
Merging Models with Fisher-Weighted Averaging

Michael Matena Colin Raffel
Department of Computer Science

University of North Carolina at Chapel Hill
{mmatena,craffel}@cs.unc.edu

Abstract

Averaging the parameters of models that have the same architecture and initializa-
tion can provide a means of combining their respective capabilities. In this paper,
we take the perspective that this “merging” operation can be seen as choosing pa-
rameters that approximately maximize the joint likelihood of the posteriors of the
models’ parameters. Computing a simple average of the models’ parameters there-
fore corresponds to making an isotropic Gaussian approximation to their posteriors.
We develop an alternative merging procedure based on the Laplace approximation
where we approximate each model’s posterior as a Gaussian distribution whose
precision matrix corresponds to its Fisher information. We first show that our
“Fisher merging” technique provides a performance boost in settings where simple
parameter averaging is currently used – specifically, robust fine-tuning and model
ensembling. Then, we compare merging to standard gradient-based transfer learn-
ing and demonstrate that merging enables a fundamentally different method for
transferring capabilities across models. Specifically, we show that Fisher merging
is competitive with gradient-based transfer learning approaches (while being sig-
nificantly cheaper) in intermediate-task training and domain-adaptive pre-training.
We also show that our merging procedure makes it possible to combine models in
previously unexplored ways. We release our code to facilitate future research into
methods for merging models.1

1 Introduction

How should we transfer knowledge and capabilities across trained models? One popular approach
is transfer learning [44], which fine-tunes a pre-trained model on a target task through additional
gradient-based training. The preparatory step of pre-training the model on a data-rich task ideally
instills useful “knowledge” into the network’s parameters, which allows the model to learn more
rapidly and effectively when fine-tuned on a downstream task of interest. Transfer learning has
therefore become a particularly important and omnipresent tool across many fields, including natural
language processing [57, 13, 9, 52, 53, 46] and computer vision [43, 24, 68]. Recently, it has been
shown that training on an “intermediate” task between pre-training and fine-tuning can further boost
performance through additional transfer of capabilities from the intermediate task [47, 60, 51, 48].
Alternatively, continued self-supervised training on unlabeled domain-specialized data can serve as a
form of domain adaptation [19].

All of the aforementioned transfer learning methods transfer knowledge by using a trained network
to initialize another network followed by iterative gradient descent. While demonstrably powerful,
several drawbacks arise from this: First, improvements to ancestor models cannot be passed down to
descendants; instead, we must restart the whole process from the improved ancestor model, throwing
away our previous work. For example, if we fine-tune a pre-trained model on a downstream task,

1https://github.com/mmatena/model_merging

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/mmatena/model_merging

Pre-trained

Fine-tuned

Donor

…

Pre-trained

Fine-tuned
Fine-tuned

Pre-trained

Pre-trained

Fine-tunedIntermediate

Donor

Figure 1: Merging patterns considered in this work. Left: Merging many fine-tuned models as a form
of ensembling. Center, top: “Robust fine-tuning” [66] , where a fine-tuned model is merged with the
pre-trained model to improve performance on the original pre-training task. Center, bottom: Merging
a fine-tuned model with a “donor” task, analogous to intermediate-task transfer learning [47, 51].
Right: Merging an intermediate-task trained model with a donor model.

but then the pre-trained model is improved through additional training, we must re-fine-tune the
new model on our downstream task if we want to confer benefits from this additional pre-training.
Furthermore, if we gain access to a checkpoint that has been fine-tuned on a useful intermediate task,
we must again throw away our previous work and fine-tune from the intermediate task checkpoint.
Existing methods for transfer learning also have the disadvantage of only being able to transfer
information from a single model. While it may be possible to train on multiple intermediate tasks
sequentially, one quickly either runs into a combinatorial explosion of saved checkpoints or faces
the issue of “catastrophic forgetting” in continual learning [28]. In addition to slowing down
experimentation by preventing reuse of work, these drawbacks impose limitations on the types of
transfer that can occur.

A less common way of transferring capabilities across models is to simply average their parameters.
This procedure, which we call “merging”, is generally only feasible when the models being averaged
share a common architecture and initialization. Merging is the core component of the FedAvg
algorithm used in Federated Learning [39], where updates to a shared model computed by individual
workers that are training on different datasets are combined by simpling averaging the updates.
Recently, Wortsman et al. [66] demonstrated that merging can be used to improve robustness to
domain shift in fine-tuned models by averaging the parameters of the original pre-trained model
with the fine-tuned parameters. Merging is also a common way of performing ensembling [49, 67],
where the parameters of individual models trained on the same dataset are averaged to create a single
performant model.

In this work, we view model merging as approximately maximizing the joint likelihood of the models’
posterior distribution over parameters. Since gradient-based maximum likelihood training only
provides a point estimate of the posterior, some approximation of the posterior distribution is required.
When an isotropic Gaussian distribution is used to approximate the posterior (with identity precision
matrix and mean set to the model’s parameter values), we show that maximizing the joint likelihood
across models is equivalent to simply averaging their parameters. We therefore refer to merging
models by averaging parameters as isotropic merging. The view of merging as maximizing the joint
likelihood of model posteriors suggests that using a better estimate of the posterior distribution may
yield improved merging results. This leads us to introduce Fisher merging, which leverages the
Laplace approximation by using the diagonal of each model’s Fisher information as the precision
matrix for that model’s posterior.

Empirically, we demonstrate that merging models with Fisher merging outperforms isotropic merging
in a variety of settings. We first focus on the existing applications of model ensembling [49, 67] and
improving fine-tuned model robustness [66]. Then, we demonstrate for the first time that merging is
a viable alternative to traditional gradient-based transfer learning. Specifically, we compare merging
to intermediate-task transfer learning [47, 51] and domain-adaptive pre-training [19], finding that
merging can achieve comparable performance at significantly lower cost. Additionally, we show
that merging can provide an additional boost to models created via traditional intermediate-task
training. This provides a concrete example of transfer that is fast and easy with merging but onerous

2

or impossible to do with existing methods. Diagrams of the merging patterns we consider in this
work are shown in fig. 1.

The rest of our paper is structured as follows: In section 2, we provide necessary background and
detail our Fisher merging procedure. Section 3 provides experimental results on model ensembling,
robust fine-tuning, intermediate-task training, and domain adaptation. We explore related works in
section 4 and provide conclusions and thoughts on future work in section 5.

2 Weighted Parameter Averaging for Model Merging

Our focus is on procedures for model merging, i.e. averaging the parameters of models that share
an architecture and initialization. In this section, we first frame the common practice of averaging
together model parameters as approximately maximizing the joint likelihood of model posteriors.
Specifically, we show that parameter averaging corresponds to using an isotropic Gaussian as the
approximate posterior for each model. We then introduce Fisher merging, which uses the model’s
diagonal Fisher information matrix as the precision matrix of the Gaussian approximate posterior.
Fisher merging can be implemented by setting each merged parameter value to a weighted average of
the corresponding parameter values from the original models, with the weighting for each parameter
determined by its Fisher information. In addition, we add model-level weightings as additional
hyperparameters to set the relative importance of each model.

2.1 Isotropic merging

Consider the problem setting where we have M trained neural networks with parameters ✓1, . . . , ✓M
and our goal is to create a single neural network with parameters ✓ that, loosely speaking, inherits
the capabilities of the M trained neural networks. Assume that all of these neural networks share a
common architecture and had the same set of initial parameter values before being trained. Merging
attacks this problem by finding the parameters ✓ that maximize the joint likelihood of the posterior
distributions of the M models. Unfortunately, typical neural network training procedures do not
provide access to a posterior distribution, which necessitates approximation. If the posterior of
each model is approximated via an isotropic Gaussian with mean set to the model’s parameters,
the optimization problem can be written as ✓⇤ = argmax✓

P
i log p(✓|✓i, I) where p(✓|✓i, I) is the

probability distribution of the aforementioned approximate isotropic Gaussian posterior distribution
used for model i and I is the identity matrix. This optimization problem has a closed-form solution
given by ✓⇤ = 1

M

P
i ✓i, i.e. an average of the model parameters. Such an averaging procedure has

been used in past work aiming to combine model capabilities, e.g. in federated learning [39], model
ensembling [49, 67], and robust fine-tuning [66].

2.2 Per-model weights

In this work, we additionally introduce model-specific scalar hyperparameters �i, i 2 {1, . . . ,M}
into the model merging framework described above. Specifically, we change the optimization problem
to ✓⇤ = argmax✓

P
i �i log p(✓|✓i, I) where �i � 0,

P
i �i = 1. In the case of isotropic merging, this

changes the solution to ✓⇤ =
P

i �i✓i, These hyperparameters provide control over the importance
assigned to each of the models that are being merged. For example, when using merging to perform
ensembling we might expect each model to be equally important and therefore set �i = 1/M for all i.
On the other hand, when mimicking the setup of intermediate-task training where the capabilities of
a “donor” model are used to improve performance of a recipient model, we might weigh the recipient
model more highly. Wortsman et al. [66] introduce a similar hyperparameter ↵ when averaging the
parameters of two models and report results for varying values of ↵.

2.3 Laplace Approximation

Framing merging as approximate maximization of the joint posterior likelihood reveals that simple
parameter averaging is implicitly using an isotropic Gaussian posterior approximation. Such an
approximation may be overly simplistic and lead to degraded performance. To explore improved
merging procedures, we consider improved methods for creating an approximate posterior from a
point estimate. Specifically, we use the Laplace approximation to the posterior, which corresponds to
a second-order Taylor expansion of the log density around a mode [36, 10]. This leads to a Gaussian

3

approximation N (✓, H�1) of the posterior, where H is the Hessian matrix and ✓ are the model’s
trained parameter values. More precisely, we assume that the parameter values ✓ of a trained neural
network are a local maximum of the posterior. It can then be shown that the precision matrix of the
Laplace approximation is given by the Fisher information matrix of the network at ✓.

The Fisher information matrix F✓ [16, 3] of a neural network p✓(y|x) trained to predict an output y
from input data x is a |✓|⇥ |✓| positive semidefinite matrix given by the formula

F✓ = Ex


E

y⇠p✓(y|x)
r✓ log p✓(y|x)r✓ log p✓(y|x)T

�
. (1)

It can be shown that the Fisher information matrix coincides with the Hessian H at modes of the
distribution [45], explaining its use in the Laplace approximation. The Fisher information matrix F✓

can also be used to relate changes in the model parameters to changes in the model output by noting
that Ex [DKL(p✓(y|x)||p✓+�(y|x))] ⇡ 1

2�
TF✓� as � ! 0, where DKL denotes the KL-divergence

[45].

As the full Fisher matrix takes O(|✓|2) memory to store, it quickly becomes impractical for all but
the smallest models. We are thus forced to use an approximation to the full Fisher in practice. In this
paper, we follow the common practice of using the diagonal of the Fisher matrix [28]. While other
methods (e.g. [1]) exist for estimating the Fisher, we leave their exploration for future work. In our
experiments, we estimated the diagonal of the Fisher matrix via

F̂✓ =
1

N

NX

i=1

E
y⇠p✓(y|xi)

(r✓ log p✓(y|xi))
2, (2)

where x1, . . . , xN are drawn i.i.d. from the dataset that was used to train the model. The expectation
over y can be estimated via sampling from p✓(y|xi) or computed exactly when the number of
classes is small. We note that computing the Fisher requires N per-example gradients, which can be
straightforwardly computed for neural networks using backpropagation. This makes computing the
diagonal Fisher have roughly the same computational cost as training on N examples.

2.4 Fisher Merging

Having noted that the Laplace approximation provides a tractable way to obtain a better approximation
to the posterior, we now use it to create an improved merging procedure that we call Fisher merging.
Letting F1, . . . , FM correspond to the diagonal approximate Fisher matrices, we construct p(✓|✓i, Fi)
as a Gaussian-distributed posterior over the parameters of the merged model with mean ✓i and
precision Fi. To obtain the merged model, we find a single set of parameters that is given a high
probability under all posteriors. Formally, we have

✓⇤ = argmax✓
MX

i=1

�i log p(✓|✓i, Fi), (3)

which has the closed-form solution

✓⇤(j) =

PM
i=1 �iF

(j)
i ✓(j)iPM

i=1 �iF
(j)
i

, (4)

where j = 1, . . . , |✓|. Intuitively, we can think of Fisher merging as computing a weighted average
of the parameter values in each model where the weighting is done according to each parameter’s
Fisher information. Since the Fisher information is a local property of a single parameter value,
Fisher merging might be less performant when applied to models whose parameters are far apart in
parameter space. We therefore limit our focus to models that were trained from the same initialization.

Numerical Issues. Note that (4) can run into numerical issues when the Fisher is close to zero across
all models for a given parameter. In practice, we choose a privileged “target model” in all of our
experiments and “default” to the parameter’s value in the target model in these cases. An alternative
would be to take an average weighted only by the merging coefficients (i.e., pretend the Fisher is the
same across all models). In practice, the choice of a “default” value for these parameters had little
impact on performance (likely because a small Fisher value implies that changing the parameter has a
minute effect on the model’s outputs and is therefore relatively unimportant to the model’s behavior).

4

Unmergeable Parameters. In many cases, we have some parameters from each model that do
not appear in all of the models we are merging. For example, this includes having task-specific
classification heads on top of a common body architecture. We handle this by only applying the
merging procedure (3) to the shared body parameters and keeping the task-specific heads unchanged.
Although this may lead to a distribution shift in the classification head inputs, we found it to work
well in practice for the datasets and tasks we consider.

3 Experiments

Our first experimental goal is to validate that our use of an improved estimate of the posterior yields
improved merging performance. To test this hypothesis, we apply Fisher merging to two settings
where isotropic merging has already proven successful: Model ensembling [49, 67] and robust
fine-tuning [66]. Then, we demonstrate that Fisher merging provides a cheap and effective alternative
to traditional transfer learning pipelines by validating its performance in intermediate-task transfer
learning [47, 51] and domain-adaptive pre-training [19]. Finally, we demonstrate that merging opens
up new paths of transferring capabilities across models by demonstrating a boost in performance
when merging an intermediate task-trained model with different donor models.

3.1 Ensembling

An existing application of isotropic merging is for ensembling, i.e. combining models trained on the
same dataset to obtain better predictions. Ensembling is most commonly performed by averaging the
predictions of the individual models. This form of ensembling requires computing the output of all
M models in the ensemble, thereby increasing the computational cost by a factor of M compared
to computing the output for a single model. A cheaper alternative is to average the parameters of
the models themselves. This approach is diagrammed in fig. 1, left. Such an approach is used in the
classical method of Polyak averaging [49], where parameter values from the final M iterations of
training are averaged. More recently, Wortsman et al. [67] introduced the “Model Soup” approach
where fine-tuned models with different hyperparameter settings are averaged to improve performance.
To the best of our knowledge, all parameter-averaging ensemble methods have used isotropic merging,
i.e. an unweighted average.

To test whether Fisher merging provides a boost over isotropic merging when averaging parameters
for ensembling, we consider ensembling fine-tuned checkpoints derived from the same pre-trained
model. Specifically, we consider the BERT-Base model [13] fine-tuned on the RTE [8], MRPC [14],
and SST-2 [59] datasets. For each dataset, we use five fine-tuned checkpoints downloaded from the
Hugging Face model hub.2 These checkpoints were fine-tuned with a variety of hyperparameter
settings that were not chosen by us, so our experimental setting most closely matches the “Model
Soup” approach [67]. A list of the checkpoints used is available in appendix A. Since we do not
anticipate that any member of the ensemble should be given a larger weight, we set �i = 1/5 for all
models.

Our results are shown in fig. 2. We report validation set scores for Fisher merging, isotropic
merging, and prediction ensembling (specifically, averaging the output probabilties of all models).
Fisher merging significantly outperforms isotropic merging in all cases and attains comparable
performance to prediction ensembling. Notably, performing inference after merging is M⇥ cheaper
than prediction ensembling, suggesting that merging can provide a cheaper alternative to standard
ensembling procedures.

3.2 Robust Fine-Tuning

Recently, Wortsman et al. [66] found that while fine-tuning a pre-trained vision model tends to
improve performance on the downstream task, it also tends to decreases accuracy on the original pre-
training task. They therefore propose a “robust fine-tuning” procedure called WiSE-FT that computes
a weighted average of the original pre-trained parameters and the fine-tuned parameters. Different
weighting values produce different trade-offs between pre-training and fine-tuning task performance.
In some cases, robust fine-tuning can even improve performance on the original pre-training task
without sacrificing performance on the downstream fine-tuning task relative to traditional fine-tuning.

2https://huggingface.co/models

5

https://huggingface.co/models

Figure 2: Validation set accuracy for ensembles
of five fine-tuned BERT models using different
ensembling methods on the RTE, MRPC, and
SST-2 datasets. Fisher merging produces a sin-
gle model that performs comparably to output
ensembling while being 5⇥ cheaper.

Figure 3: IID (ImageNet) and average out-
of-domain (OOD) accuracy across five OOD
datasets when using the WiSE-FT procedure [66]
with either Fisher or isotropic merging. Dark to
light color indicates increasing �1 from 0 to 1.

This procedure implicitly uses isotropic merging and therefore provides another natural testbed
for determining whether Fisher merging provides a boost in performance. A schematic of robust
fine-tuning is shown in fig. 1, center top.

We use the codebase and experimental setup of Wortsman et al. [66] exactly, simply replacing
isotropic merging with Fisher merging. For full details of this setup, we refer to Wortsman et al. [66].
As a short summary, we apply WiSE-FT to the ImageNet [11, 58] pre-trained ViT-B/16 model [15]
on five out-of-domain (OOD) datasets: ImageNet-A [21], ImageNet-R [20], ImageNet Sketch [62],
ImageNet V2 [56], and ObjectNet [4]. Following Wortsman et al. [66], we measure IID (ImageNet)
and OOD performance when averaging together the original pre-trained model parameters and
parameters from models fine-tuned on each of the OOD datasets, varying �1 (the averaging weight
for the pre-trained model, called ↵ by Wortsman et al. [66]) from 0 to 1 in 0.1-step increments (with
�2 = 1� �1 correspondingly decreasing from 1 to 0). To determine whether Fisher merging confers
a boost in performance, we compare parameter averaging using either isotropic or Fisher merging.

We plot the IID (ImageNet) accuracy against the average accuracy on the five OOD datasets for
varying values of �1 in fig. 3, with plots for individual OOD datasets in fig. 7 (appendix). Fisher
merging produces a significantly better trade-off between IID and OOD accuracy. In particular, Fisher
merging seems to general improve IID accuracy compared to isotropic merging. For example, for the
value of �1 producing the best average OOD accuracy, Fisher merging produces about 1% higher IID
accuracy than isotropic merging.

3.3 Intermediate-task training

Having established that Fisher merging produces better results than isotropic merging in settings
where merging has been attempted before, we now explore the use of merging as an alternative to
a gradient-based transfer learning procedure. Specifically, we explore intermediate-task training
[47, 51], where a model is fine-tuned on an intermediate “donor” task before being trained on the
target task of interest. To the best of our knowledge, no prior work has considered parameter averaging
as a way of performing intermediate-task transfer learning. For the most part, intermediate-task
training has mainly been considered in the NLP domain; as such, we limit our experiments to the
BERT [13] and RoBERTa [33] pre-trained language models. To enable comparison to past work, we
mostly explored merging pairs of models but we are interested in exploring merging more than two
models in future work. As in section 3.1, we made use of fine-tuned BERT and RoBERTa checkpoints
from the Hugging Face repository [65].

Following previous work [47, 51], we first ran experiments using BERT-base on the GLUE benchmark
[61]. The GLUE benchmark consists of the sentence acceptability task CoLA [64], the sentiment
detection task SST-2 [59], the paraphrase detection tasks MRPC and QQP [14, 23], the sentence
similarity task STS-B [7], and the natural language inference (NLI) tasks MNLI, QNLI, RTE, and

6

Figure 4: Validation set accuracy on RTE
when performing intermediate-task training with
datasets from GLUE as the donor task. Dashed
line denotes RTE accuracy without intermediate-
task training.

Figure 5: Validation accuracy on RTE after first
fine-tuning on MNLI, then fine-tuning on RTE,
and finally Fisher merging with various donor
task models. Dashed line denotes RTE accuracy
after MNLI intermediate-task training.

WNLI [6, 54, 8, 31]. All of the GLUE tasks are classification tasks except for STS-B, which is a
regression task with a score ranging from 0 to 5. To simplify computation of the Fisher, we turn
STS-B into a classification task by partitioning the continuous label into 25 equally-sized buckets
[53]. Following common practice, we do not run experiments on WNLI due to the tricks required to
get a good score [12, 29]. See Wang et al. [61] for more details on these tasks and their associated
metrics. We detail how we obtained fine-tuned checkpoints on these tasks in appendix C. We
computed a diagonal Fisher approximation for each checkpoint using up to 4096 examples from the
corresponding train set. Since it is not clear a priori what weighting coefficients �i to use in this
setting, we chose �i by a grid search with 50 points, using the score on the first 2048 validation
examples as the selection metric. We compare Fisher merging to isotropic merging as well as a
standard gradient-based intermediate-task fine-tuning baseline [47]. A diagram of intermediate-task
merging is shown in fig. 1, center bottom.

In initial experiments (reported in tables A1 to A3), we performed intermediate-task training for
possible pair of datasets from the GLUE benchmark. Congruent with past work [47, 51, 60], we
found that intermediate-task training provided the most notable performance boost when the RTE
dataset was the target. We therefore focus on RTE results in the main text. Figure 4 shows the results
of intermediate-task training of BERT-base with RTE as the target task and the other GLUE datasets
as donor tasks, using Fisher merging, isotropic merging, or standard gradient-based training. Notably,
performing gradient-based intermediate-task training hurts on some datasets, whereas merging always
helps. Fisher merging gets comparable or better performance than isotropic merging with the largest
gap observed when using MNLI as the intermediate task. On the other hand, merging performs worse
than standard gradient-based training when using MNLI as the donor task.

Exploring new paths for transfer Given this performance gap, we were interested to see whether
merging could provide an additional boost on top of gradient-based intermediate-task training. We
therefore performed Fisher merging on a BERT-base model that was first fine-tuned on MNLI and
then fine-tuned on RTE. A diagram of this setup is shown in fig. 1, right. This procedure does not
have a direct analog in traditional gradient-based, and as we will show later, performing multi-stage
gradient-based intermediate-task training generally harms results.

We consider Fisher merging the intermediate-task trained RTE model with all GLUE tasks and show
the results in fig. 5. Fisher merging provides a boost over gradient-based intermediate-task training
for all tasks. Interestingly, a boost is still conferred when merging with an MNLI-trained model,
suggesting that merging provides a complementary path for transferring capabilities across models.

Scaling to RoBERTa-large Seeing that merging can provide a boost on top of intermediate-task
training, we explored whether this boost could still be obtained for a stronger model than BERT-
base. We therefore applied the same procedure to a RoBERTa-large RTE model that had been

7

fine-tuned from an MNLI intermediate checkpoint. Our donor models were the original RoBERTa-
large checkpoint (i.e., not fine-tuned on MNLI) fine-tuned on MRPC, RTE, STS-B, and SST-2. We
additionally ran a sequential gradient-based fine-tuning baseline where we started with the MNLI
checkpoint, fine-tuned on the donor task, and then fine-tuned on the target task.

The results are shown in fig. 6. We find merging provides a boost in performance even on the more
performant RoBERTa model. The largest boost of 2.2 points came from Fisher merging with another
RTE checkpoint, which is reminiscent of using merging for ensembling. Notably, including an
additional intermediate task in gradient-based training significantly harmed performance compared
to performing intermediate-task training on MNLI alone. We hypothesize this is related to the
phenomena of catastrophic forgetting [17], where the model’s capabilities on MNLI are forgotten as
it is trained on the next intermediate task. Nevertheless, this illustrates model merging’s ability to
sidestep the issue of catastrophic forgetting and enable exploration of novel transfer strategies.

Costs We had previously noted that our merging procedure could potentially be substantially more
efficient than standard gradient-based fine-tuning. To measure this claim concretely, we computed the
FLOPs required for fine-tuning and merging an RTE checkpoint based on the heuristics described in
Kaplan et al. [26]. Fine-tuning BERT-base on RTE for 10 epochs would require about 5.5e14 FLOPs.
Our merging procedures require computing the merged checkpoint (eq. (4)) and then evaluating it
on the validation set with Fisher merging also requiring the estimation of the Fisher matrix (eq. (2))
beforehand. These steps require about 4.0e8, 2.0e12, and 9.1e13 FLOPs respectively, resulting in
a roughly 6⇥ lower total cost compared to fine-tuning for Fisher merging and 275⇥ lower cost for
isotropic merging. We note that the Fisher matrix only needs to be computed once and can be reused
for subsequent merges, which amortizes the most expensive step in Fisher merging.

To explore methods for further reducing costs, we experimented with using fewer examples to estimate
the Fisher. Specifically, we experimented with intermediate-task Fisher merging of BERT-base with
MNLI as the donor task and RTE as the target task. The results are shown in table A4. While using
the full training set to estimate the Fisher produced the best performance (73.4%), using only 256
examples to estimate the Fisher only produced a mild degradation in accuracy (72.7%) and still
outperformed the isotropic merging baseline. This suggests that computing the Fisher over fewer
examples could further reduce computational costs without sacrificing a great deal of accuracy.

3.4 Domain Adaptation

We now turn our attention to the “domain-adaptive pre-training” (DAPT) approach for domain
adaptation advocated by Gururangan et al. [19], which is methodologically similar to intermediate-
task training. DAPT consists of additional pre-training of an original general-purpose pre-trained
checkpoint on domain-specific unlabeled data. We explore the benefits of merging in an experimental
setup similar to Gururangan et al. [19]. We focus on the biomedical (BIOMED) and computer science
(CS) domains because they correspond to the classification tasks that saw the largest gains from
domain-adaptive pre-training in [19]. Namely, we experimented with the CHEMPROT [30] relation
classification task on the BIOMED domain. On the CS domain, we used the citation intent task of
ACL-ARC [25] and the relation classification task of SCIERC [35]. Following Gururangan et al.
[19], we report macro-F1 for ACL-ARC and SCIERC, and we report micro-F1 for CHEMPROT. We
used RoBERTa-base [33] as our baseline model. Appendix D includes full details of the pre-training,
fine-tuning, and merging procedures used.

We present our results in table 1. Merging provided the largest boost on ACL-ARC, and outperformed
traditional fine-tuning in this setting. We only observed a minor improvement in performance on
CHEMPROT and SCIERC. We note that our boosts from gradient-based fine-tuning were smaller
than reported in [19], which was likely because we were only able to train on public data and we
applied domain-adaptive pre-training for fewer steps. However, our results are consistent in the sense
that ACL-ARC received the largest boost and CHEMPROT received the smallest boost.

4 Related Work

Like our work, elastic weight consolidation (EWC) [28] uses the Laplace approximation to the
posterior over model parameters to create a regularizer to prevent catastrophic forgetting in the
context of continual learning. While their framework supports the use of posteriors from multiple

8

Figure 6: Validation accuracy on RTE using the
setup of fig. 5, but with RoBERTa-large instead
of BERT-base. “Standard training” fine-tunes on
MNLI, then the donor task, then RTE. Dashed
line denotes MNLI intermediate-task training.

Method ChemProt ACL-ARC SciERC

Unmerged 82.70.3 70.53.2 81.00.4
Fisher 83.10.4 73.21.7 81.30.5
Isotropic 82.80.4 72.52.3 81.70.5
Fine-tuned 82.50.1 71.53.0 81.61.0

Table 1: Domain adaptation results. “Unmerged”
refers to checkpoints fine-tuned from RoBERTa-
base. “Fisher” and “Isotropic” refer to the result
of merging those checkpoints with the domain-
adaptive pre-trained (DAPT) checkpoint. “Fine-
tuned” refers to models fine-tuned from the
DAPT checkpoint. Subscripts provide the stan-
dard deviation across five trials.

models as well, they restrict such models to be previous checkpoints of a continually trained model.
EWC keeps the model from losing previously acquired knowledge while merging provides a means
of directly adding new knowledge to a model.

Some other existing procedures such as distillation [22] and ensembling [42] can also be thought of
as combining or transferring knowledge between neural networks. However, those methods represent
knowledge solely through the output of models. The knowledge contained within the parameters of a
network will necessarily be greater than the knowledge contained in its output [2]. Hence, methods
that directly combine model parameters such as merging have the potential to be more powerful
than those methods. Furthermore, our merging procedure has an efficient and closed-form solution
(eq. (4)) while distillation requires iterative gradient descent-based training.

Isotropic checkpoint averaging is used by federated learning [39] and Polyak averaging [49]. However,
the checkpoints merged by those methods can be thought of coming from the same training run of
single model. We believe we are the first to demonstrate cross-task transfer coming from checkpoint
averaging and to explore it in the context of transfer learning. However, adapting ideas from federated
learning such as [32, 63] could provide a fruitful avenue for future model merging research.

Natural gradient descent refers to an optimization procedure that uses KL-divergence of model
predictions as a distance measure rather than the Euclidean distance in parameter space employed by
regular gradient descent [3]. It does this by performing gradient descent on a Riemannian manifold
with the Fisher information matrix as its metric [45]. In practice, this amounts to using the Fisher as a
preconditioner during gradient descent. Some work on natural gradient descent may prove relevant for
model merging such as using Kronecker-factorized Fisher matrices as an alternative to the diagonal
approximation employed in this paper [37, 18, 38]. More broadly, in the field of information geometry
the Fisher information matrix plays the role of a metric on a Riemannian manifold [40]. This has led
to explorations of model averaging using tools from information geometry, e.g. [5, 41, 50].

5 Conclusion

In this paper, we introduced Fisher merging, a way to combine the capabilities of different models by
computing a weighted average of their parameters. Fisher merging is motivated by a novel perspective
of parameter averaging as maximizing the joint likelihood of model posteriors. Through extensive
experiments, we demonstrated that using the Fisher information as a weight on the contribution
of each parameter outperforms using an unweighted average. Furthermore, we showed that Fisher
merging attains comparable and sometimes better performance than traditional gradient-based transfer
learning methods at significantly lower costs. Our experiments also demonstrated various merging
strategies that would be onerous with traditional gradient-based training, which opens up new avenues
for transferring capabilities across models. In future work, we plan to investigate different methods
for approximating the Fisher information and model posteriors as well as more esoteric combinations
of models.

9

Acknowledgments and Disclosure of Funding

This work was supported by the NSF CAREER award under Grant No. 2145822.

References
[1] Achille, A., Lam, M., Tewari, R., Ravichandran, A., Maji, S., Fowlkes, C. C., Soatto, S., and

Perona, P. Task2vec: Task embedding for meta-learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 6430–6439, 2019.

[2] Achille, A., Paolini, G., and Soatto, S. Where is the information in a deep neural network?
arXiv preprint arXiv:1905.12213, 2019.

[3] Amari, S. Neural learning in structured parameter spaces-natural riemannian gradient. Advances
in neural information processing systems, pp. 127–133, 1997.

[4] Barbu, A., Mayo, D., Alverio, J., Luo, W., Wang, C., Gutfreund, D., Tenenbaum, J., and Katz,
B. Objectnet: A large-scale bias-controlled dataset for pushing the limits of object recognition
models. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

[5] Bartels, L. M. Specification uncertainty and model averaging. American Journal of Political
Science, 1997.

[6] Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. A large annotated corpus for learning
natural language inference. arXiv preprint arXiv:1508.05326, 2015.

[7] Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., and Specia, L. Semeval-2017 task 1: Se-
mantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055, 2017.

[8] Dagan, I., Glickman, O., and Magnini, B. The pascal recognising textual entailment challenge.
In Machine Learning Challenges Workshop, pp. 177–190. Springer, 2005.

[9] Dai, A. M. and Le, Q. V. Semi-supervised sequence learning. In Advances in neural information
processing systems, 2015.

[10] Daxberger, E., Kristiadi, A., Immer, A., Eschenhagen, R., Bauer, M., and Hennig, P. Laplace
redux-effortless bayesian deep learning. Advances in Neural Information Processing Systems
(NeurIPS), 2021.

[11] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. ImageNet: A large-scale hierar-
chical image database. In 2009 IEEE conference on computer vision and pattern recognition,
2009.

[12] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[13] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[14] Dolan, W. B. and Brockett, C. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005.

[15] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929,
2020.

[16] Fisher, R. A. On the mathematical foundations of theoretical statistics. Philosophical Trans-
actions of the Royal Society of London. Series A, Containing Papers of a Mathematical or
Physical Character, 222(594-604):309–368, 1922.

10

[17] Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and Bengio, Y. An empirical investigation
of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211,
2013.

[18] Grosse, R. and Martens, J. A kronecker-factored approximate fisher matrix for convolution
layers. In International Conference on Machine Learning, pp. 573–582. PMLR, 2016.

[19] Gururangan, S., Marasović, A., Swayamdipta, S., Lo, K., Beltagy, I., Downey, D., and Smith,
N. A. Don’t stop pretraining: Adapt language models to domains and tasks. arXiv preprint
arXiv:2004.10964, 2020.

[20] Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F., Dorundo, E., Desai, R., Zhu, T.,
Parajuli, S., Guo, M., Song, D., Steinhardt, J., and Gilmer, J. The many faces of robustness: A
critical analysis of out-of-distribution generalization. International Conference on Computer
Vision (ICCV), 2021.

[21] Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., and Song, D. Natural adversarial examples.
Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[22] Hinton, G., Vinyals, O., and Dean, J. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

[23] Iyer, S., Dandekar, N., and Csernai, K. First quora dataset release: Question pairs, 2017. URL
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs.

[24] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., and
Darrell, T. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the
22nd ACM international conference on Multimedia, 2014.

[25] Jurgens, D., Kumar, S., Hoover, R., McFarland, D., and Jurafsky, D. Measuring the evolution of
a scientific field through citation frames. Transactions of the Association for Computational
Linguistics, 6:391–406, 2018.

[26] Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Rad-
ford, A., Wu, J., and Amodei, D. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

[27] Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[28] Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan, K.,
Quan, J., Ramalho, T., Grabska-Barwinska, A., et al. Overcoming catastrophic forgetting in
neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

[29] Kocijan, V., Cretu, A.-M., Camburu, O.-M., Yordanov, Y., and Lukasiewicz, T. A surprisingly
robust trick for winograd schema challenge. arXiv preprint arXiv:1905.06290, 2019.

[30] Kringelum, J., Kjaerulff, S. K., Brunak, S., Lund, O., Oprea, T. I., and Taboureau, O. Chemprot-
3.0: a global chemical biology diseases mapping. Database, 2016, 2016.

[31] Levesque, H., Davis, E., and Morgenstern, L. The winograd schema challenge. In Thirteenth
International Conference on the Principles of Knowledge Representation and Reasoning, 2012.

[32] Liu, X., Masana, M., Herranz, L., Van de Weijer, J., Lopez, A. M., and Bagdanov, A. D. Rotate
your networks: Better weight consolidation and less catastrophic forgetting. In 2018 24th
International Conference on Pattern Recognition (ICPR), pp. 2262–2268. IEEE, 2018.

[33] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L.,
and Stoyanov, V. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[34] Lo, K., Wang, L. L., Neumann, M., Kinney, R., and Weld, D. S. S2orc: The semantic scholar
open research corpus. arXiv preprint arXiv:1911.02782, 2019.

11

https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs

[35] Luan, Y., He, L., Ostendorf, M., and Hajishirzi, H. Multi-task identification of entities, relations,
and coreference for scientific knowledge graph construction. arXiv preprint arXiv:1808.09602,
2018.

[36] MacKay, D. J. A practical bayesian framework for backpropagation networks. Neural computa-
tion, 4(3):448–472, 1992.

[37] Martens, J. and Grosse, R. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

[38] Martens, J., Ba, J., and Johnson, M. Kronecker-factored curvature approximations for recurrent
neural networks. In International Conference on Learning Representations, 2018.

[39] McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. Communication-
efficient learning of deep networks from decentralized data. In Artificial Intelligence and
Statistics, pp. 1273–1282. PMLR, 2017.

[40] Nielsen, F. An elementary introduction to information geometry. Entropy, 22(10):1100, 2020.

[41] Nielsen, F. and Nock, R. Sided and symmetrized bregman centroids. IEEE transactions on
Information Theory, 55(6), 2009.

[42] Opitz, D. W. and Shavlik, J. W. Actively searching for an effective neural network ensemble.
Connection Science, 8(3-4):337–354, 1996.

[43] Oquab, M., Bottou, L., Laptev, I., and Sivic, J. Learning and transferring mid-level image
representations using convolutional neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 2014.

[44] Pan, S. J. and Yang, Q. A survey on transfer learning. IEEE Transactions on knowledge and
data engineering, 22(10):1345–1359, 2009.

[45] Pascanu, R. and Bengio, Y. Revisiting natural gradient for deep networks. arXiv preprint
arXiv:1301.3584, 2013.

[46] Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L.
Deep contextualized word representations. arXiv preprint arXiv:1802.05365, 2018.

[47] Phang, J., Févry, T., and Bowman, S. R. Sentence encoders on stilts: Supplementary training on
intermediate labeled-data tasks. arXiv preprint arXiv:1811.01088, 2018.

[48] Phang, J., Htut, P. M., Pruksachatkun, Y., Liu, H., Vania, C., Kann, K., Calixto, I., and Bowman,
S. R. English intermediate-task training improves zero-shot cross-lingual transfer too. arXiv
preprint arXiv:2005.13013, 2020.

[49] Polyak, B. T. and Juditsky, A. B. Acceleration of stochastic approximation by averaging. SIAM
journal on control and optimization, 30(4):838–855, 1992.

[50] Posada, D. and Buckley, T. R. Model selection and model averaging in phylogenetics: ad-
vantages of akaike information criterion and bayesian approaches over likelihood ratio tests.
Systematic biology, 53(5), 2004.

[51] Pruksachatkun, Y., Phang, J., Liu, H., Htut, P. M., Zhang, X., Pang, R. Y., Vania, C., Kann,
K., and Bowman, S. R. Intermediate-task transfer learning with pretrained models for natural
language understanding: When and why does it work? arXiv preprint arXiv:2005.00628, 2020.

[52] Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. Improving language understanding
by generative pre-training, 2018.

[53] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and
Liu, P. J. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv
preprint arXiv:1910.10683, 2019.

[54] Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. Squad: 100,000+ questions for machine
comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

12

[55] Rajpurkar, P., Jia, R., and Liang, P. Know what you don’t know: Unanswerable questions for
squad. arXiv preprint arXiv:1806.03822, 2018.

[56] Recht, B., Roelofs, R., Schmidt, L., and Shankar, V. Do ImageNet classifiers generalize to
ImageNet? In International Conference on Machine Learning (ICML), 2019.

[57] Ruder, S., Peters, M. E., Swayamdipta, S., and Wolf, T. Transfer learning in natural language
processing. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Tutorials, pp. 15–18, 2019.

[58] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., et al. ImageNet large scale visual recognition challenge. International
journal of computer vision, 2015.

[59] Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A. Y., and Potts, C. Recursive
deep models for semantic compositionality over a sentiment treebank. In Proceedings of the
2013 conference on empirical methods in natural language processing, pp. 1631–1642, 2013.

[60] Vu, T., Wang, T., Munkhdalai, T., Sordoni, A., Trischler, A., Mattarella-Micke, A., Maji,
S., and Iyyer, M. Exploring and predicting transferability across nlp tasks. arXiv preprint
arXiv:2005.00770, 2020.

[61] Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. R. Glue: A multi-
task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

[62] Wang, H., Ge, S., Lipton, Z., and Xing, E. P. Learning robust global representations by
penalizing local predictive power. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

[63] Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., and Khazaeni, Y. Federated learning
with matched averaging. arXiv preprint arXiv:2002.06440, 2020.

[64] Warstadt, A., Singh, A., and Bowman, S. R. Neural network acceptability judgments. Transac-
tions of the Association for Computational Linguistics, 7:625–641, 2019.

[65] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T.,
Louf, R., Funtowicz, M., et al. Huggingface’s transformers: State-of-the-art natural language
processing. arXiv preprint arXiv:1910.03771, 2019.

[66] Wortsman, M., Ilharco, G., Li, M., Kim, J. W., Hajishirzi, H., Farhadi, A., Namkoong, H., and
Schmidt, L. Robust fine-tuning of zero-shot models. arXiv preprint arXiv:2109.01903, 2021.

[67] Wortsman, M., Ilharco, G., Gadre, S. Y., Roelofs, R., Gontijo-Lopes, R., Morcos, A. S.,
Namkoong, H., Farhadi, A., Carmon, Y., Kornblith, S., and Schmidt, L. Model soups: averaging
weights of multiple fine-tuned models improves accuracy without increasing inference time.
arXiv preprint arXiv:2203.05482, 2022.

[68] Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How transferable are features in deep neural
networks? In Advances in neural information processing systems, 2014.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Settings where merging under-
performs traditional gradient-based training are covered in section 3 and also discuss
caveats of our method in section 2.4.

(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

13

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] We state that

merging assumes a shared architecture and initialization at various points in the paper
and explain why in section 2.4.

(b) Did you include complete proofs of all theoretical results? [N/A] No theoretical
advances were sufficiently complex to warrant proof.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] Code is
provided in the supplementary. All datasets are public and are downloadable with our
code.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See appendix C and appendix D

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See tables A1 to A3.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No] All datasets are widely-used (hundreds

or thousands of citations) public datasets.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We include code in the supplemental.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

	Introduction
	Weighted Parameter Averaging for Model Merging
	Isotropic merging
	Per-model weights
	Laplace Approximation
	Fisher Merging

	Experiments
	Ensembling
	Robust Fine-Tuning
	Intermediate-task training
	Domain Adaptation

	Related Work
	Conclusion
	Checkpoints used for Ensembling
	Individual dataset results for robust fine-tuning
	GLUE Fine-tuning Details
	Domain-Adaptive Pre-training Details
	Full results for intermediate-task training
	Using fewer examples to estimate the Fisher

