue. .We’ve already seen this support, so skip.

11: F  F [ {supp(w + ejw0
j)}. .Add new support to F .

12: (w00, w00
0 ) 2 argminu,u0

L(D,u, u0) with supp(u) = supp(w + ejw0
j) and kuk1  C.

.Fine tune on the newly expanded support using 100⇥|support| coordinate descent steps and
clip operation, or until convergence; use (w + ejw0

j , w0) as a warm start for computational
efficiency

13: W  W [ {(w00, w00
0 )}

14: end for
15: Return W and F .

A.2 Collect Sparse Diverse Pool

Algorithm 5 CollectSparseDiversePool
Input: Dataset D, a coefficient vector (w, w0), an optimality gap tolerance ✏, and the number of
attempts T .
Output: a set S containing good sparse continuous solutions.

1: S  {(w, w0)} .Initialize the sparse level set
2: L⇤  L(D,w, w0) .Get the current loss
3: J  {j | wj 6= 0} .Get the current support
4: for j� 2 J do .Remove a feature in the support
5: Pick the T coords (j+’s) in [1, ..., p] \ J with the biggest magnitudes of partial derivative
rj+L(D,w � ej�w

0
j , w0), call this set J+.

6: for j+ 2 J+ do .Put a new feature into the support
7: (w00, w00

0 ) 2 argminw0,w0
0
L(D,w0, w0

0) where w0
j = 0 if j 2 [1, ..., p] \ J [ {j�} .Fit

on the new support. Problem is convex. We use coordinate descent for this.
8: Lswap  L(D,w00, w00

0 ) .Loss of newly formed and optimized coefficient vector
9: if Lswap  (1 + ✏)L⇤ then .If its loss is good enough, include it in S

10: S  S [ {(w00, w00
0 )} .Expand the sparse level set if loss is within the gap

11: end if
12: end for
13: end for
14: return S
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A.3 Round Continuous Coefficients to Integers

Algorithm 6 AuxiliaryLossRounding
Input: Dataset D = (xi, yi)

n
i=1, a sparse continuous solution (w, w0), where w 2 Rp, w0 2 R.

Output: an integer-valued solution (w+, w+
0 ), where w+ 2 Zp, w+

0 2 Z.
1: wc  [w0,w], and xi  [1,xi] for 8i. .Concatenate to incorporate the intercept
2: w+  wc

3: J  {j : dw+
j e 6= bw

+
j c} .Feature indices with fractional coefficients

4: � [bw+c; bw+c; ...; bw+c]T .n rows of bw+c
5: Define a new matrix Z with entries Zij = yixij

6: � �+ 1Z0. .See Theorem3.1 and Second Inequality (Lipschitz continuity). This line
performs the calculation: �ij = bwjc if yixij > 0 and �ij = dwje otherwise.

7: for i = 1 to n do
8: li  1/(1 + exp(yi

Pp
j=1 xij�ij)) .Chosen so we can calculate local Lipschitz constant

9: end for
10: while J 6= ; do .We iteratively round more coeffs in w+ until fractional coeffs are gone.
11: for j 2 J do .Try rounding both up and down for each j
12: w+j,up  (w+

1 , ..., dw
+
j e, ...w

+
p+1)

T , w+j,down  (w+
1 , ..., bw

+
j c, ...w

+
p+1)

T

13: U j,up  
Pn

i=1(lix
T
i (w

+j,up�wc))2, U j,down  
Pn

i=1(lix
T
i (w

+j,down�wc))2

14: end for
15: .Now find the best j and whether to round up or down.
16: Uup  minj2J U j,up, Udown  minj2J U j,down

17: if Uup  Udown then
18: j0  argminj2J U j,up, J  J \ {j0}
19: w+

j0  dw
+
j0e .Round up

20: else
21: j0  argminj2J U j,down, J  J \ {j0}
22: w+

j0  bw
+
j0c .Round down

23: end if
24: end while
25: w+

0  w+[1],w+  w+[2 : end] .Separate the intercept and the coefficients
26: Return (w+, w+

0 )

B Comments on Proof of Chevaleyre et al.

Chevaleyre et al. [10] proposed Greedy Rounding, where coefficients are rounded sequentially. While
this technique provides theoretical guarantees for greedy rounding for the hinge loss, we identified a
serious flaw in their argument, rendering the bounds incorrect. We elaborate on this matter in this
appendix.

The flaw is in the proof of Lemma 7. The proof essentially shows that for each sample i, there is at
least one a (from the set {0, 1}) such that the inequality holds. However, the same a that works for
sample i = 3 is not guaranteed to work for sample i = 5 for the inequality. It is not clear whether
there exists one a that make all inequalities (for all samples i in [1, ...,m]) hold at the time.

To paraphrase, for each sample i, the proof shows that we can pick a set of a (either {0}, {1},
or {0, 1}) so that the inequality holds individually. However, we can not rule out the case that
intersection of these individual sets is empty.

Without this extra argument, there is a gap between the statement of Lemma 7 and the proof of
Lemma 7. Then, the bound for the greedy algorithm in Theorem 8 will not hold in the paper.
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C Theoretical Upper Bound for the Rounding Method, Algorithm 6

The following theorem (as also shown in the main paper) states that we can provide an upper bound
on the difference of the total loss between the integer solution w+ given by Algorithm 6 and the
real-valued solution w.

Theorem 3.1 (Loss incurred from rounding) Let w be the real-valued coefficients for the logistic
regression model with objective function L(w) =

Pn
i=1 log(1 + exp(�yixT

i w)). Let w+ be the
integer-valued coefficients returned by the Auxiliaryloss Rounding method, Algorithm 6. Furthermore,
let uj = wj � bwjc. Let li = 1/(1 + exp(yixT

i �i)) with �ij = bwjc if yixij > 0 and �ij = dwje
otherwise. Then, we have an upper bound on the difference between the loss L(w) and the loss
L(w+):

L(w+)� L(w) 

vuutn
nX

i=1

pX

j=1

l2i x
2
ijuj(1� uj). (12)

To prove Theorem 3.1, we need to use the following Lemma C.1, which states that during each
successive step of rounding a real-valued coefficient to the integer value, the deviation can be
characterized and bounded by the data features and the real-valued coefficient.
Lemma C.1. Suppose we have rounded the first k � 1 real-valued coefficients to integers. Then
for the k-th real-valued coefficient, if we set w+

k = argminv2{bwkc,dwke}
Pn

i=1 l
2
i (
Pk�1

j=1 xij(w
+
j �

wj) + xik(v � wk))2, then we have

nX

i=1

l2i

0

@
kX

j=1

xij(w
+
j � wj)

1

A
2


nX

i=1

l2i

0

@
k�1X

j=1

xij(w
+
j � wj)

1

A
2

+
nX

i=1

l2i x
2
ik(1� uk)uk (13)

where uk = wk � bwkc.

Proof. Let zk be a binomial random variable so that zk = 1 with probability uj and zk =
0 with probability 1 � uk. For notational convenience, let us define the function f(v) :=
Pn

i=1 l
2
i

⇣Pk�1
j=1 xij(w

+
j � wj) + xik(v � wk)

⌘2
. Then f(bwkc+ zk) is a random variable, and the

input to function f(·), which is bwkc+ zk, takes on values either bwkc or dwke.
The expectation of this random variable is

Ezk [f(bwkc+ zk)]

=Ezk

2

64
nX

i=1

l2i

0

@
k�1X

j=1

xij(w
+
j � wj) + xik(bwkc+ zk � wk)

1

A
2
3

75

=
nX

i=1

l2i Ezk

2

64

0

@
k�1X

j=1

xij(w
+
j � wj) + xik(bwkc+ zk � wk)

1

A
2
3

75 # move E(·) inside the
P

(·)

=
nX

i=1

l2i Ezk

2

64

0

@
k�1X

j=1

xij(w
+
j � wj) + xik(zk � uk)

1

A
2
3

75 # substitute with uk = wk � bwkc

=
nX

i=1

l2i

2

64

0

@
k�1X

j=1

xij(w
+
j � wj)

1

A
2

+ 2xik

0

@
k�1X

j=1

xij(w
+
j � wj)

1

AEzk [zk � uk]

+x2
ikEzk

⇥
(zk � uk)

2
⇤
3

5 . # expand the square term
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Notice that because P(zk = 1) = uk, P(zk = 0) = 1� uk, we have

Ezk [zk � uk] = (1� uk)uk + (0� uk)(1� uk) = 0

and

Ezk

⇥
(zk � uk)

2
⇤
= (1� uk)

2uk + (0� uk)
2(1� uk) = uk(1� uk). # similar as above

Therefore, we have

Ezk [f(bwkc+ zk)]

=
nX

i=1

l2i

2

64

0

@
k�1X

j=1

xij(w
+
j � wj)

1

A
2

+2xik

0

@
k�1X

j=1

xij(w
+
j � wj)

1

AEzk [zk � uk] + x2
ikEzk

⇥
(zk � uk)

2
⇤
3

5

=
nX

i=1

l2i

2

64

0

@
k�1X

j=1

xij(w
+
j � wj)

1

A
2

+ x2
ikuk(1� uk)

3

75 # plug in the two expectations above

=
nX

i=1

l2i

0

@
k�1X

j=1

xij(w
+
j � wj)

1

A
2

+
nX

i=1

l2i x2
ikuk(1� uk). # split into two summation terms

Since the expectation of f(bwkc + zk) is equal to
Pn

i=1 l
2
i

⇣Pk�1
j=1 xij(w

+
j � wj)

⌘2
+

Pn
i=1 l

2
i x2

ikuk(1� uk), there exists a z0k 2 {0, 1} such that

f(bwkc+ z0k) 
nX

i=1

l2i

0

@
k�1X

j=1

xij(w
+
j � wj)

1

A
2

+
nX

i=1

l2i x2
ikuk(1� uk). (14)

Note that bwkc+ z0k is the minimizer of f(·) because the other input value bwkc+ 1� z0k will take
the value f(bwkc+ 1� z0k), which is greater than or equal to the expectation Ezk [f(bwkc+ zk)].

If we round wk to an integer by setting w+
k = bwkc + z0k, then w+

k = argminv2{bwkc,dwke} f(v).
We now have:

nX

i=1

l2i

0

@
kX

j=1

xij(w
+
j � wj)

1

A
2

= min
v2{bwkc,dwke}

f(v) # definition of w+
k and f(·)

= min
c2{0,1}

f(bwkc+ c) # substitute v = bwkc+ c

=f(bwkc+ z0k) # bwkc+ z0k is the minimizer of f(·)


nX

i=1

l2i

0

@
k�1X

j=1

xij(w
+
j � wj)

1

A
2

+
nX

i=1

l2i x
2
ik(1� uk)uk,

# Inequality 14

thus completing our proof.

Now we can use Lemma C.1 to prove Theorem 3.1.

Proof of Theorem 3.1. For simplicity, let us first consider the case where we round coef-
ficients sequentially from w+

1 to w+
p . We claim that if at each step r, we round w+

r =
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argminv2{bwrc,dwre}
Pn

i=1 l
2
i

⇣Pl�1
j=1 xij(w

+
j � wj) + xir(v � wr)

⌘2
, then for 8k 2 [1, ..., p]

nX

i=1

l2i

0

@
kX

j=1

xij(w
+
j � wj)

1

A
2


nX

i=1

kX

j=1

l2i x
2
ijuj(1� uj). (15)

We prove this by the principle of induction. Suppose for step k � 1, we have
nX

i=1

l2i

0

@
k�1X

j=1

xij(w
+
j � wj)

1

A
2


nX

i=1

k�1X

j=1

l2i x
2
ijuj(1� uj).

Then, according to Lemma C.1 and the previous line, we have
nX

i=1

l2i

0

@
kX

j=1

xij(w
+
j � wj)

1

A
2


nX

i=1

k�1X

j=1

l2i x
2
ijuj(1� uj) +

nX

i=1

l2i x
2
ikuk(1� uk) # Lemma C.1

=
nX

i=1

kX

j=1

l2i x
2
ijuj(1� uj). # use a single sum

Pn
i=1(·)

For the base step k = 1, Lemma C.1 also implies that
nX

i=1

l2i (xi1(w
+
1 � w1))

2 
nX

i=1

l2i x
2
i1u1(1� u1).

Thus, Inequality (15) works for all k. If we let k = p, we have
nX

i=1

l2i

0

@
pX

j=1

xij(w
+
j � wj)

1

A
2


nX

i=1

pX

j=1

l2i x
2
ijuj(1� uj). (16)

Also, notice that this inequality holds for sequential rounding of any permutation of the feature
indices [1, ..., p], and the rounding order of the AuxiliaryLossRounding method is one specific feature
order. Therefore, the Inequality (16) works for the AuxiliaryLossRounding method as well.

Lastly, we use Inequality 16 to derive an upper bound on the logistic loss of the AuxiliaryLossRound-
ing method. Recall that our objective is:

L(w) =
nX

i=1

log(1 + exp(�yixT
i w)). (17)

The loss difference between the rounded solution and the real-valued solution can be bounded as
follows:

L(w+)� L(w⇤) 
nX

i=1

⇥
log(1 + exp(�yixT

i w
+))� log(1 + exp(�yixT

i w))
⇤


nX

i=1

|li(yixT
i w

+ � yix
T
i w)| # Lipschitz continuity, see details below

=
nX

i=1

|liyixT
i (w

+ �w)| # pull out common factor

=
nX

i=1

|lixT
i (w

+ �w)| # since |yi| = 1


nX

i=1

vuuutl2i

0

@
pX

j=1

xij(w
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j � wj)

1

A
2

# rewrite |·| in terms of
p
·



vuuutn
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l2i
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xij(w
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j � wj)

1

A
2

# Jensen’s Inequality, see details below
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There are two inequalities we need to elaborate in details, the second and the last inequalities
(Lipschitz continuity and Jensen’s Inequaltiy).

Second Inequality (Lipschitz continuity):

The second inequality holds because the logistic loss g(a) = log(1 + exp(�a)) is Lipschitz con-
tinuous. If the Lipschitz constant is l, then we have |g(a) � g(b)|  l |a � b|. We now explain
how we derive the Lipschitz constant li = 1/(1 + exp(yixT

i �i)) with �ij = bwjc if yixij > 0 and
�ij = dwje as stated in Theorem 3.1.

Since the logistic loss function g(·) is differentiable, the smallest Lipschitz constant of the function
g(·) is lmin(g) = supa2Domain(g) |g0(a)|. To see this, by the definition of the Lipschitz constant, we
have |g(a)�g(b)|

|a�b|  l. If we take the limit b ! a, the inequality still holds, limb!a
|g(a)�g(b)|

|a�b|  l.
The left hand side converges to the absolute value of the derivative of g(·) at a. Therefore, we have
|g0(a)|  l. Since this works for all a, and we want to find the smallest Lipschitz value, we have
lmin(g) = supa2Domain(g) |g0(a)|.

For the logistic loss g(a) = log(1 + e�a), the absolute value of the derivative is |g0(a)| = 1
1+ea .

Thus, if a is lower-bounded so that a � a1, the smallest Lipschitz constant of the logistic loss is
lmin(g) =

1
1+ea1

.

We can apply this fact to calculate a smaller Lipschitz constant for each sample’s term. If �ij := bwjc
if yixij > 0 and �ij := dwje otherwise, then

yixiw
+ � yix

T
i �i, and |g0(yixiw

+)|  1/(1 + exp(yix
T
i �i)).

Therefore, li = 1/(1 + exp(yixT
i �i)) is a valid Lipschitz constant for the i-th sample.

Last Inequality (Jensen’s inequality):

Jensen’s Inequality states that Ez[�(g(z))] � �(Ez[g(z)]) for any convex function �(·). For this
specific problem, let �(b) = �

p
b and let g(z) = l2i (

Pp
j=1 xij(w

+
j � wj))2 for a particular i with

probability 1
n . Then, we have

nX

i=1

vuuutl2i

0

@
pX

j=1

xij(w
+
j � wj)

1
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2
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1
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A
2

# multiply and divide by n

= �nEz[�(g(z))] # definition of �(·), g(·), and E(·)
 �n�(Ez[g(z)]) # Jensen’s Inequality

= n

vuuut 1

n

nX

i=1

l2i

0
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xij(w
+
j � wj)

1
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2

# write out �(·), g(·), and E(·) explicitly

=

vuuutn
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0

@
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j=1

xij(w
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j � wj)

1

A
2

. # move n inside
p
·

Therefore, using Inequality 16, we can now bound the loss difference between the rounded solution
and the real-valued solution as stated in Theorem 3.1:

L(w+)� L(w) 

vuuutn
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D Experimental Setup

D.1 Dataset Information

The dataset names, data source, number of samples and features, and the classification tasks can
be found in Table 2. The datasets with results shown in the main paper (adult, bank, breast-
cancer, mammo, mushroom, spambase) were directly downloaded from this link: https://github.
com/ustunb/risk-slim/tree/master/examples/data. The COMPAS dataset can be down-
loaded from this link: https://github.com/propublica/compas-analysis/blob/master/
compas-scores-two-years.csv. The FICO dataset can be requested and downloaded from this
website: https://community.fico.com/s/explainable-machine-learning-challenge.
The Netherlands dataset is available through Data Archiving and Networked Services https:

//easy.dans.knaw.nl/ui/datasets/id/easy-dataset:78692.

For our experiments on the COMPAS, FICO, and Netherlands datasets, we convert the continuous
features into a set of highly correlated dummy variables, with all entries equal to 1 or 0. By
conducting experiments on these three datasets, we can test how well FasterRisk works for highly
correlated features. We use the preprocessing steps as explained in Section C2 of [24]. We list the
key preprocessing steps below.

COMPAS: In addition to the label “two_year_recid”, we use features “sex”, “age”, “juv_fel_count”,
“juv_misd_count”, “juv_other_count”, “priors_count”, and “c_charge_degree”.

FICO: All continuous features are used.

Netherlands: In addition to the label “recidivism_in_4y”, we use features “sex”, “country of birth”,
“log # of previous penal cases”, “11-20 previous case”, and “>20 previous case”, “age in years”,
“age at first penal case”, and “offence type”.

For each continuous variable x·,j , it is converted into a set of highly correlated dummy variables
x̃·,j,✓ = 1[x·,j✓], where ✓ are all unique values that have appeared in feature column j. For
Netherlands, special preprocessing steps are performed for “age in years” (which is real-valued, not
integer) and “age at first penal case”. Instead of considering all unique values in the feature column,
we consider 1000 quantiles.

Dataset Source N P Classification task
adult [20] 32561 36 Predict if a U.S. resident earns more than $50,000
bank [28] 41188 55 Predict if a person opens account after marketing call
breastcancer [26] 683 9 Detect breast cancer using a biopsy
mammo [15] 961 14 Detect breast cancer using a mammogram
mushroom [29] 8124 113 Predict if a mushroom is poisonous
spambase [12] 4601 57 Predict if an e-mail is spam
COMPAS [21] 6907 134 Predict if someone will be arrested  2 years of release
FICO [17] 10459 1917 Predict if someone will default on a loan
Netherlands [36] 20000 2024 Predict if someone will have any charge within 4 years

Table 2: Dataset information. Breastcancer and spambase datasets have real-valued features. All
other datasets have binary (0 or 1) features.

D.2 Computing Platform

We ran all experiments on a TensorEX TS2-673917-DPN Intel Xeon Gold 6226 Processor with
2.7Ghz (768GB RAM 48 cores). For all experiments, we used only two cores because we observed
using more cores did not improve the computational speed further.

D.3 Baselines

We compare with several baselines in our experiments.
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RiskSLIM The current state-of-the-art method is RiskSLIM. We installed this package from the
following GitHub link: https://github.com/ustunb/risk-slim

2. RiskSLIM uses the IBM
CPLEX MIP solver to do the optimization. The CPLEX version we used is 12.8.

Pooled Approaches For other baselines, we first found a pool of continuous sparse solutions by
the ElasticNet [48] method and then rounded the coefficients to integers with different rounding
techniques. Because ElasticNet has `1 and `2 penalties, we call this method the penalized logistic
regression (PLR) approach. The best integer solution was selected from this pool based on which
solution produces the smallest logistic loss while obeying the sparsity constraint and box constraints.
These baselines correspond to the Pooled Approaches in Section 5.1 of [39], where Figure 11 and
Figure 12 clearly show that pooled approaches are much better than traditional approaches. We
include Unit Weighting and Rescaled Rounding as two additional rounding methods. The details of
the pooled approach and the rounding techniques can be found in Section 5.1 of [39].

The ElasticNet method tries to solve the following optimization problem:

min
w

1

2n

nX

i=1

log(1 + exp(�yixT
i w)) + � · (↵kwk1 + (1� ↵)kwk22) (18)

where ↵ 2 [0,1] is a hyperparameter. By controlling ↵, we choose the best model over Ridge (↵ =0),
Lasso (↵=1), and Elastic net (0 < ↵ < 1). We generated 1,100 models using the glmnet package3. To
do this, we first choose 11 values of ↵ 2 {0, 0.1, 0.2, ..., 0.9, 1.0}. For each given ↵, the package then
internally and automatically selects 100 �’s equi-spaced on the logarithmic scale between �min and
�max (the smallest value for � such that all the coefficients are zero). We call this part the Pooled-PLR
(Pooled Penalized Logistic Regression).

To convert each continuous sparse model to an integer sparse model, we applied the following
rounding methods:

• 1) Pooled-PLR-RD: For each of the 1,100 PLR models in the pool, we first truncated all the
coefficients (except the intercept �0) to be within the range [-5,5] and did simple rounding:
�j = dmin(max(�j ,�5), 5)c, and �0 = d�0c. The d·c operation is defined as dac = dae if
|a� dae| < |a� bac| and dac = bac otherwise.

• 2) Pooled-PLR-RDU: For each solution, we rounded each of its coefficients to be ±1 based
on its signs: wj = sign(wj)1[wj 6=0] and w0 = dw0c This rounding technique is known as
unit weighting or the Burgess method.

• 3) Pooled-PLR-RSRD: For each solution, we rescaled its coefficients by a factor � so that
�wmax = ±5 and then rounded each rescaled coefficient to the nearest integer: wj =
d�wjc, � = 5

maxj |�j | and w0 = dw0c.

• 4) Pooled-PLR-Rand: For each model in the pool, for each coefficient, denote its fractional
part by uj = wj � bwjc. We rounded each coefficient up to dwje with probability uj and
down to dwje with probability 1� uj . After all rounding was done, we selected the best
model in the pool.

• 5) Pooled-PLR-RDP: For each model in the pool, we iterated through each coefficient �j

and calculated the loss for both d�je and b�jc and selected the rounding that minimizes the
loss. This is called Sequential Rounding in [39].

• 6) Pooled-PLR-RDSP: we first rounded through Sequential Rounding (Method 5, just
above), and then we applied Discrete Coordinate Descent (DCD) [39] to iteratively improve
the loss by adjusting one coefficient at a time. At each round, DCD selects the coefficient
and its new value that decreases the logistic loss the most.

As mentioned earlier, after we get the 1,100 integer sparse models via each rounding technique, we
selected the best model from the pool based on which solution has the smallest logistic loss.

2The license for this package is BSD 3-Clause license. The license can be viewed on the GitHub page.
3We installed the package from the following GitHub link: https://github.com/bbalasub1/glmnet_

python The package contains GNU license, which can be viewed on the GitHub website.
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D.4 Hyperparameters Specification

We used the default values in Algorithm 1 for all hyperparameters. We reiterate the hyperparameters
used in the experiments below.

• beam search size: B = 10.
• tolerance level for sparse diverse pool: ✏ = 0.3 (or 30%).
• number of attempts to try for sparse diverse pool: T = 50.
• number of multipliers to try: Nm = 20.

Performance is not particularly sensitive to these choices (see Appendix E.10). If T , Nm, B are
chosen too large, the algorithm will take longer to execute.
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E Additional Experimental Results

E.1 Additional Results on Solution Quality

In addition to the six datasets we show in the main paper, we provide results on the breastcancer,
spambase, and Netherlands datasets (see Section D.1 for more data information). The comparison
of solution quality is shown in Figure 6. We see that FasterRisk outperforms both RiskSLIM and
other pooled approaches, even with high dimensional feature spaces and in the presence of highly
correlated features (the Netherlands dataset).

Figure 6: Performance comparison on the breastcancer, spambase, and Netherlands datasets. Top row
is training AUC (higher is better) and bottom row is test AUC (higher is better).
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E.2 Additional Results on Direct Comparison with RiskSLIM

As RiskSLIM provides state-of-the-art performance, we compare it to FasterRisk in isolation to
highlight the differences between the two approaches/algorithms. The results are shown in Figure 7
on the breastcancer, spambase, and Netherlands datasets.

Figure 7: Detailed performance comparison between FasterRisk and RiskSLIM on breastcancer,
spambase, and Netherlands. Top row is training AUC (higher is better) and bottom row is test AUC
(higher is better). We can improve FasterRisk’s results on the spambase dataset by increasing the
beam size in the algorithm. See Figure 29 for the perturbation study on this hyperparameter.

E.3 Additional Results on Running Time

We also provide a runtime comparison between RiskSLIM and FasterRisk in Figure 8. Except for the
small dataset breastcancer, RiskSLIM timed out in all other instances. In contrast, FasterRisk finishes
running under 50s or 100s on all cases, showing great scalability, even in high dimensional feature
space and in presence of highly correlated features (the Netherlands dataset).

Figure 8: Runtime Comparison. Runtime (in seconds) versus model size for our method FasterRisk
(in red) and the RiskSLIM (in blue). The shaded blue bars indicate cases that timed out (“T.O”) at
900 seconds.
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E.4 Ablation Study of the Proposed Techniques

We investigate how each component of FasterRisk, including sparse beam search, diverse pool, and
multipliers, contribute to solution quality. We quantify the contribution of each part of the algorithm
by means of an ablation study in which we run variations of FasterRisk, each with a single component
disabled.

The results are shown in Figure 9-11. “no beam search” means that the beam size is 1, so we expand
the support by picking the next feature based on which new feature can induce the smallest logistic
loss via the single coordinate optimization. “no sparse diverse” means that the sparse diverse pool
contains only the solution by Algorithm 2, the SparseBeamLR method. “no multiplier” means that
there is no “star ray search” of the multiplier. There is no scaling of coefficients or the data, so we
think of this as setting multiplier to 1.

The ablation study shows that different parts of our algorithm provide the biggest benefit to different
data sets — that is, there is no single component of the algorithm that uniformly assists with
performance; instead, the combination of these techniques, working in concert, is responsible. We
provide the detailed analysis of the contributions for each specific dataset in the figure captions.

Figure 9: Ablation study on the adult, bank, and mammo datasets. Left column is loss (lower is
better), middle column is training AUC (higher is better) and right column is test AUC (higher is
better). The “beam search” method is particularly helpful on the adult dataset. The use of “multiplier”
is particularly helpful on all three datasets. The “diverse pool” technique is somewhat helpful on the
mammo dataset. More significant contributions from “diverse pool” can be found in Figure 11 and
Figure 10.
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Figure 10: Ablation study on the mushroom, COMPAS, and FICO datasets. Left column is loss
(lower is better), middle column is training AUC (higher is better) and right column is test AUC
(higher is better). The “beam search” method is particularly helpful on the mushroom dataset. The
use of “multiplier” is particularly helpful on the COMPAS and FICO datasets. The “diverse pool”
technique is particularly helpful on the COMPAS dataset.
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Figure 11: Ablation study on the COMPAS, FICO, and Netherlands datasets. Left column is loss
(lower is better), middle column is training AUC (higher is better) and right column is test AUC
(higher is better). The “beam search” method is particularly helpful on the spambase dataset. The use
of “multiplier” is particularly helpful on breastcancer and netherlands datasets. The “diverse pool”
technique is particularly helpful on the spambase and Netherlands datasets.
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E.5 Training Losses of FasterRisk vs. RiskSLIM

In the main paper, due to the page limit, we have only compared the training and test AUCs between
RiskSLIM and our FasterRisk. Here, we provide the comparison of training loss (logistic loss)
between these two methods. The results are shown in Figure 12. We can see that FasterRisk
outperforms RiskSLIM in almost all model size instances and datasets.

Figure 12: Training loss between RiskSLIM and our FasterRisk methods. (lower is better)

30



E.6 Comparison of SparseBeamLR with OMP and fastSparse

We next study how effective SparseBeamLR is in producing continuous sparse coefficients under the
`0 sparsity and box constraints. We compare with two existing methods, OMP [14] and fastSparse
[24]. OMP stands for Orthogonal Matching Pursuit, which expands the support by selecting the next
feature with the largest magnitude of partial derivative. fastSparse tries to solve the logistic loss
objective with an `0 regularization. For fastSparse, we use the default �0 values (coefficient for the
`0 regularization) internally selected by the software. Specifically, the software first apply a large
�0 value to produce a super-sparse solution (with support size equal to 1 or close to 1). Then, in the
solution path, the �0 value is sequentially decreased until the produced sparse model violates the
model size constraint.

The results are shown in Figure 13-15. Although OMP and fastSparse can somtimes produce high-
quality solutions on some model size instances and datasets, SparseBeamLR is the only method that
consistently produces high-quality sparse solutions in all cases.

OMP’s solution quality is usually worse than that of SparseBeamLR, and OMP could not produce
coefficients that satisfy the box constraints on the mushroom and spambase datasets.

fastSparse also cannot produce coefficients that satisfy the box constraints on the mushroom and
spambase datasets. Additionally, it is hard to control the �0 regularization to produce the exact model
size desired. In Figure 14, we do not obtain any model with model size equal to 9 or 10 in the solution
path.

The limitations of OMP and fastSparse stated above are our main motivations for developing the
SparseBeamLR method.
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Figure 13: Sparse continuous solutions on the adult, bank, and mammo datasets. Left column is
loss (lower is better), middle column is training AUC (higher is better) and right column is test AUC
(higher is better). SparseBeamLR consistently produces high-quality continuous sparse solutions.
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Figure 14: Sparse continuous solutions on the mushroom, COMPAS, and FICO datasets. Left column
is loss (lower is better), middle column is training AUC (higher is better) and right column is test
AUC (higher is better). The solution coefficients by the OMP and fastSparse methods violate the box
constraints on the mushroom dataset, so we omit the results in the plot. fastSparse cannot obtain
solutions with model size equal to 9 or 10 on the COMPAS dataset, so we do not show those points
in the plot.
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Figure 15: Sparse continuous solutions on the breastcancer, spambase, and Netherlands datasets.
Left column is loss (lower is better), middle column is training AUC (higher is better) and right
column is test AUC (higher is better). SparseBeamLR consistently produces high-quality continuous
sparse solutions. The solution coefficients of OMP and fastSparse violate the box constraints on the
spambase dataset, so we omit the results in the plot.
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E.7 Comparison of FasterRisk with OMP (or fastSparse) + Sequential Rounding

Having compared the continuous sparse solutions, we next compare the integer sparse solutions
produced by OMP, fastSparse, and FasterRisk. After obtaining the continuous sparse solutions from
OMP and fastSparse from Section E.6, we round the continuous coefficients to integers using the
Sequential Rounding method as stated in Method 5 of D.3.

The results are shown in Figure 16-18. FasterRisk consistently outperforms the other two methods,
due to higher quality of continuous sparse solutions and the use of multipliers.

Figure 16: Sparse integer solutions on the adult, bank, and mammo datasets. Left column is loss
(lower is better), middle column is training AUC (higher is better) and right column is test AUC
(higher is better). FasterRisk consistently outperforms the other two methods, due to higher quality
of continuous sparse solutions and the use of multipliers.
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Figure 17: Sparse integer solutions on the mushroom, COMPAS, and FICO datasets. Left column is
loss (lower is better), middle column is training AUC (higher is better) and right column is test AUC
(higher is better). The solution coefficients from the OMP and fastSparse methods violate the box
constraints on the mushroom dataset, so we omit the results on the plot. fastSparse cannot obtain
solutions with model size equal to 9 or 10 on the COMPAS dataset, so we do not show those points
on the plot.
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Figure 18: Sparse integer solutions on the breastcancer, spambase, and Netherlands datasets. Left
column is loss (lower is better), middle column is training AUC (higher is better) and right column is
test AUC (higher is better). FasterRisk consistently outperforms the other two methods, due to the
higher quality of the continuous sparse solutions and the use of multipliers. The solution coefficients
by the OMP and fastSparse methods violate the box constraints on the spambase dataset, so we omit
the results in the plot.
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E.8 Running RiskSLIM Longer

The experiments in Section 4 imposed a 900-second timeout, and RiskSLIM frequently did not
complete within the 900 seconds. Here, we run RiskSLIM with longer timeouts (1 hour, and 4 days).
We find that even with these long runtimes, FasterRisk still outperforms RiskSLIM in both solution
quality and runtime.

Runtime is important for two reasons: (1) We may not be able to compute the answer at all using
the slow method because it does not scale to reasonably-sized datasets. It could take a week or
more to compute the solution for even reasonably small datasets. We will show this shortly through
experiments. (2) Machine learning in the wild is never a single run of an algorithm. Often, users
want to explore the data and adjust various constraints as they become more familiar with possible
models. A fast speed allows users to go through this iteration process many times without lengthy
interruptions between runs. This is where FasterRisk will be very useful in high stakes offline settings.
FasterRisk’s pool of models is generated within 5 minutes, and interacting with the pool is essentially
instantaneous after it is generated.

E.8.1 Solution Quality of Running RiskSLIM for 1 hour

We ran RiskSLIM for a time limit of 1 hour on all 5 folds and all model sizes (2-10). Thus, we ran
experiments for 2 days per dataset. As a reminder, our method FasterRisk runs in less than 5 minutes
(on all datasets). The results of logistic loss on the training set, AUC on the training set, and AUC on
the test set are in Figures 19-21. FasterRisk still outperforms RiskSLIM in almost all cases, because
it uses a larger search space.

Figure 19: Comparison with the state-of-the-art baseline RiskSLIM (running for 1 hour) on the adult,
bank, and mammo datasets. The left column is loss (lower is better), the middle column is training
AUC (higher is better) and the right column is test AUC (higher is better).
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Figure 20: Comparison with the state-of-the-art baseline RiskSLIM (running for 1 hour) on the
mushroom, COMPAS, and FICO datasets. The left column is loss (lower is better), the middle
column is training AUC (higher is better) and the right column is test AUC (higher is better).
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Figure 21: Comparison with the state-of-the-art baseline RiskSLIM (running for 1h) on the breast-
cancer, spambase, and Netherlands datasets. The left column is loss (lower is better), the middle
column is training AUC (higher is better) and the right column is test AUC (higher is better).
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E.8.2 Time Comparison of Running RiskSLIM for 1 hour

We plot the running time comparison between FasterRisk and RiskSLIM (with a time limit of 1 hour).
The original time results with the 15-minute time limit are shown in Figure 5 and Figure 8.

Figure 22: Runtime Comparison. Runtime (in seconds) versus model size for our method FasterRisk
(in red) and the RiskSLIM (in blue). The shaded blue bars indicate cases that timed out at 1 hour.
Breastcancer is a small dataset so it takes approximately 2 seconds for both algorithms. For more
zoomed-in results on the breastcancer and mammo datasets, please refer to Figure 5 and Figure 8.
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E.8.3 Solution Quality of Running RiskSLIM for Days

We report results of running the baseline RiskSLIM for 4 days. Due to this long running time demand
on our servers, we could not run this experiment on all folds and all model sizes, so we only run on
the 3rd fold of the 5-CV split. We plot the logistic loss progression over time.

The results are shown in Figure 23. We see that FasterRisk still achieves lower loss than RiskSLIM
even after letting RiskSLIM run for 4 days, again because FasterRisk uses a larger model class. The
only exceptions are on the Mushroom and the Spambase datasets, where the logistic losses are close
to each other.

The major disadvantage of letting an algorithm run for days is that it is challenging to interact with
the algorithm, because one has to wait for the results between interactions – ideally this process
would be instantaneous. Furthermore, there could be memory issues for the MIP solver if we let it
run for days since the branch-and-bound tree could become too large.

Figure 23: Curves of logistic loss vs. training time for the RiskSLIM model on the 3rd fold of the
5-CV split with model size equal to 10. All plots report logistic loss (lower is better).
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E.9 Calibration Curves

The calibration curves for RiskSLIM and FasterRisk are shown in Figures 24-26 with model sizes
equal to 3, 5, and 7, respectively. We use the sklearn package4 from python to plot the figures. We
use the default value for the number of bins (number of bins is 5) and the default strategy to define
the widths of the bins (the strategy is “uniform”).

The calibration curves on the breastcancer and mammo datasets are more spread out than those on the
other datasets. This is perhaps due to the limited number of samples in these datasets (both datasets
have fewer than 1000 samples in total; see Table 2), which increases the variance in the calculation of
the curves.

On other datasets, both methods have good calibration curves, showing consistency between predicted
score and actual risk. However, as shown in Figures 19-21, FasterRisk has higher AUC scores, which
means our method has higher discrimination ability than RiskSLIM.

Figure 24: Calibration curves for RiskSLIM and FasterRisk with model size equal to 3. We plot
results from each test fold. The FasterRisk model selected from the pool is that with the smallest
logistic loss on the training set.

4https://scikit-learn.org/stable/modules/generated/sklearn.calibration.
calibration_curve.html

43

https://scikit-learn.org/stable/modules/generated/sklearn.calibration.calibration_curve.html
https://scikit-learn.org/stable/modules/generated/sklearn.calibration.calibration_curve.html


Figure 25: Calibration curves for RiskSLIM and FasterRisk with model size equal to 5. We plot
results from each test fold. The FasterRisk model selected from the pool is that with the smallest
logistic loss on the training set.
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Figure 26: Calibration curves for RiskSLIM and FasterRisk with model size equal to 7. We plot
results from each fold on the test set. The FasterRisk model selected from the pool is that with the
smallest logistic loss on the training set.
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E.10 Hyperparameter Perturbation Study

E.10.1 Perturbation Study on Beam Size B

We perform a perturbation study on the hyperparameter beam size B as mentioned in Appendix D.4.
We set the beam size to 5, 10, and 15, respectively. The results are shown in Figures 27-29. The curves
greatly overlap, confirming our previous claim that the performance is not particularly sensitive to
the choice of B.

Figure 27: Perturbation study for beam size, B, on the adult, bank, and mammo datasets. The default
value used in the paper is 10.
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Figure 28: Perturbation study for beam size, B, on the mushroom, COMPAS, and FICO datasets.
The default value used in the paper is 10.
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Figure 29: Perturbation study for beam size, B, on the breastcancer, spambase, and Netherlands
datasets. The default value used in the paper is 10.
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E.10.2 Perturbation Study on Tolerance Level ✏ for Sparse Diverse Pool

We perform a perturbation study on the hyperparameter tolerance level, ✏, as mentioned in Ap-
pendix D.4. We set the tolerance level to 0.1, 0.3, and 0.5, respectively. The results are shown in
Figures 30-32. The curves greatly overlap, confirming our previous claim that the performance is not
particularly sensitive to the choice of value.

Figure 30: Perturbation study on tolerance level, ✏, for sparse diverse pool on the adult, bank, and
mammo datasets. The default value used in the paper is 0.3.
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Figure 31: Perturbation study on tolerance level, ✏, for sparse diverse pool on the mushroom,
COMPAS and FICO datasets. The default value used in the paper is 0.3.
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Figure 32: Perturbation study on tolerance level, ✏, for sparse diverse pool on the breastcancer,
spambase, and Netherlands datasets. The default value used in the paper is 0.3.
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E.10.3 Perturbation Study on Number of Attempts T for Sparse Diverse Pool

We perform a perturbation study on the hyperparameter for the number of attempts, T , as mentioned
in Appendix D.4. We have set the number of attempts to 35, 50, and 65, respectively. The results
are shown in Figures 33-35. The curves greatly overlap, confirming our previous claim that the
performance is not particularly sensitive to the choice of value for the hyperparameter.

Figure 33: Perturbation study on number of attempts parameter, T , for sparse diverse pool on the
adult, bank, and mammo datasets. The default value used in the paper is 50.
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Figure 34: Perturbation study on number of attempts parameter, T , for sparse diverse pool on the
mushroom, COMPAS, and FICO datasets. The default value used in the paper is 50.
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Figure 35: Perturbation study on number of attempts parameter, T , for sparse diverse pool on the
breastcancer, spambase, and Netherlands datasets. The default value used in the paper is 50.
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E.10.4 Perturbation Study on Number of Multipliers Nm

We perform a perturbation study on the hyperparameter for the number of multipliers, Nm, as
mentioned in Appendix D.4. We have set the number of multipliers to 10, 20, and 30, respectively.
The results are shown in Figures 36-38. The curves greatly overlap, confirming our previous claim
that the performance is not particularly sensitive to the choice of values for Nm.

Figure 36: Perturbation study on number of multipliers, Nm, on the adult, bank, and mammo datasets.
The default value used in the paper is 20.
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Figure 37: Perturbation study on number of multipliers, Nm, for sparse diverse pool on the mushroom,
COMPAS and FICO datasets. The default value used in the paper is 20.
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Figure 38: Perturbation study on number of multipliers, Nm, for sparse diverse pool on the breast-
cancer, spambase, and Netherlands datasets. The default value used in the paper is 20.
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E.11 Comparison with Baseline AutoScore

We compare with the baseline AutoScore [44]. We set the number of features from 2 to 10 and use
all other hyperparameters in the default setting. The results of training AUC and test AUC are shown
in Figures 39-41. The plots of RiskSLIM are from experiments where we let RiskSLIM run for 1
hour. FasterRisk outperforms both RiskSLIM and AutoScore.

Figure 39: Comparison with the new baseline AutoScore on the adult, bank, and mammo datasets.
The left column is training AUC (higher is better), and the right column is test AUC (higher is better).
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Figure 40: Comparison with the new baseline on the mushroom, Compas, and FICO datasets. The
AutoScore (continuous) baseline is another method where AutoScore is applied to the original
continuous features instead of the binary features as detailed in Appendix D.1. Not every model size
can be obtained by the AutoScore (continuous) method. The left column is training AUC (higher is
better), and the right column is test AUC (higher is better).
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Figure 41: Comparison with the new baseline on the breastcancer, spambase, and Netherlands
datasets. The AutoScore (continuous) baseline is another method where AutoScore is applied to the
original continuous features instead of the binary features as detailed in Appendix D.1. Not every
model size can be obtained by the AutoScore (continuous) method. The left column is training AUC
(higher is better), and the right column is test AUC (higher is better).
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F Additional Risk Score Models

We provide additional risk score models for the readers to inspect.

Appendix F.1 shows risk scores with different model sizes on different datasets.

Appendix F.2 shows different risk scores with the same size from the diverse pool of solutions.

Specifically, Appendix F.2.1 shows different risk scores on the bank dataset (financial applica-
tion), Appendix F.2.2 shows different risk scores on the mammo dataset (medical application), and
Appendix F.2.3 shows different risk scores on the Netherlands dataset (criminal justice application).

F.1 Risk Score Models with Different Sizes

For model size = 3, please see Tables 3-11.

For model size = 5, please see Tables 12-20.

For model size = 7, please see Tables 21-29.

We also include a large model with size = 10 on the FICO dataset, please see Table 30.

1. no high school diploma -4 points ...
2. high school diploma only -2 points + ...
3. married 4 points + ...

SCORE =

SCORE -4 -2 0 2 4
RISK 1.2% 4.1% 13.1% 34.7% 65.3%

Table 3: FasterRisk model for the adult dataset, predicting salary> 50K.

1. Call in Second Quarter -2 points ...
2. Previous Call Was Successful 4 points + ...
3. Employment Indicator < 5100 4 points + ...

SCORE =

SCORE -2 0 2 6 8
RISK 2.8% 6.5% 14.5% 50.0% 70.8%

Table 4: FasterRisk model for the bank dataset, predicting if a person opens a bank account after a
marketing call.

1. Irregular Shape 4 points ...
2. Circumscribed Margin -5 points + ...
3. Age � 60 3 points + ...

SCORE =

SCORE -5 -2 -1 2
RISK 8.2% 20.1% 26.2% 50.0%

SCORE 3 4 7
RISK 58.5% 66.6% 84.9%

Table 5: FasterRisk model for the mammo dataset, predicting malignancy of a breast lesion.
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1. odor=almond -5 points ...
2. odor=anise -5 points + ...
3. odor=none -5 points + ...

SCORE =

SCORE -5 0
RISK 10.8% 96.0%

Table 6: FasterRisk model for the mushroom dataset, predicting whether a mushroom is poisonous.

1. prior_counts  2 -4 points ...
2. prior_counts  7 -4 points + ...
3. age  31 4 points + ...

SCORE =

SCORE -8 -4 0 4
RISK 23.6% 44.1% 67.0% 83.9%

Table 7: FasterRisk model for the COMPAS dataset, predicting whether individuals are arrested
within two years of release.

1. MSinceMostRecentInqexcl7days 0 3 points ...
2. ExternalRiskEstimate 70 5 points + ...
3. ExternalRiskEstimate 79 5 points + ...

SCORE =

SCORE 0 3 5 8 � 10
RISK 13.7% 24.0% 33.4% 50.0% � 61.3%

Table 8: FasterRisk model for the FICO dataset, predicting whether an individual will default on a
loan.

1. Clump Thickness ⇥3 points ...
2. Uniformity of Cell Size ⇥5 points + ...
3. Bare Nuclei ⇥3 points + ...

SCORE =

SCORE  33 36 39 42 45
RISK  3.3% 6.1% 10.8% 18.6% 30.1

SCORE 48 51 54 57 � 60
RISK 67.0% 77.6% 85.5% 91.0 � 94.5%

Table 9: FasterRisk model for the breastcancer dataset, predicting whether there is breast cancer
using a biopsy.

1. WordFrequency_Remove ⇥5 points ...
2. WordFrequency_HP ⇥-2 points + ...
3. CharacterFrequency_$ ⇥5 points + ...

SCORE =

SCORE  -4 -3 -2 -1 0
RISK 0.4% 1.3% 3.7% 10.2% 25.2%

SCORE 1 2 3 4 � 5
RISK 50.0% 74.8% 89.8% 96.3% � 98.7%

Table 10: FasterRisk model for the spambase dataset, predicting if an e-mail is spam.
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1. previous case  20 -5 points ...
2. previous case  10 or previous case � 21 -4 points + ...
3. # of previous penal cases 3 -2 points + ...

SCORE =

SCORE  �9 -7 -6 0
RISK  50% 74.6% 83.4% 99.2%

Table 11: FasterRisk model for the Netherlands dataset, predicting whether defendants have any type
of charge within four years.

1. no high school diploma -4 points ...
2. high school diploma only -2 points + ...
3. age 22 to 29 -2 points + ...
4. any capital gains 3 points + ...
5. married 4 points + ...

SCORE =

SCORE <-4 -3 -2 -1 0
RISK <1.3% 2.4% 4.4% 7.8% 13.6%

SCORE 1 2 3 4 7
RISK 22.5% 35.0% 50.5% 65.0% 92.2%

Table 12: FasterRisk model for the adult dataset, predicting salary> 50K. This table has already been
shown in the main paper.

1. Call in Second Quarter -2 points ...
2. Previous Call Was Successful 4 points + ...
3. Previous Marketing Campaign Failed -1 points + ...
4. Employment Indicator > 5100 -5 points + ...
5. 3 Month Euribor Rate � 100 -2 points + ...

SCORE =

SCORE -5 -4 -3 -2 -1
RISK  11.2% 15.1% 20.1% 26.2% 33.4%

SCORE 0 1 2 3 4
RISK 41.5% 50.0% 58.5% 66.6% 73.8%

Table 13: FasterRisk model for the bank dataset, predicting if a person opens a bank account after a
marketing call.

1. Oval Shape -2 points . . .
2. Irregular Shape 4 points + . . .
3. Circumscribed Margin -5 points + . . .
4. Spiculated Margin 2 points + . . .
5. Age � 60 3 points +

SCORE =

SCORE -7 -5 -4 -3 -2 -1
RISK 6.0% 10.6% 13.8% 17.9% 22.8% 28.6%

SCORE 0 1 2 3 4 � 5
RISK 35.2% 42.4% 50.0% 57.6% 64.8% 71.4%

Table 14: FasterRisk model for the mammo dataset, predicting malignancy of a breast lesion. This
table has already been shown in the main paper.
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1. odor=almond -5 points ...
2. odor=anise -5 points + ...
3. odor=none -5 points + ...
4. odor=foul 5 points + ...
5. gill size=broad -3 points + ...

SCORE =

SCORE -8 -5 -3 �2
RISK 1.62% 26.4% 73.6% >99.8%

Table 15: FasterRisk model for the mushroom dataset, predicting whether a mushroom is poisonous.
This table has already been shown in the main paper.

1. prior_counts  7 -5 points ...
2. prior_counts  2 -5 points + ...
3. prior_counts  0 -3 points + ...
4. age  33 4 points + ...
5. age  23 5 points + ...

SCORE =

SCORE  -10 -9 -6 -5 -4
RISK 25.9% 29.4% 41.3% 45.6% 50.0%

SCORE -2 -1 3 4 9
RISK 58.7% 62.8% 77.3% 80.2% � 90.7%

Table 16: FasterRisk model for the COMPAS dataset, predicting whether individuals are arrested
within two years of release.

1. MSinceMostRecentInqexcl7days  �8 -4 points ...
2. MSinceMostRecentInqexcl7days  0 2 points + ...
3. NumSatisfactoryTrades  12 2 points + ...
4. ExternalRiskEstimate  70 3 points + ...
5. ExternalRiskEstimate  79 3 points + ...

SCORE =

SCORE -2 0 1 2 3
RISK 6.7% 13.2% 18.2% 24.4% 32.0%

SCORE 4 5 6 8 10
RISK 40.7% 50.0% 59.3% 75.5% 86.8%

Table 17: FasterRisk model for the FICO dataset, predicting whether an individual will default on a
loan. �8 means a missing value on the FICO dataset.

1. Clump Thickness ⇥5 points ...
2. Uniformity of Cell Size ⇥4 points + ...
3. Marginal Adhesion ⇥3 points + ...
4. Bare Nuclei ⇥4 points + ...
5. Normal Nucleoli ⇥3 points + ...

SCORE =

SCORE  55 60 65 70 75
RISK  8.6% 14.6% 23.5% 35.7% 50.0

SCORE 80 85 90 95 � 100
RISK 64.3% 76.5% 85.4% 91.4 � 95.0%

Table 18: FasterRisk model for the breastcancer dataset, predicting whether there is breast cancer
using a biopsy.
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1. WordFrequency_Remove ⇥5 points ...
2. WordFrequency_Free ⇥2 points ...
3. WordFrequency_0 ⇥5 points + ...
4. WordFrequency_HP ⇥-2 points + ...
5. WordFrequency_George ⇥-2 points + ...

SCORE =

SCORE  -4 -3 -2 -1 0
RISK 0.6% 1.6% 4.4% 11.4% 26.4%

SCORE 1 2 3 4 � 5
RISK 50.0% 73.6% 88.6% 95.6% � 98.4%

Table 19: FasterRisk model for the spambase dataset, predicting if an e-mail is spam.

1. previous case  20 -5 points ...
2. previous case  10 or previous case � 21 -3 points + ...
3. # of previous penal cases  2 -2 points + ...
4. age in years  38.06 1 points + ...
5. age at first penal case  22.63 1 points + ...

SCORE =

SCORE -9 -8 -7 -6 -5 -4
RISK  23.8% 35.8% 50.0% 64.2% 76.2% 85.1%

SCORE -3 -2 -1 0 1 2
RISK 91.1% 94.8% 97.0% 98.3% 99.1% 99.5%

Table 20: FasterRisk model for the Netherlands dataset, predicting whether defendants have any type
of charge within four years.

1. Age 22 to 29 -2 points ...
2. High School Diploma Only -2 points + ...
3. No High school Diploma -4 points ...
4. Married 4 points + ...
5. Work Hours Per Week < 50 -2 points + ...
6. Any Capital Gains 3 points + ...
7. Any Capital Loss 2 points + ...

SCORE =

SCORE -5 -4 -3 -2 -1
RISK 0.8% 1.4% 2.6% 4.6% 8.1%

SCORE 0 2 3 4 7
RISK 14.0% 35.3% 50.0% 64.7% 91.9%

Table 21: FasterRisk model for the adult dataset, predicting salary> 50K.
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1. Blue Collar Job -1 points ...
2. Call in Second Quarter -2 points + ...
3. Previous Call Was Successful 3 points + ...
4. Previous Marketing Campaign Failed -1 points + ...
5. Employment Indicator > 5100 -5 points + ...
6. Consumer Price Index � 93.5 1 points + ...
7. 3 Month Euribor Rate � 100 -1 points + ...

SCORE =

SCORE -5 -4 -3 -2 -1
RISK  7.9% 11.5% 16.3% 22.7% 30.6%

SCORE 0 1 2 3 4
RISK 39.9% 50.0% 60.1% 69.4% 77.3%

Table 22: FasterRisk model for the bank dataset, predicting if a person opens bank account after
marketing call.

1. Lobular Shape 2 points ...
2. Irregular Shape 5 points + ...
3. Circumscribed Margin -4 points + ...
4. Obscured Margin -1 points + ...
5. Spiculated Margin 1 points + ...
6. Age < 30 -5 points + ...
7. Age � 60 3 points + ...

SCORE =

SCORE -1 0 1 2 3
RISK 19.8% 25.9% 33.2% 41.3% 50.0%

SCORE 4 5 6 8 9
RISK 58.7% 66.8% 74.1% 85.2% 89.1%

Table 23: FasterRisk model for the mammo dataset, predicting malignancy of a breast lesion.

1. odor=anise -5 points ...
2. odor=none -5 points + ...
3. odor=foul 5 points + ...
4. gill size=narrow 4 points + ...
5. stalk surface above ring=grooves 2 points + ...
6. spore print color=green 5 points + ...

SCORE =

SCORE -5 0 2 4 � 5
RISK 0.5% 50.0% 89.2% 98.6% 99.5%

Table 24: FasterRisk model for the mushroom dataset, predicting whether a mushroom is poisonous.
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1. prior_counts  7 -3 points ...
2. prior_counts  2 -3 points + ...
3. prior_counts  0 -2 points + ...
4. age  52 2 points + ...
5. age  33 2 points + ...
6. age  23 2 points + ...
7. age  20 4 points + ...

SCORE =

SCORE -8 -6 -4 -3 -2 -1 0
RISK 11.3% 18.7% 29.3% 35.7% 42.7% 50.0% 57.3%

SCORE 1 2 3 4 6 7 10
RISK 64.3% 70.7% 76.4% 81.3% 88.7% 91.3% 96.2%

Table 25: FasterRisk model for the COMPAS dataset, predicting whether individuals are arrested
within two years of release.

1. MSinceMostRecentInqexcl7days  �8 -4 points ...
2. MSinceMostRecentInqexcl7days  0 2 points + ...
3. NetFractionRevolvingBurden  37 -2 points + ...
4. ExternalRiskEstimate  70 2 points + ...
5. ExternalRiskEstimate  78 2 points + ...
6. AverageMInFile  60 2 points + ...
7. PercentTradesNeverDelq  85 2 points + ...

SCORE =

SCORE -4 -2 0 2 4 6 8 10
RISK 8.0% 14.9% 26.0% 41.4% 58.6% 74.0% 85.1% 92.0%

Table 26: FasterRisk model for the FICO dataset, predicting whether an individual will default on a
loan. �8 means a missing value on the FICO dataset.

1. Clump Thickness ⇥4 points ...
2. Uniformity of Cell Shape ⇥3 points + ...
3. Marginal Adhesion ⇥3 points + ...
4. Bare Nuclei ⇥3 points + ...
5. Bland Chromatin ⇥3 points + ...
6. Normal Nucleoli ⇥2 points + ...
7. Mitoses ⇥4 points + ...

SCORE =

SCORE  55 60 65 70 75
RISK  5.1% 9.3% 16.2% 26.6% 40.6

SCORE 80 85 90 95 � 100
RISK 56.3% 70.8% 82.1% 89.6 � 94.2%

Table 27: FasterRisk model for the breastcancer dataset, predicting whether there is breast cancer
using a biopsy.
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1. WordFrequency_Remove ⇥4 points ...
2. WordFrequency_Free ⇥2 points ...
3. WordFrequency_Business ⇥1 points + ...
4. WordFrequency_0 ⇥4 points + ...
5. WordFrequency_HP ⇥-2 points + ...
6. WordFrequency_George ⇥-2 points + ...
7. CharacterFrequency_$ ⇥5 points + ...

SCORE =

SCORE  -4 -3 -2 -1 0
RISK 0.4% 1.3% 3.7% 10.2% 25.2%

SCORE 1 2 3 4 � 5
RISK 50.0% 74.8% 89.8% 96.3% � 98.7%

Table 28: FasterRisk model for the spambase dataset, predicting if an e-mail is spam.

1. previous case  20 -5 points ...
2. previous case  10 or previous case � 21 -4 points + ...
3. # of previous penal cases  1 -1 points + ...
4. # of previous penal cases  3 -1 points + ...
5. # of previous penal cases  5 -1 points + ...
6. age in years  21.80 1 points + ...
7. age in years  38.05 1 points + ...

SCORE =

SCORE -10 -9 -8 -7 -6 -5
RISK  33.1% 50.0% 66.9% 80.3% 89.2% 94.3%

SCORE -4 -3 -2 -1 0 � 1
RISK 97.1% 98.6% 99.3% 99.6% 99.8% 99.9%

Table 29: FasterRisk model for the Netherlands dataset, predicting whether defendants have any type
of charge within four years.

1. ExternalRiskEstimate63 1 points ...
2. ExternalRiskEstimate70 2 points + ...
3. ExternalRiskEstimate79 2 points + ...
4. AverageMInFile59 2 points + ...
5. NumSatisfactoryTrades13 2 points + ...
6. PercentTradesNeverDelq95 1 points + ...
7. PercentInstallTrades46 -1 points + ...
8. MSinceMostRecentInqexcl7days-8 -5 points + ...
9. MSinceMostRecentInqexcl7days0 2 points + ...
10. NetFractionRevolvingBurden37 -2 points + ...

SCORE =

SCORE -8 -7 -6 -5 -4 -3 -2 -1 0 1 2
RISK 2.7% 3.7% 5.0% 6.8% 9.2% 12.4% 16.4% 21.3% 27.3% 34.2% 41.9%

SCORE 3 4 5 6 7 8 9 10 11 12
RISK 50.0% 58.1% 65.8% 72.7% 78.7% 83.6% 87.6% 90.8% 93.2% 95.0%

Table 30: FasterRisk model for the FICO dataset, predicting whether an individual will default on a
loan. �8 means a missing value on the FICO dataset.
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F.2 Risk Score Models from the Pool of Solutions

F.2.1 Examples from the Pool of Solutions (Bank Dataset)

The extra risk score examples from the pool of solutions are shown in Tables 31-42. All models
were from the pool of the third fold on the bank dataset, and we show the top 12 models, provided
in ascending order of the logistic loss on the training set (the model with the smallest logistic loss
comes first).

1. Call in Second Quarter -2 points ...
2. Previous Call Was Successful 4 points + ...
3. Previous Marketing Campaign Failed -1 points + ...
4. Employment Indicator > 5100 -5 points + ...
5. 3 Month Euribor Rate � 100 -2 points + ...

SCORE =

SCORE -5 -4 -3 -2 -1
RISK  11.2% 15.1% 20.1% 26.2% 33.4%

SCORE 0 1 2 3 4
RISK 41.5% 50.0% 58.5% 66.6% 73.8%

Table 31: FasterRisk model for the bank dataset, predicting if a person opens a bank account after a
marketing call. The logistic loss on the training set is 9352.39. The AUCs on the training and test
sets are 0.779 and 0.770, respectively.

1. Call in Second Quarter -2 points ...
2. Previous Call Was Successful 4 points + ...
3. Previous Marketing Campaign Failed -1 points + ...
4. Employment Variation Rate < -1 5 points + ...
5. 3 Month Euribor Rate � 100 -2 points + ...

SCORE =

SCORE 0 1 2 3 4
RISK  11.2% 15.1% 20.1% 26.2% 33.4%

SCORE 5 6 7 8 9
RISK 41.5% 50.0% 58.5% 66.6% 73.8%

Table 32: FasterRisk model for the bank dataset, predicting if a person opens a bank account after a
marketing call. The logistic loss on the training set is 9352.39. The AUCs on the training and test
sets are 0.779 and 0.770, respectively.

1. Call in Second Quarter -2 points ...
2. Previous Call Was Successful 4 points + ...
3. Previous Marketing Campaign Failed -1 points + ...
4. 3 Month Euribor Rate � 100 -2 points + ...
5. 3 Month Euribor Rate � 200 -5 points + ...

SCORE =

SCORE -5 -4 -3 -2 -1
RISK  11.2% 15.2% 20.1% 26.3% 33.4%

SCORE 0 1 2 3 4
RISK 41.5% 50.0% 58.5% 66.6% 73.7%

Table 33: FasterRisk model for the bank dataset, predicting if a person opens a bank account after a
marketing call. The logistic loss on the training set is 9352.86. The AUCs on the training and test
sets are 0.779 and 0.769, respectively.
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1. Call in Second Quarter -2 points ...
2. Previous Marketing Campaign Failed -1 points + ...
3. Previous Marketing Campaign Succeeded 4 points + ...
4. 3 Month Euribor Rate � 100 -2 points + ...
5. 3 Month Euribor Rate � 200 -5 points + ...

SCORE =

SCORE -5 -4 -3 -2 -1
RISK  11.3% 15.3% 20.2% 26.3% 33.5%

SCORE 0 1 2 3 4
RISK 41.5% 50.0% 58.5% 66.5% 73.6%

Table 34: FasterRisk model for the bank dataset, predicting if a person opens a bank account after a
marketing call. The logistic loss on the training set is 9363.40. The AUCs on the training and test
sets are 0.779 and 0.769, respectively. Note that some customers do not have previous marketing
campaigns, so for these customers, neither of conditions 2 nor 3 are satisfied.

1. Call in Second Quarter -2 points ...
2. Previous Call Was Successful 4 points + ...
3. Consumer Price Index > 93.5 1 points + ...
4. 3 Month Euribor Rate � 100 -1 points + ...
5. 3 Month Euribor Rate � 200 -5 points + ...

SCORE =

SCORE -4 -3 -2 -1 0
RISK  9.6% 13.4% 18.4% 24.6% 32.2%

SCORE 1 2 3 4 5
RISK 40.8% 50.0% 59.2% 67.8% 75.4%

Table 35: FasterRisk model for the bank dataset, predicting if a person opens a bank account after a
marketing call. The logistic loss on the training set is 9365.51. The AUCs on the training and test
sets are 0.778 and 0.769, respectively.

1. Call in First Quarter 2 points ...
2. Call in Second Quarter -1 points ...
3. Previous Call Was Successful 3 points + ...
4. 3 Month Euribor Rate � 100 -2 points + ...
5. 3 Month Euribor Rate � 200 -3 points + ...

SCORE =

SCORE -4 -3 -2 -1 0
RISK  8.8% 13.4% 19.8% 28.2% 38.5%

SCORE 1 2 3 4 5
RISK 50.0% 61.5% 71.8% 80.2% 86.6%

Table 36: FasterRisk model for the bank dataset, predicting if a person opens a bank account after a
marketing call. The logistic loss on the training set is 9365.57. The AUCs on the training and test
sets are 0.776 and 0.766, respectively.
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1. Call in Second Quarter -2 points ...
2. Previous Call Was Successful 3 points + ...
3. Previous Marketing Campaign Failed -1 points + ...
4. Consumer Price Index � 93.5 1 points + ...
5. 3 Month Euribor Rate � 200 -4 points + ...

SCORE =

SCORE -5 -4 -3 -2 -1
RISK  3.0% 5.2% 9.0% 15.0% 23.9%

SCORE 0 1 2 3 4
RISK 35.9% 50.0% 64.1% 76.1% 85.0%

Table 37: FasterRisk model for the bank dataset, predicting if a person opens a bank account after a
marketing call. The logistic loss on the training set is 9367.20. The AUCs on the training and test
sets are 0.781 and 0.772, respectively.

1. Call in Second Quarter -1 points ...
2. Previous Call Was Successful 5 points + ...
3. Calls Before Campaign Succeeded -1 points + ...
4. 3 Month Euribor Rate � 100 -2 points + ...
5. 3 Month Euribor Rate � 200 -4 points + ...

SCORE =

SCORE -4 -3 -2 -1 0
RISK  11.4% 16.3% 22.6% 30.6% 39.9%

SCORE 1 2 3 4 5
RISK 50.0% 60.1% 69.4% 77.4% 83.7%

Table 38: FasterRisk model for the bank dataset, predicting if a person opens a bank account after a
marketing call. The logistic loss on the training set is 9367.93. The AUCs on the training and test
sets are 0.780 and 0.769, respectively.

1. Call in Second Quarter -1 points ...
2. Any Prior Calls Before Campaign 4 points + ...
3. Previous Marketing Campaign Failed -5 points + ...
4. 3 Month Euribor Rate � 100 -2 points + ...
5. 3 Month Euribor Rate � 200 -4 points + ...

SCORE =

SCORE -5 -4 -3 -2 -1
RISK  7.8% 11.4% 16.2% 22.6% 30.5%

SCORE 0 1 2 3 4
RISK 39.9% 50.0% 60.1% 69.5% 77.4%

Table 39: FasterRisk model for the bank dataset, predicting if a person opens a bank account after a
marketing call. The logistic loss on the training set is 9371.75. The AUCs on the training and test
sets are 0.779 and 0.769, respectively.
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1. Called via Landline Phone -2 points ...
2. Previous Call Was Successful 5 points + ...
3. Previous Marketing Campaign Failed -2 points + ...
4. 3 Month Euribor Rate � 100 -4 points + ...
5. 3 Month Euribor Rate � 200 -4 points + ...

SCORE =

SCORE -6 -5 -4 -3 -2
RISK  10.9% 14.2% 18.3% 23.2% 28.9%

SCORE -1 0 1 3 5
RISK 35.4% 42.6% 50.0% 64.6% 76.8%

Table 40: FasterRisk model for the bank dataset, predicting if a person opens a bank account after a
marketing call. The logistic loss on the training set is 9376.52. The AUCs on the training and test
sets are 0.776 and 0.765, respectively.

1. Job Is Retired 1 points ...
2. Call in Second Quarter -2 points + ...
3. Previous Call Was Successful 5 points + ...
4. 3 Month Euribor Rate � 100 -2 points + ...
5. 3 Month Euribor Rate � 200 -5 points + ...

SCORE =

SCORE -3 -2 -1 0 1
RISK  17.2% 22.2% 28.1% 34.8% 42.2%

SCORE 2 3 4 5 6
RISK 50.0% 57.8% 65.2% 72.0% 77.8%

Table 41: FasterRisk model for the bank dataset, predicting if a person opens a bank account after a
marketing call. The logistic loss on the training set is 9378.18. The AUCs on the training and test
sets are 0.777 and 0.766, respectively.

1. Age � 60 1 points ...
2. Call in Second Quarter -2 points + ...
3. Previous Call Was Successful 5 points + ...
4. 3 Month Euribor Rate � 100 -2 points + ...
5. 3 Month Euribor Rate � 200 -5 points + ...

SCORE =

SCORE -3 -2 -1 0 1
RISK  17.3% 22.2% 28.1% 34.8% 42.2%

SCORE 2 3 4 5 6
RISK 50.0% 57.8% 65.2% 71.9% 77.8%

Table 42: FasterRisk model for the bank dataset, predicting if a person opens a bank account after a
marketing call. The logistic loss on the training set is 9378.68. The AUCs on the training and test
sets are 0.777 and 0.767, respectively.
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F.2.2 Examples from the Pool of Solutions (Mammo Dataset)

The extra risk score examples from the pool of solutions are shown in Tables 43-54. All models were
from the pool of the third fold on the mammo dataset, and we show the top 12 models, provided
in ascending order of the logistic loss on the training set (the model with the smallest logistic loss
comes first).

1. Oval Shape -2 points ...
2. Irregular Shape 4 points + ...
3. Circumscribed Margin -5 points + ...
4. Spiculated Margin 2 points + ...
5. Age � 60 3 points + ...

SCORE =

SCORE -7 -5 -4 -3 -2 -1
RISK 6.0% 10.6% 13.8% 17.9% 22.8% 28.6%

SCORE 0 1 2 3 4 � 5
RISK 35.2% 42.4% 50.0% 57.6% 64.8% 71.4%

Table 43: FasterRisk model for the mammo dataset, predicting the risk of malignancy of a breast
lesion. The logistic loss on the training set is 357.77. The AUCs on the training and test sets are
0.854 and 0.853, respectively.

1. Lobular Shape 1 point ...
2. Irregular Shape 3 points + ...
3. Circumscribed Margin -3 points + ...
4. Spiculated Margin 1 point + ...
5. Age � 60 2 points + ...

SCORE =

SCORE -3 -2 -1 0 1
RISK 7.5% 11.8% 18.1% 26.8% 37.7%

SCORE 2 3 4 5 6
RISK 50.0% 62.3% 73.2% 81.9% 88.2%

Table 44: FasterRisk model for the mammo dataset, predicting the risk of malignancy of a breast
lesion. The logistic loss on the training set is 357.86. The AUCs on the training and test sets are
0.854 and 0.857, respectively.

1. Lobular Shape 2 points ...
2. Irregular Shape 5 points + ...
3. Circumscribed Margin -4 points + ...
4. Age < 30 -5 points + ...
5. Age � 60 3 points + ...

SCORE =

SCORE -9 -7 -6 -5 -4 -3 -2 -1 0
RISK 1.3% 2.6% 3.7% 5.2% 7.3% 10.1% 14.0% 18.9% 25.1%

SCORE 1 2 3 4 5 6 7 8 10
RISK 32.6% 41.0% 50.0% 59.0% 67.4% 74.9% 81.1% 86.0% 92.7%

Table 45: FasterRisk model for the mammo dataset, predicting the risk of malignancy of a breast
lesion. The logistic loss on the training set is 358.24. The AUCs on the training and test sets are
0.852 and 0.854, respectively.
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1. Lobular Shape 2 points ...
2. Irregular Shape 5 points + ...
3. Circumscribed Margin -4 points + ...
4. Age � 30 5 points + ...
5. Age � 60 3 points + ...

SCORE =

SCORE -4 -2 -1 0 1 2 3 4 5
RISK 1.3% 2.6% 3.7% 5.2% 7.3% 10.1% 14.0% 18.9% 25.1%

SCORE 6 7 8 9 10 11 12 13 15
RISK 32.6% 41.0% 50.0% 59.0% 67.4% 74.9% 81.1% 86.0% 92.7%

Table 46: FasterRisk model for the mammo dataset, predicting the risk of malignancy of a breast
lesion. The logistic loss on the training set is 358.24. The AUCs on the training and test sets are
0.852 and 0.854, respectively.

1. Irregular Shape 2 points ...
2. Circumscribed Margin -2 points + ...
3. Spiculated Margin 1 point + ...
4. Age � 30 2 points + ...
5. Age � 60 1 point + ...

SCORE =

SCORE -2 -1 0 1 2
RISK 2.3% 4.7% 9.5% 18.2% 32.0%

SCORE 3 4 5 6
RISK 50.0% 68.0% 81.8% 90.5%

Table 47: FasterRisk model for the mammo dataset, predicting the risk of malignancy of a breast
lesion. The logistic loss on the training set is 358.59. The AUCs on the training and test sets are
0.852 and 0.857, respectively.

1. Irregular Shape 2 points ...
2. Circumscribed Margin -2 points + ...
3. Spiculated Margin 1 point + ...
4. Age < 30 -2 points + ...
5. Age � 60 1 point + ...

SCORE =

SCORE -4 -3 -2 -1 0
RISK 2.3% 4.7% 9.5% 18.2% 32.0%

SCORE 1 2 3 4
RISK 50.0% 68.0% 81.8% 90.5%

Table 48: FasterRisk model for the mammo dataset, predicting the risk of malignancy of a breast
lesion. The logistic loss on the training set is 358.59. The AUCs on the training and test sets are
0.852 and 0.857, respectively.
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1. Lobular Shape 2 points ...
2. Irregular Shape 5 points + ...
3. Circumscribed Margin -4 points + ...
4. Obscure Margin -1 point + ...
5. Age � 60 3 points + ...

SCORE =

SCORE -5 -4 -3 -2 -1 0 1 2
RISK 5.3% 7.4% 10.3% 14.1% 19.1% 25.3% 32.7% 41.1%

SCORE 3 4 5 6 7 8 9 10
RISK 50.0% 58.9% 67.3% 74.7% 80.9% 85.9% 89.7% 92.6%

Table 49: FasterRisk model for the mammo dataset, predicting the risk of malignancy of a breast
lesion. The logistic loss on the training set is 358.71. The AUCs on the training and test sets are
0.852 and 0.857, respectively.

1. Irregular Shape 5 points ...
2. Circumscribed Margin -5 points + ...
3. Microlobulated Margin 2 points + ...
4. Spiculated Margin 2 points + ...
5. Age � 60 3 points + ...

SCORE =

SCORE -5 -3 -2 -1 0 2 3
RISK 8.6% 14.6% 18.6% 23.5% 29.2% 42.7% 50.0%

SCORE 4 5 7 8 9 10 12
RISK 57.3% 64.3% 76.5% 81.4% 85.4% 88.7% 93.4%

Table 50: FasterRisk model for the mammo dataset, predicting the risk of malignancy of a breast
lesion. The logistic loss on the training set is 358.98. The AUCs on the training and test sets are
0.852 and 0.852, respectively.

1. Irregular Shape 4 points ...
2. Circumscribed Margin -5 points + ...
3. SpiculatedMargin 2 points + ...
4. Age � 45 1 point + ...
5. Age � 60 3 points + ...

SCORE =

SCORE -5 -4 -3 -2 -1 0 1 2
RISK 7.3% 9.7% 12.9% 16.9% 21.9% 27.8% 34.6% 42.1%

SCORE 3 4 5 6 7 8 9 10
RISK 50.0% 57.9% 65.4% 72.2% 78.1% 83.1% 87.1% 90.3%

Table 51: FasterRisk model for the mammo dataset, predicting the risk of malignancy of a breast
lesion. The logistic loss on the training set is 359.10. The AUCs on the training and test sets are
0.855 and 0.859, respectively.
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1. Irregular Shape 4 points ...
2. Circumscribed Margin -5 points + ...
3. Obscure Margin -1 points + ...
4. Spiculated Margin 2 points + ...
5. Age � 60 3 points + ...

SCORE =

SCORE -6 -5 -4 -3 -2 -1 0 1
RISK 6.8% 9.2% 12.3% 16.3% 21.3% 27.3% 34.2% 41.9%

SCORE 2 3 4 5 6 7 8 9
RISK 50.0% 58.1% 65.8% 72.7% 78.7% 83.7% 87.7% 90.8%

Table 52: FasterRisk model for the mammo dataset, predicting the risk of malignancy of a breast
lesion. The logistic loss on the training set is 359.34. The AUCs on the training and test sets are
0.852 and 0.862, respectively.

1. Oval Shape -1 point ...
2. Lobular Shape 1 point + ...
3. Irregular Shape 4 points + ...
4. Circumscribed Margin -4 points + ...
5. Age � 60 3 points + ...

SCORE =

SCORE -5 -4 -3 -2 -1 0 1
RISK 7.0% 9.8% 13.6% 18.5% 24.8% 32.3% 40.8%

SCORE 2 3 4 5 6 7 8
RISK 50.0% 59.2% 67.7% 75.2% 81.5% 86.4% 90.2%

Table 53: FasterRisk model for the mammo dataset, predicting the risk of malignancy of a breast
lesion. The logistic loss on the training set is 359.53. The AUCs on the training and test sets are
0.850 and 0.849, respectively.

1. Lobular Shape 1 point ...
2. Irregular Shape 4 points + ...
3. Circumscribed Margin -3 points + ...
4. Age � 45 1 point + ...
5. Age � 60 2 points + ...

SCORE =

SCORE -3 -2 -1 0 1 2
RISK 6.3% 9.5% 14.1% 20.5% 28.9% 38.9%

SCORE 3 4 5 6 7 8
RISK 50.0% 61.1% 71.1% 79.5% 85.9% 90.5%

Table 54: FasterRisk model for the mammo dataset, predicting the risk of malignancy of a breast
lesion. The logistic loss on the training set is 359.53. The AUCs on the training and test sets are
0.852 and 0.850, respectively.
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F.2.3 Examples from the Pool of Solutions (Netherlands Dataset)

The extra risk score examples from the pool of solutions are shown in Tables 55-66. All models were
from the pool of the third fold on the Netherlands dataset, and we show the top 12 models, provided
in ascending order of the logistic loss on the training set (the model with the smallest logistic loss
comes first).

1. # of previous penal cases  2 -2 points ...
2. age in years  38.052 1 point + ...
3. age at first penal case  22.633 1 point + ...
4. previous case  10 or > 20 -3 points + ...
5. previouse case  20 -5 points + ...

SCORE =

SCORE -10 -9 -8 -7 -6 -5 -4
RISK 14.9% 23.8% 35.8% 50.0% 64.2% 76.2% 85.1%

SCORE -3 -2 -1 0 1 2
RISK 91.1% 94.8% 97.0% 98.3% 99.1% 99.5%

Table 55: FasterRisk model for the Netherlands dataset, predicting whether defendants have any type
of charge within four years. The logistic loss on the training set is 9226.84. The AUCs on the training
and test sets are 0.743 and 0.742, respectively.

1. # of previous penal cases  1 -1 point ...
2. # of previous penal cases  3 -1 point + ...
3. age in years  38.052 1 point + ...
4. previous case  10 or > 20 -3 points + ...
5. previouse case  20 -3 points + ...

SCORE =

SCORE -8 -7 -6 -5 -4
RISK 12.4% 27.4% 50.0% 72.6% 87.6%

SCORE -3 -2 -1 0 1
RISK 94.9% 98.0% 99.2% 99.7% 99.9%

Table 56: FasterRisk model for the Netherlands dataset, predicting whether defendants have any type
of charge within four years. The logistic loss on the training set is 9232.51. The AUCs on the training
and test sets are 0.744 and 0.739, respectively.

1. # of previous penal cases  3 -2 points ...
2. age in years  38.052 1 point + ...
3. age at first penal case  23.265 1 point + ...
4. previous case  10 or > 20 -3 points + ...
5. previouse case  20 -5 points + ...

SCORE =

SCORE -10 -9 -8 -7 -6 -5 -4
RISK 16.1% 24.9% 36.6% 50.0% 63.4% 75.1% 83.9%

SCORE -3 -2 -1 0 1 2
RISK 90.1% 94.0% 96.5% 97.9% 98.8% 99.3%

Table 57: FasterRisk model for the Netherlands dataset, predicting whether defendants have any type
of charge within four years. The logistic loss on the training set is 9250.94. The AUCs on the training
and test sets are 0.739 and 0.739, respectively.
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1. # of previous penal cases  3 -2 points ...
2. age in years  38.052 1 point + ...
3. age at first penal case  22.989 1 point + ...
4. previous case  10 or > 20 -3 points + ...
5. previouse case  20 -5 points + ...

SCORE =

SCORE -10 -9 -8 -7 -6 -5 -4
RISK 16.1% 25.0% 36.6% 50.0% 63.4% 75.0% 83.9%

SCORE -3 -2 -1 0 1 2
RISK 90.0% 94.0% 96.5% 97.9% 98.8% 99.3%

Table 58: FasterRisk model for the Netherlands dataset, predicting whether defendants have any type
of charge within four years. The logistic loss on the training set is 9250.95. The AUCs on the training
and test sets are 0.738 and 0.739, respectively. Note that this risk score is slightly different from that
of Table 57 in Condition 3.

1. # of previous penal cases  3 -2 points ...
2. age in years  38.052 1 point + ...
3. age at first penal case  23.283 1 point + ...
4. previous case  10 or > 20 -3 points + ...
5. previouse case  20 -5 points + ...

SCORE =

SCORE -10 -9 -8 -7 -6 -5 -4
RISK 16.0% 24.9% 36.6% 50.0% 63.4% 75.1% 84.0%

SCORE -3 -2 -1 0 1 2
RISK 90.1% 94.0% 96.5% 97.9% 98.8% 99.3%

Table 59: FasterRisk model for the Netherlands dataset, predicting whether defendants have any type
of charge within four years. The logistic loss on the training set is 9251.14. The AUCs on the training
and test sets are 0.739 and 0.739, respectively. Note that this risk score is slightly different from that
of Table 57 in Condition 3.

1. # of previous penal cases  3 -2 points ...
2. age in years  38.052 1 point + ...
3. age at first penal case  22.934 1 point + ...
4. previous case  10 or > 20 -3 points + ...
5. previouse case  20 -5 points + ...

SCORE =

SCORE -10 -9 -8 -7 -6 -5 -4
RISK 16.1% 25.0% 36.6% 50.0% 63.4% 75.0% 83.9%

SCORE -3 -2 -1 0 1 2
RISK 90.0% 94.0% 96.5% 97.9% 98.8% 99.3%

Table 60: FasterRisk model for the Netherlands dataset, predicting whether defendants have any type
of charge within four years. The logistic loss on the training set is 9251.39. The AUCs on the training
and test sets are 0.739 and 0.740, respectively. Note that this risk score is slightly different from that
of Table 57 in Condition 3.
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1. # of previous penal cases  3 -2 points ...
2. age in years  38.052 1 point + ...
3. age at first penal case  22.907 1 point + ...
4. previous case  10 or > 20 -3 points + ...
5. previouse case  20 -5 points + ...

SCORE =

SCORE -10 -9 -8 -7 -6 -5 -4
RISK 16.1% 24.9% 36.6% 50.0% 63.4% 75.1% 83.9%

SCORE -3 -2 -1 0 1 2
RISK 90.0% 94.0% 96.5% 97.9% 98.8% 99.3%

Table 61: FasterRisk model for the Netherlands dataset, predicting whether defendants have any type
of charge within four years. The logistic loss on the training set is 9251.53. The AUCs on the training
and test sets are 0.739 and 0.740, respectively. Note that this risk score is slightly different from that
of Table 57 in Condition 3.

1. # of previous penal cases  3 -2 points ...
2. age in years  38.052 1 point + ...
3. age at first penal case  23.328 1 point + ...
4. previous case  10 or > 20 -3 points + ...
5. previouse case  20 -5 points + ...

SCORE =

SCORE -10 -9 -8 -7 -6 -5 -4
RISK 16.0% 24.9% 36.5% 50.0% 63.5% 75.1% 84.0%

SCORE -3 -2 -1 0 1 2
RISK 90.1% 94.0% 96.5% 97.9% 98.8% 99.3%

Table 62: FasterRisk model for the Netherlands dataset, predicting whether defendants have any type
of charge within four years. The logistic loss on the training set is 9252.07. The AUCs on the training
and test sets are 0.738 and 0.739, respectively. Note that this risk score is slightly different from that
of Table 57 in Condition 3.

1. # of previous penal cases  3 -2 points ...
2. age in years  38.052 1 point + ...
3. age at first penal case  22.965 1 point + ...
4. previous case  10 or > 20 -3 points + ...
5. previouse case  20 -5 points + ...

SCORE =

SCORE -10 -9 -8 -7 -6 -5 -4
RISK 16.1% 24.9% 36.6% 50.0% 63.4% 75.1% 83.9%

SCORE -3 -2 -1 0 1 2
RISK 90.1% 94.0% 96.5% 97.9% 98.8% 99.3%

Table 63: FasterRisk model for the Netherlands dataset, predicting whether defendants have any type
of charge within four years. The logistic loss on the training set is 9252.13. The AUCs on the training
and test sets are 0.738 and 0.740, respectively. Note that this risk score is slightly different from that
of Table 57 in Condition 3.
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1. # of previous penal cases  3 -2 points ...
2. age in years  38.052 1 point + ...
3. age at first penal case  22.830 1 point + ...
4. previous case  10 or > 20 -3 points + ...
5. previouse case  20 -5 points + ...

SCORE =

SCORE -10 -9 -8 -7 -6 -5 -4
RISK 16.1% 24.9% 36.6% 50.0% 63.4% 75.1% 83.9%

SCORE -3 -2 -1 0 1 2
RISK 90.1% 94.0% 96.5% 97.9% 98.8% 99.3%

Table 64: FasterRisk model for the Netherlands dataset, predicting whether defendants have any type
of charge within four years. The logistic loss on the training set is 9252.19. The AUCs on the training
and test sets are 0.739 and 0.740, respectively. Note that this risk score is slightly different from that
of Table 57 in Condition 3.

1. # of previous penal cases  3 -2 points ...
2. age in years  38.052 1 point + ...
3. age at first penal case  22.870 1 point + ...
4. previous case  10 or > 20 -3 points + ...
5. previouse case  20 -5 points + ...

SCORE =

SCORE -10 -9 -8 -7 -6 -5 -4
RISK 16.1% 24.9% 36.6% 50.0% 63.4% 75.1% 83.9%

SCORE -3 -2 -1 0 1 2
RISK 90.1% 94.0% 96.5% 97.9% 98.8% 99.3%

Table 65: FasterRisk model for the Netherlands dataset, predicting whether defendants have any type
of charge within four years. The logistic loss on the training set is 9252.25. The AUCs on the training
and test sets are 0.739 and 0.740, respectively. Note that this risk score is slightly different from that
of Table 57 in Condition 3.

1. # of previous penal cases  3 -2 points ...
2. age in years  38.052 1 point + ...
3. age at first penal case  23.233 1 point + ...
4. previous case  10 or > 20 -3 points + ...
5. previouse case  20 -5 points + ...

SCORE =

SCORE -10 -9 -8 -7 -6 -5 -4
RISK 16.0% 24.9% 36.5% 50.0% 63.5% 75.1% 84.0%

SCORE -3 -2 -1 0 1 2
RISK 90.1% 94.0% 96.5% 97.9% 98.8% 99.3%

Table 66: FasterRisk model for the Netherlands dataset, predicting whether defendants have any type
of charge within four years. The logistic loss on the training set is 9252.27. The AUCs on the training
and test sets are 0.738 and 0.739, respectively. Note that this risk score is slightly different from that
of Table 57 in Condition 3.
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G Model Reduction

G.1 Reducing Models to Relatively Prime Coefficients

If the coefficients of a model are not relatively prime, one can divide all the coefficients by any
common prime factors without changing any of the predicted risks. Table 67(left), copied from Table
6, is reduced in this way to produce Table 67(right). Table 68(left), copied from Table 7, is reduced in
this way to produce Table 68(right).

1. odor=almond -5 points ...
2. odor=anise -5 points + ...
3. odor=none -5 points + ...

SCORE =

SCORE -5 0
RISK 10.8% 96.0%

1. odor=almond -1 points ...
2. odor=anise -1 points + ...
3. odor=none -1 points + ...

SCORE =

SCORE -1 0
RISK 10.8% 96.0%

Table 67: Left: FasterRisk model for the Mushroom dataset, predicting whether a mushroom is
poisonous. Copy of Table 6. Right: Reduction to have relatively prime coefficients.

1. prior_counts  2 -4 points ...
2. prior_counts  7 -4 points + ...
3. age  31 4 points + ...

SCORE =

SCORE -8 -4 0 4
RISK 23.6% 44.1% 67.0% 83.9%

1. prior_counts  2 -1 points ...
2. prior_counts  7 -1 points + ...
3. age  31 1 points + ...

SCORE =

SCORE -2 -1 0 1
RISK 23.6% 44.1% 67.0% 83.9%

Table 68: Left: FasterRisk model for the COMPAS dataset, predicting whether individuals are arrested
within two years of release. Copy of Table 7. Right: Reduction to have relatively prime coefficients.
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G.2 Transforming Features for Better Interpretability

Sometimes the original features are not as interpretable as they could be with some minor postpro-
cessing. For example, Table 69 has features "previous case  10 or > 20" and "previous case  20".
We can transform them into more interpretable and user-friendly features as "previous case  10",
"10 < previous case  20", and "previous case > 20". The transformed model is shown in Table 70.

1. # of previous penal cases  2 -2 points ...
2. age in years  38.052 1 point + ...
3. age at first penal case  22.633 1 point + ...
4. previous case  10 or > 20 -3 points + ...
5. previouse case  20 -5 points + ...

SCORE =

SCORE -10 -9 -8 -7 -6 -5 -4
RISK 14.9% 23.8% 35.8% 50.0% 64.2% 76.2% 85.1%

SCORE -3 -2 -1 0 1 2
RISK 91.1% 94.8% 97.0% 98.3% 99.1% 99.5%

Table 69: Original FasterRisk model for the Netherlands dataset, predicting whether defendants have
any type of charge within four years.

1. # of previous penal cases  2 -2 points ...
2. age in years  38.052 1 point + ...
3. age at first penal case  22.633 1 point + ...
4. previous case  10 -8 points + ...
5. 10 < previouse case  20 -5 points + ...
6. previouse case > 20 -3 points + ...

SCORE =

SCORE -10 -9 -8 -7 -6 -5 -4
RISK 14.9% 23.8% 35.8% 50.0% 64.2% 76.2% 85.1%

SCORE -3 -2 -1 0 1 2
RISK 91.1% 94.8% 97.0% 98.3% 99.1% 99.5%

Table 70: Postprocessed FasterRisk model for the Netherlands dataset, predicting whether defendants
have any type of charge within four years. We have transformed the "previous case" feature for
better interpretability. Note that in the original model, samples with previous case values less than 10
accumulate -8 points, -3 for the 4th line and -5 for the 5th line. In the transformed model, this case is
more clearly stated in line 4.
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H Discussion of Limitations

FasterRisk does not provide provably optimal solutions to an NP-hard problem, which is how it is able
to perform in reasonable time. FasterRisk’s models should not be interpreted as causal. FasterRisk
creates very sparse, generalized, additive models, and thus has limited model capacity. FasterRisk’s
models inherit flaws from data on which it was trained. FasterRisk is not yet customized to a given
application, which can be done in future work. We note that even if a model is interpretable, it can
still have negative societal bias. (Generally, it is easier to check for such biases with scoring systems
than with black box models). Looking at a variety of models from the diverse pool can help users to
find models that are more fair.
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