
A Non-monotone Submodular Maximization: Literature Review

Maximization of non-monotone submodular functions subject to a cardinality constraint is a special
case of the maximization of such functions subject to matroid constraints, and many works [17, 21,
26, 50, 71] on the problem considered this more general setting, culminating in 0.385-approximation
due to Buchbinder and Feldman [9]. As the above algorithms (especially the ones obtaining better
approximation ratios) are quite involved and non-combinatorial, Buchbinder et al. [10] proposed the
random greedy algorithm, which is a combinatorial algorithm achieving an approximation ratio of
1/e ≈ 0.367 using O(nk) queries (matching the state-of-the-art approximation ratio for general
matroid constraints at the time). Furthermore, by derandomizing random greedy, Buchbinder and
Feldman [8] obtained a 1/e-approximation deterministic algorithm. To improve the computational
speed, Buchbinder et al. [12] proposed an (1/e− ε)-approximation random sampling algorithm that
makes O( n

ε2 log
1
ε ) queries, and another algorithm that achieves the same approximation guarantee

using O(nε ln
k
ε ) queries when k = O(

√
n). Sakaue [63] showed that, with slight modification, a

well-known algorithm called “stochastic greedy” [12, 55] can achieve almost 1/4-approximation in
expectation in linear time. Additionally, based on the idea of interlacing two greedy procedures,

Kuhnle [45] developed a (1/4 − ε)-approximation deterministic algorithm requiring O(nε log
k
ε )

queries.

The state-of-the-art algorithm for maximizing a non-monotone submodular function subject to
a knapsack constraint is 0.385-approximation that can be obtained by combining the algorithm
of Buchbinder and Feldman [9] for optimization of the multilinear extension with the rounding
scheme of Kulik et al. [48]. Unfortunately, this state-of-the-art algorithm is randomized and quite
slow, which has motivated works on deterministic and fast algorithms for the problem. Mirza-

soleiman et al. [56] proposed a deterministic (1/10− ε)-approximation algorithm using O(n
2 logn
ε )

queries; and the currently best deterministic algorithm is due to Han et al. [30], who achieve an

approximation ratio of (1/6 − ε) via O(nε log
k
ε ) queries. If one is willing to allow randomization,

then a 1/(3 + 2
√
2)-approximation algorithm was propose by Amanatidis et al. [2], which requires

O(nε log
n
ε ) queries. This was later improved by Han et al. [30], who showed that an approximation

ratio of 1/4 is obtainable with O(nε log
k
ε ) queries.

B Estimating the Value of an Optimal Solution

In this section our objective is to design an algorithm (given as Algorithm 4) that given an instance
of SMK produces a value Γ that obeys Γ ≤ f(OPT ) ≤ s · Γ for some constant s ≥ 1, where OPT
is an arbitrary optimal solution.

Algorithm 4: ESTIMATING f(OPT )

1 Let S ← ∅.
2 for every element u ∈ N do

3 if
f(u|S)
c(u) ≥ f(S) then

4 Add u to S.

5 return f(S)/4.

Clearly Algorithm 4 can be implemented to work in O(n) time. Therefore, we concentrate on
bounding the quality of the estimate it produces. The following observation shows that Algorithm 4

does not underestimate OPT by more than a constant factor. Let S̃ denote the final value of the set
S in Algorithm 4.

Observation B.1. f(S̃) ≥ f(OPT )/2.

Proof. Consider an arbitrary element u ∈ OPT \ S̃. The fact that u was never added to S by Algo-
rithm 4 implies that at the time in which u was processed by Algorithm 4 the following inequality
held

f(u | S)
c(u)

≤ f(S) .
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Since elements are only ever added to S, by the monotonicity and submodularity of f , the last
inequality implies

f(u | S̃)
c(u)

≤ f(S̃) .

Using the last inequality, we now get

f(OPT | S̃) ≤
∑

u∈OPT\S̃

f(u | S̃) ≤ f(S̃) ·
∑

u∈OPT\S̃

c(u) = f(S̃) · c(OPT \ S̃) ≤ f(S̃) ,

where the first inequality follows from the submodularity of f , and the last inequality holds because

OPT is a feasible solution and OPT \ S̃ is a subset of it. Plugging the definition of f(OPT | S̃)
into the last inequality, and rearranging, yields

f(S̃) ≥ f(OPT ∪ S̃)

2
≥ f(OPT )

2
,

where the second inequality follows from the monotonicity of f .

To prove that Algorithm 4 also does not over estimate f(OPT ), we need to define some additional
notation. From this point on, it will be convenient to assume that the elements of N are ordered in
the order in which Algorithm 4 considers them. Given a set T ⊆ N , let T≥1 be the minimal suffix
of T (according to the above order) whose value according to c is at least 1 (unless c(T ) < 1, in

which case T≥1 = T ). Clearly f(S̃≥1) ≤ f(S̃) by the monotonicity of f . However, it turns out that

f(S̃≥1) is never much smaller than f(S̃).

Lemma B.2. f(S̃≥1) ≥ f(S̃)/2.

Proof. If c(S̃≥1) < 1, then S̃≥1 = S̃, which makes the lemma trivial. Therefore, we may assume

in the rest of the proof that c(S̃≥1) ≥ 1.

The fact that an element u ∈ S̃≥1 was added to S by Algorithm 4 implies that if, we denote by Su

the set S immediately before u was processed, then we have the following inequality.

f(u | Su)

c(u)
≥ f(Su) .

Since S̃≥1 is a suffix of S̃, this inequality implies

f(S̃≥1 | S̃ \ S̃≥1) =
∑

u∈S̃≥1

f(u | Su) ≥
∑

u∈S̃≥1

c(u) ·f(Su) ≥ c(S̃≥1) ·f(S̃ \ S̃≥1) ≥ f(S̃ \ S̃≥1) ,

where the penultimate inequality holds by the monotonicity of f , and the last inequality follows

from our assumption that c(S̃≥1) ≥ 1.

Plugging the definition of f(S̃≥1 | S̃ \ S̃≥1) into the last inequality gives

f(S̃) ≥ 2f(S̃ \ S̃≥1) ≥ 2[f(S̃)− f(S̃≥1)] ,

where the second inequality holds by the submodularity (and non-negativity) of f . The lemma now
follows by rearranging the last inequality.

Corollary B.3. f(S̃) ≤ 4 · f(OPT ).

Proof. Since S̃≥1 is the minimal suffix of S̃ whose size according to c is at least 1, if we denote by

u the first element of this suffix, then both {u} and S̃≥1 − u are feasible solutions. Hence,

f(OPT ) ≥ max{f({u}), f(S̃≥1 − u)} ≥ f({u}) + f(S̃≥1 − u)

2
≥ f(S̃≥1)

2
≥ f(S̃)

4
,

where the penultimate inequality follows from the submodularity of f , and the last inequality follows
from Lemma B.2. The corollary now follows by multiplying the last inequality by 4.

Recall now that the output of Algorithm 4 is f(S̃)/4. Therefore, Observation B.1 and Corollary B.3
imply together the following proposition.

Proposition B.4. Algorithm 4 runs in O(n) time, and if we denote by Γ its output, then Γ ≤
f(OPT ) ≤ 8 · Γ.
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C Omitted Proofs of Section 3

Observation 3.3. The time complexity of Algorithm 1 is O(nε−1 logα).

Proof. Recall that Algorithm 4 runs in O(n) time by Proposition B.4, and observe that every itera-
tion of the outer loop of Algorithm 1 runs in O(n) time. Therefore, to prove the lemma, it suffices to
argue that the number of iterations made by this outer loop is O(ε−1 logα). Formally, the number
of iterations made by this loop is upper bounded by

2 + log(1−ε)−1

(

8α · Γ
(1− ε)Γ/e

)

= 3− ln(8α · e)
ln(1− ε)

≤ 3 +
4 + lnα

ε
= O(ε−1 logα) .

Lemma 3.4. For every set T ⊆ N , if maxu∈T c(u) ≤ 1 − c(Sℓ), then f(Sℓ) ≥ f(T ) − c(T )
e ·

f(OPT ). In particular, maxu∈OPT c(u) ≤ 1− c(Sℓ) implies f(Sℓ) ≥ (1− 1/e) · f(OPT ).

Proof. The second part of the lemma follows from the first part by plugging T = OPT since OPT ,
as a feasible set, obeys c(OPT ) ≤ 1. Therefore, we concentrate below on proving the first part of
the lemma.

Since elements are only ever added by Algorithm 1 to its solution set Sk, the condition of the lemma
implies that whenever an element u ∈ T \ Sℓ was considered on Line 5 of Algorithm 1, its density
was too low compared to the value of the threshold τ at time. In particular, this is true for the
threshold τ ≤ Γ/e in the last iteration of the outer loop of Algorithm 1, and therefore,

f(u | Su)

c(u)
≤ Γ

e
∀ u ∈ T \ Sℓ ,

where Su represents here the set Sk immediately before u is processed by Algorithm 1 in the last
iteration of its outer loop.

By the submodularity of f , the last inequality holds also when Su is replaced with Sℓ, and therefore,

f(T ) ≤ f(T ∪ Sℓ) ≤ f(Sℓ) +
∑

u∈T\Sℓ

f(u | Sℓ) ≤ f(Sℓ) +
Γ

e
· c(T \ Sℓ) ≤ f(Sℓ) +

c(T ) · Γ
e

,

where the first inequality follows from the monotonicity of f , and the second inequality follows
from the submodularity of f . The lemma now follows from the last inequality by recalling that
Proposition B.4 guarantees Γ ≤ f(OPT ).

Lemma 3.5. For every set ∅ 6= T ⊆ N and integer 0 ≤ h < ℓ, if maxu∈T c(u) ≤ 1− c(Sh), then
f(Sh+1)−f(Sh)

c(uh+1)
≥ min{(1− ε) · f(T |Sh)

c(T ) , α · f(OPT )}.

Proof. Let τh+1 be the value of τ when Algorithm 1 selects uh+1. If τh+1 = 8α ·Γ ≥ α · f(OPT ),
then the lemma follows immediately from the condition used on Line 5 of the algorithm. Therefore,
we assume below that τh+1 < 8α · Γ, which implies that no element of T \ Sh was added to the
solution of Algorithm 1 when the threshold τ was equal to (1−ε)−1τh+1. Therefore, since elements
are only ever added by Algorithm 1 to its solution, the submodularity of f guarantees

f(u | Sh)

c(u)
<

τh+1

1− ε
∀ u ∈ T \ Sh .

We now observe that the lemma follows immediately from the monotonicity of f when T ⊆ Sh.
Therefore, we need to consider only the case of T 6⊆ Sh, and in this case the previous inequality
implies

f(Sh+1)− f(Sh)

c(uh+1)
=

f(uh+1 | Sh)

c(uh+1)
≥ τh+1 =

∑

u∈T\Sh
c(u) · τh+1

c(T \ Sh)

> (1− ε) ·
∑

u∈T\Sh
f(u | Sh)

c(T \ Sh)
≥ (1− ε) · f(T | Sh)

c(T )
,

where the last inequality follows from the submodularity of f .
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Theorem 3.6. If we choose α = 1, then, for every ε ∈ (0, 1), Algorithm 1 runs in O(n/ε) time and
guarantees (1− 1/e− ε)-approximation for SMC.

Proof. The time complexity of Algorithm 1 was already proved in Observation 3.3. Therefore, we
concentrate here on analyzing the approximation guarantee of this algorithm. Let k be the maximum
cardinality allowed by the cardinality constraint (i.e., c(u) = 1/k for every u ∈ N ). We need to
consider two cases depending on the value of ℓ. If ℓ < k, i.e., Algorithm 1 outputs a solution that is
smaller than the maximum cardinality allowed, then the condition minu∈OPT c(u) ≤ 1 − c(Sℓ) of
Lemma 3.4 holds (because c(Sℓ) = ℓ/k ≤ 1− 1/k), and therefore,

f(Sℓ) ≥ (1− 1/e) · f(OPT ) .

Assume now that ℓ = k. In this case we need to use Lemma 3.5. Since the condition of this lemma
holds for every integer 0 ≤ h < ℓ and T = OPT (we may assume that OPT 6= ∅ because
otherwise Algorithm 1 is clearly optimal), the lemma implies, for every such k,

f(Sh+1)− f(Sh)

c(uh+1)
≥ min

{

(1− ε) · f(OPT | Sh)

c(OPT )
, f(OPT )

}

≥ (1− ε) · f(OPT | Sh) ,

where the second inequality holds because the feasibility of OPT implies c(OPT ) ≤ 1, and the
submodularity and non-negativity of f imply f(OPT | Sh) ≤ f(OPT | ∅) ≤ f(OPT ). Rear-
ranging the last inequality yields

[1− (1− ε) · c(uh+1)] · [f(OPT )− f(Sh)]

≥ [1− (1− ε) · c(uh+1)] · f(OPT ) + (1− ε) · c(uh+1) · f(OPT ∪ Sh)− f(Sh+1) ,

which by the monotonicity of f , the observation that f(Sh) ≤ f(OPT ) because Sh is a feasible
solution, and the inequality 1− x ≤ e−x (which holds for every x ∈ R) implies

e−(1−ε)·c(uk+1) · [f(OPT )− f(Sk)] ≥ f(OPT )− f(Sk+1) .

Finally, by combining the last inequality for all integers 0 ≤ h < ℓ, we get

f(OPT )− f(Sℓ) ≤ e−(1−ε)·
∑

0≤h<ℓ c(uh+1) · [f(OPT )− f(S0)]

= e−(1−ε) · [f(OPT )− f(S0)] ≤ e−(1−ε) · f(OPT ) ≤ (e−1 + ε) · f(OPT ) ,

where the equality holds since
∑

0≤h<ℓ c(uh+1) = c(Sℓ) = 1 by the definition of the case we

consider, and the penultimate inequality follows from the non-negativity of f . The theorem now
follows by rearranging the last inequality.

Observation 3.7. Algorithm 2 runs in O(nε−1 log ε−1) time.

Proof. Algorithm 1 runs in O(nε−1 log ε−1) time by Observation 3.3. Additionally, every iteration
of the loop of Algorithm 2 runs in O(n+ ℓ) = O(n) time, where the equality holds because the fact
that some element is added to the solution of Algorithm 1 whenever the index k increases guarantees
that ℓ is at most n. Therefore, to prove the observation it suffices to show that the loop of Algorithm 2
iterates only O(ε−1 log ε−1) times. Formally, the number of iterations of this loop is upper bounded
by

1 + log1+ε ε
−1 = 1 +

ln ε−1

ln(1 + ε)
≤ 1 +

ln ε−1

ε/2
= O(ε−1 ln ε−1) .

Lemma 3.8. If c(r) ≥ 1− ε, then f(Sℓ) ≥ (1/2− ε) · f(OPT ).

Proof. If f({r}) ≥ 1/2 · f(OPT ), then the lemma follows immediately since {r} is one of the sets
considered for the output of Algorithm 2 on Line 8. Therefore, we may assume that f({r}) ≤ 1/2 ·
f(OPT ), which implies f(OPT − r) ≥ f(OPT )− f({r}) ≥ 1/2 · f(OPT ) by the submodularity
of f . Since c(OPT ) ≤ 1 because OPT is a feasible set, we get that OPT − r is a set with a lot of
value taking a very small part of the budget allowed (specifically, c(OPT − r) = c(OPT )− c(r) ≤
1 − (1 − ε) = ε). Below we show that the existence of such a set implies that f(Sℓ) is large. We
also assume below f(Sℓ) ≤ f(OPT − r) because otherwise the lemma follows immediately since
f(OPT − r) ≥ 1/2 · f(OPT ).
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Consider first the case in which c(Sℓ) ≤ 1 − ε. Since maxu∈OPT−r c(u) ≤ c(OPT − r) ≤ ε ≤
1− c(Sℓ) in this case, Lemma 3.4 gives us immediately, for T = OPT − r,

f(Sℓ) ≥ f(OPT−r)− c(OPT − r)

e
·f(OPT ) ≥ f(OPT )

2
− ε · f(OPT )

e
≥ (1/2−ε)·f(OPT ) .

It remains to consider the case of c(Sℓ) ≥ 1−ε. Let h̄ be the minimal h such that c(Sh) ≥ 1−ε. For
every integer 0 ≤ h < h̄, we have maxu∈OPT−r ≤ c(OPT − r) ≤ ε ≤ 1− c(Sh), and therefore,
applying Lemma 3.5 with T = OPT − r yields

f(Sh+1)− f(Sh)

c(uh+1)
≥ min

{

(1− ε) · f(OPT − r | Sh)

c(OPT − r)
, ε−1 · f(OPT )

}

≥ 1− ε

ε
· f(OPT − r | Sh) ,

where the second inequality holds because c(OPT − r) ≤ ε, and the monotonicity, submodularity
and non-negativity of f imply f(OPT − r | Sh) ≤ f(OPT | Sh) ≤ f(OPT | ∅) ≤ f(OPT ).
Rearranging the last inequality yields

[

1− 1− ε

ε
· c(uh+1)

]

· [f(OPT − r)− f(Sh)]

≥
[

1− 1− ε

ε
· c(uh+1)

]

· f(OPT − r) +
1− ε

ε
· c(uh+1) · f((OPT − r) ∪ Sh)− f(Sh+1) ,

which by the monotonicity of f , our assumption that f(Sh) ≤ f(Sℓ) ≤ f(OPT − r) and the
inequality 1− x ≤ e−x (which holds for every x ∈ R) implies

e−ε−1(1−ε)·c(uh+1) · [f(OPT − r)− f(Sh)] ≥ f(OPT − r)− f(Sh+1) .

Finally, by combining the last inequality for all integers 0 ≤ h < h̄, we get

f(OPT − r)− f(Sh̄) ≤ e−ε−1(1−ε)·
∑

0≤h<h̄ c(uh+1) · [f(OPT − r)− f(S0)]

≤ e−ε−1(1−ε)2 · [f(OPT − r)− f(S0)]

≤ e−ε−1(1−ε)2 · f(OPT − r) ≤ 2ε · f(OPT − r) ,

where the second inequality holds since
∑

0≤h<h̄ c(uh+1) = c(Sh̄) ≥ 1 − ε by the definition of h̄
and the penultimate inequality follows from the non-negativity of f .

Rearranging the last inequality, we now get, using the monotonicity of f ,

f(Sℓ) ≥ f(Sh̄) ≥ (1− 2ε) · f(OPT − r) ≥ (1/2− ε) · f(OPT ) .

Lemma 3.9. If c(r) ≤ 1− ε, then Inequality (1) implies f(Sℓ) ≥ (1/2− ε) · f(OPT ).

Proof. Let ir be the maximal integer such that ε(1 + ε)ir ≤ 1 − c(r). Since we assume that
c(r) ≤ 1 − ε, ir is non-negative. On the other hand, we also have ir ≤ log1+ε ε

−1 because

otherwise ε(1 + ε)ir > 1 ≥ 1− c(r). Therefore, the set S(ir) is well-defined, and one can observe
that

f(S(ir)+r) = f(S(ir))+f(r | S(ir)) ≤ f(S(ir))+f(u(ir) | S(ir)) = f(S(ir)+) < 1/2·f(OPT ) ,
(2)

where the first inequality follows from the way in which Algorithm 2 selects u(ir) because

c(S(ir)) ≤ ε(1 + ε)ir ≤ 1− c(r), and the second inequality follows from Inequality (1).

Let hr be the index for which Shr
= S(ir). If hr = ℓ, then f(Sℓ) ≥ (1 − 1/e) · f(OPT )

by Lemma 3.4 (for T = OPT ) because maxu∈OPT c(u) = c(r) ≤ 1 − c(S(ir)) = 1 − c(Sℓ).
Therefore, we may assume hr < ℓ in the rest of this proof. In particular, this implies that for every
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0 ≤ h ≤ hr, by plugging T = OPT − r into Lemma 3.5, we get

f(Sh+1)− f(Sh)

c(uh+1)
≥ min

{

(1− ε) · f(OPT − r | Sh)

c(OPT − r)
, ε−1 · f(OPT )

}

≥ min

{

(1− ε) · f(OPT | Sh + r)

c(OPT − r)
, ε−1 · f(OPT )

}

≥ min

{

(1− ε) · f(OPT )− f(Shr
+ r)

c(OPT − r)
, ε−1 · f(OPT )

}

≥ (1− ε) · f(OPT )− f(Shr
+ r)

1− c(r)
,

where the second inequality follows from the submoduarity of f ; the third inequality follows from
f ’s monotonicity; and the last inequality holds since f(Shr

+ r) ≥ 0, and max{c(OPT − r), ε} ≤
1− c(r) by the condition of the lemma and the fact that OPT is a feasible solution. Plugging now

Inequality (2) into the last inequality (and recalling that Shr
= S(ir)) yields

f(Sh+1)− f(Sh)

c(uh+1)
≥ (1− ε) ·

1/2 · f(OPT )

1− c(r)
.

Summing up the last inequality for all integers 0 ≤ h ≤ hr now gives

f(Shr+1)− f(S0) ≥
hr
∑

h=0

[f(Sh+1)− f(Sh)] ≥ (1− ε) ·
1/2 · f(OPT )

1− c(r)
·

hr
∑

h=0

c(uh+1)

= (1− ε) ·
1/2 · f(OPT )

1− c(r)
· c(Shr+1) ≥ (1− ε) ·

1/2 · f(OPT )

1− c(r)
· ε(1 + ε)ir

≥ (1− ε) ·
1/2 · f(OPT )

1− c(r)
· 1− c(r)

1 + ε
≥ (1/2− ε) · f(OPT ) ,

where the third inequality holds since the definition of S(ir) implies that hr is the maximal index for
which c(Shr

) ≤ ε(1 + ε)ir , and the penultimate inequality follows from the definition of ir.

D Inapproximability of SMC for Constant k Values

In this section we prove Theorem 4.1, which we repeat here for convinience.

Theorem 4.1. Any (possibly randomized) algorithm guaranteeing α-approximation (α ∈ (0, 1])
for Submodular Maximization subject to a Cardinality Constraint (SMC) must use
Ω(αn/k) value oracle queries. In particular, this implies that the algorithm must make Ω(n) value
oracle queries when α and k are constants.

Proof. Let t = 2k/α, and for every element u ∈ N , consider the set function fu : N → R≥0

defined, for every set S ⊆ N , as

fu(S) =

{

min{t, |S|} if u 6∈ S ,

t if u ∈ S .

Below we consider a distribution D over instances of SMC obtained by choosing u uniformly at
random out of N , and we show that this distribution is hard for every deterministic algorithm that
uses o(αn/k) value oracle queries, which implies the theorem by Yao’s principle.

Let ALG be any deterministic algorithm using o(αn/k) value oracle queries, and let S1, S2, . . . ,
Sℓ be the sets on which ALG queries the value oracle of the objective function when this function
is chosen to be min{t, |S|}. We assume without loss of generality that Sℓ is the output set of
ALG. Let E be the event that u does not belong to any of sets S1, S2, . . . , Sℓ that are of size
less than t. Since ALG is deterministic, whenever the event E happens, ALG makes the same set
of value oracle queries when given either min{t, |S|} or fu as the objective function, and outputs
fu(Sℓ) = min{t, |S|} ≤ |Sℓ| ≤ k in both cases. Moreover, even when the event E does not happen,
ALG still outputs a set of value at most t since fu never returns larger value. Finally, observe that
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the probability of the event E is at least 1 − ℓt/n, and therefore, when the input instance is drawn
from the distribution D, the expected value of the output of ALG is at most

ℓt

n
· t+

(

1− ℓt

n

)

· k = ℓt2

n
+ k − ℓtk

n
≤ ℓt2

n
+ k .

It remains to observe that the optimal solution for every instance in the support of the distribution D
is {u}, whose value according to fu is t. Therefore, the approximation ratio of ALG with respect to
an instance of SMC drawn from D is no better than

ℓt2/n+ k

t
=

ℓt

n
+

k

t
=
2ℓk

αn
+

α

2
= o(1) +

α

2
,

where the last equality holds since ALG makes o(αn/k) queries, and ℓ is the number of queries that
it makes given a particular input. Hence, D is an hard distribution in the sense that ALG is not an
α-approximation algorithm against an instance of SMC drawn from D.

E Inapproximability of SMC and Large k Values

We prove in Section E.1 a restricted version of Theorem 4.2 that applies only to deterministic algo-
rithms. Then, Section E.2 extends the proof to randomized algorithms, which implies Theorem 4.2.

E.1 Inapproximability of SMC for Deterministic Algorithms and Large k Values

We begin this section by considering the following problem, termed Set-Identification, which
has a rational parameter β ∈ (0, 1). An algorithm for this problem has access to a ground set N
of size n and a non-empty collection C of subsets of N of size k = βn (formally, C ⊆ {S ⊆ N |
|S| = k}). Each instance of Set-Identification also includes some hidden set C∗ ∈ C, which
the algorithm can access only via an oracle that answers the following type of queries: given a set
S ⊆ N , the oracle returns the size of S ∩ C∗. The objective of the algorithm is to output a set S of
size k whose intersection with C∗ is as large as possible.

The majority of this section is devoted to proving the following proposition regarding deterministic
algorithms for Set-Identification. We then show that this proposition implies a version of
Theorem 4.2 for deterministic algorithms.

Proposition E.1. For every α ∈ (β, 1] and set C, any deterministic α-approximation algorithm

for Set-Identification must make
(k+1)·[2(α−β)2+ln β+(β−1−1) ln(1−β)−k−1 lnn]+ln |C|

ln(k+1) oracle

queries.

Let ALG be an arbitrary deterministic algorithm for Set-Identification. To prove Proposi-
tion E.1, we need to design an adversary that selects a hidden set C∗ that is “bad” for ALG. Our
adversary does not immediately commit to a particular set C∗. Instead, it maintains a list L of
candidate sets that are consistent with all the oracle queries that ALG has performed so far. In
other words, the set L originally includes all the sets of C. Then, whenever ALG queries the oracle
on some set S, the adversary returns some answer a and eliminates from L every set C for which
|S ∩ C| 6= a. To fully define the adversary, we still need to explain how it chooses the answer a for
the oracle query. As the adversary wishes to keep the algorithm in the dark for as long as possible,
it chooses the answer a to be the one that reduces the list L by the least amount.

Let Li be the list L after the adversary answers i queries.

Observation E.2. For every integer i ≥ 0, |Li| ≥ |C|/(k + 1)i.

Proof. Whenever the adversary has to answer a query regarding some set S, the answer correspond-
ing to each set in the list L is some number in {0, 1, . . . , k}. Therefore, at least one of these answers
is guaranteed to reduce the list only by a factor of |{0, 1, . . . , k}| = k+1. Thus, after i queries have
been answered, the size of the list L reduces by at most a factor of (k + 1)i. To complete the proof
of the observation, we recall that the original size of L is |C|.

Once ALG terminates and outputs some set S of size k, our adversary has to decide what set of L is
the “real” hidden set C∗, which it does by simply choosing the set C∗ ∈ Lwith the least intersection
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with S. If the list L is still large at this point, then the adversary is guaranteed to be able to find in it
a set with a low intersection with S. The following lemma quantifies this observation.

Lemma E.3. For every set S ⊆ N of size k, a non-empty subset L ⊆ C must include a set C ∈ L
such that |S ∩ C| < βk + k

√

(k−1 lnn− lnβ − (β−1 − 1) ln(1− β)− 1
k+1 ln |L|)/2.

Proof. Let h = βk+k ·
√

(k−1 lnn− lnβ − (β−1 − 1) ln(1− β)− 1
k+1 ln |L|)/2. We would like

to upper bound the probability of a uniformly random subset R ⊆ N of size k to intersect at least h
elements of S. Since the expected size of the intersection of R and S is

|R| · |S|
|N | =

k2

n
= βk ,

and the distribution of R is hyper-geometric, we get by Inequality (10) in [65] (developed based on
the works of [14, 35]) that

Pr[|R∩S| ≥ h] = Pr[|R∩S| ≥ E[|R∩S|]+h−βk] ≤ e−2((h−βk)/k)2·k = e−2(h−βk)2/k . (3)

By Stirling’s approximation, the total number of subsets of N whose size is k is
(

n

k

)

=
n!

k! · (n− k)!
≤ en(n/e)n

e(k/e)k · e((n− k)/e)n−k

=
n

eβk · (1− β)n−k
≤ n

βk(1− β)n−k
.

Since Inequality (3) implies that at most a fraction of e−2(h−βk)2/k out of these sets has intersection
with S of size at least h, we get that the number of subsets ofN of size k whose intersection with S
is of size at least h can be upper bounded by

e−2(h−βk)2/k ·
(

n

k

)

≤ ne−2(h−βk)2/k

βk(1− β)n−k

=
ne
−(lnn−k ln β−(n−k)·ln(1−β)−

k
k+1 ln |L|)

βk(1− β)n−k
= |L| k

k+1 < |L| .

The last bound implies that |L| must include at least one set whose intersection with S is less than
h.

We are now ready to prove Proposition E.1.

Proof of Proposition E.1. By Observation E.2 and Lemma E.3, if ALG makes i oracle queries, our
adversary will be able to choose a hidden set C∗ such that the intersection between the output set S
of ALG and C∗ is less than

βk + k
√

(k−1 lnn− lnβ − (β−1 − 1) ln(1− β)− 1
k+1 ln |Li|)/2

≤ βk + k ·
√

1

2
·
(

k−1 lnn− lnβ − (β−1 − 1) ln(1− β) +
i · ln(k + 1)− ln |C|

k + 1

)

.

Since the optimal solution for Set-Identification is the set C∗ itself, whose intersection with
itself is k, the above inequality implies that the approximation ratio of ALG is worse than

β +

√

1

2
·
(

k−1 lnn− lnβ − (β−1 − 1) ln(1− β) +
i · ln(k + 1)− ln |C|

k + 1

)

.

If the approximation ratio of ALG is at least α, then we get the inequality

α ≤ β +

√

1

2
·
(

k−1 lnn− lnβ − (β−1 − 1) ln(1− β) +
i · ln(k + 1)− ln |C|

k + 1

)

,

which implies that the number i of oracle queries made by ALG obeys

i ≥ (k + 1) · [2(α− β)2 + lnβ + (β−1 − 1) ln(1− β)− k−1 lnn] + ln |C|
ln(k + 1)

.
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Using Proposition E.1, we can now prove the promised version of Theorem 4.2 for deterministic
algorithms.

Corollary E.4. For any rational constant β ∈ (0, 1) and (not necessarily constant) ε = ω(
√

logn
n ),

every deterministic algorithm for SMC that guarantees an approximation ratio of β+ ε for instances

obeying k = βn must use Ω( ε2n
logn ) value oracle queries. Moreover, this is true even when the

objective function f of SMC is guaranteed to be a linear function.

Proof. Let C be the set of all subsets ofN of size βn, and let k = βn. By Stirling’s approximation,
the size of the set C is at least
(

n

βn

)

≥ e(n/e)n

eβn(βn/e)βn · e(1− β)n((1− β)n/e)(1−β)n
=

1

en2ββn+1 · (1− β)(1−β)n+1
.

Therefore, the number of oracle queries made by any deterministic (β+ε)-approximation algorithm
for Set-Identification with the above choice of parameters C and k is at least

(βn+ 1) · [2ε2 + lnβ + (β−1 − 1) ln(1− β)− (βn)−1 lnn] + ln |C|
ln(βn+ 1)

≥ (βn+ 1) · [2ε2 + lnβ + (β−1 − 1) ln(1− β)− (βn)−1 lnn]

ln(βn+ 1)

− 1 + 2 lnn+ (βn+ 1) lnβ + ((1− β)n+ 1) ln(1− β)

ln(βn+ 1)

=
(βn+ 1) · [2ε2 − (βn)−1 lnn]− 1− 2 lnn+ (β−1 − 2) ln(1− β)

ln(βn+ 1)

=
ε2 ·Θ(n)−Θ(log n)

Θ(log n)
= Ω

(

ε2n

log n

)

,

where the last equality holds since we assume ε = ω(
√

logn
n ).

Assume now that we have an algorithm ALG for SMC with the guarantee stated in the corollary. We
construct an algorithm ALG′ for Set-Identification that consists of the following three steps.

1. Construct an instance of SMC by setting k = βn and f(S) = |S ∩ C∗|.
2. Since f is a linear function, we can use ALG to find a set S ⊆ N of size at most βn such

that f(S) ≥ (β + ε) · f(C∗) = (β + ε)|C∗|.
3. Return any subset S′ ⊆ N of size βn that includes S. Clearly, |S′ ∩ C∗| ≥ |S ∩ C∗| =

f(S) ≥ (β + ε)|C∗|.
The algorithm ALG′ obtains (β + ε)-approximation for Set-Identification, and therefore, by

the above discussion, it must useΩ( ε2n
logn ) queries to the oracle of Set-Identification. However,

since ALG′ queries the oracle of Set-Identification only once for every time that ALG queries

the value oracle of f , we get that ALG must be using Ω( ε2n
logn ) value oracle queries.

E.2 Inapproximability of SMC for Randomized Algorithms and Large k Values

In this section we extend the inapproximability result from Section E.2 to randomized algorithms.
To do that, we start by proving the following version of Proposition E.1 for randomized algorithms.

Proposition E.5. For every α ∈ (β, 1] and set C, any (possibly randomized) α-approximation
algorithm for Set-Identification must make

(k + 1) · [(α− β)2/2 + lnβ + (β−1 − 1) ln(1− β)− k−1 lnn] + ln(|C|) + ln( α−β
2−α−β )

ln(k + 1)

oracle queries in the worst case.3

3One can also prove in a similar way a version of this proposition bounding the expected number of oracle
queries.
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Proof. Let ALG be an algorithm of the kind described in the proposition, assume that the set C∗

is chosen uniformly at random out of C and let SR be the output set of ALG. Using a Markov like
argument, we get that since ALG has an approximation guarantee of α and |SR ∩ C∗| is always at
most |C∗| = k,

Pr

[

|SR ∩ C∗| ≥ (α+ β)k

2

]

≥ α− β

2− α− β
,

where the probability is over both the random choice of C∗ and the randomness of ALG itself.

Recall now that ALG, as a randomized algorithm, can be viewed as a distribution over deterministic
algorithms. This means that there must be at least one (deterministic) algorithm ALGD in the
support of this distribution such that its output set SD obeys

Pr

[

|SD ∩ C∗| ≥ (α+ β)k

2

]

≥ Pr

[

|SR ∩ C∗| ≥ (α+ β)k

2

]

≥ α− β

2− α− β
.

However, since ALGD is a deterministic algorithm, SD is a function of the set C∗ alone, which

implies that there exists a subset C′ ⊆ C of size at least α−β
2−α−β · |C| such that the algorithm ALGD

guarantees α+β
2 -approximation whenever C∗ ∈ C′.

By Proposition E.1, the number of oracle queries used by ALGD must be at least

(k + 1) · [2(α+β
2 − β)2 + lnβ + (β−1 − 1) ln(1− β)− k−1 lnn] + ln |C′|

ln(k + 1)

≥
(k + 1) · [(α− β)2/2 + lnβ + (β−1 − 1) ln(1− β)− k−1 lnn] + ln |C|+ ln( α−β

2−α−β )

ln(k + 1)
.

The proposition now follows since the number of oracle queries made by ALGD is a lower bound
on the number of oracle queries made by ALG in the worst case.

Corollary E.6. For any rational constant β ∈ (0, 1) and (not necessarily constant) ε = ω(
√

logn
n ),

every (possibly randomized) algorithm for SMC that guarantees an approximation ratio of β + ε for

instances obeying k = βn must use Ω( ε2n
logn ) value oracle queries. Moreover, this is true even when

the objective function f of SMC is guaranteed to be a linear function.

Proof. Let C be the set of all subsets of N of size βn, and let k = βn. As was proved in the proof
of Corollary E.4,

(

n

βn

)

≥ 1

en2ββn+1 · (1− β)(1−β)n+1
,

and therefore, by Proposition E.5, the number of oracle queries made by any (β+ ε)-approximation
algorithm for Set-Identification with the above choice of parameters C and k is at least

(βn+ 1) · [ε2/2 + lnβ + (β−1 − 1) ln(1− β)− (βn)−1 lnn] + ln |C|+ ln( ε
2−2β−ε )

ln(βn+ 1)

≥ (βn+ 1) · [ε2/2 + lnβ + (β−1 − 1) ln(1− β)− (βn)−1 lnn] + ln(ε/2)

ln(βn+ 1)

− 1 + 2 lnn+ (βn+ 1) lnβ + ((1− β)n+ 1) ln(1− β)

ln(βn+ 1)

=
(βn+ 1) · [ε2/2− (βn)−1 lnn]− 1− 2 lnn+ (β−1 − 2) ln(1− β) + ln(ε/2)

ln(βn+ 1)

=
ε2 ·Θ(n)−Θ(log n)−Θ(log ε−1)

Θ(log n)
= Ω

(

ε2n

log n

)

,

where the last equality holds since we assume ε = ω(
√

logn
n ).

The rest of the proof is completely identical to the corresponding part in the proof of Corollary E.4
(up to the need to add some expectations signs), and therefore, we omit it.
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Theorem 4.2 is the special case of Corollary E.6 in which ε is a positive constant, and therefore,

obeys ε = ω(
√

logn
n ).

F Inapproximability for USM

In this section we reuse the machinery developed in Section E.2 to get a query complexity lower
bound for USM and prove Theorem 4.3. Before getting to the proof, we recall that Table 2 gives
the context of this theorem, and shows that this theorem nearly completes our understanding of the
minimum query complexity necessary to obtain various approximation ratios for USM.

We assume throughout the section the following parameters for Set-Identification. The pa-
rameter k is set to be n/2, and C is the collection of all subsets of N of size k. One can verify that
the proof of Corollary E.6 also implies the following lemma (as a special case for β = 1/2).

Lemma F.1. Given the above parameters, for any ε = ω(
√

logn
n ), every (possibly randomized)

(1/2+ ε)-approximation algorithm for Set-Identification must use Ω( ε2n
logn ) oracle queries.

Our next objective is to show a reduction from Set-Identification to USM. Let ALG be a
(1/4 + ε)-approximation algorithm for USM. Using ALG, one can design the algorithm for Set-
Identification (with the parameters we assume) that appears as Algorithm 5. It is important to
observe that the value oracle of the set function f defined on Line 1 of the algorithm can be imple-
mented using one query to the oracle of Set-Identification. Furthermore, f is the cut-function
of a directed graph, and therefore, it is non-negative and submodular. This allows Algorithm 5 to use
ALG to construct a set T of large expected value. The set T is then replaced by it complementN \T
if this increases the value of f(T ). Naturally, this replacement can only increase the expected value
of the set T , and also gives it some deterministic properties that we need. Algorithm 5 completes
by converting the set T into an output set of size n/2 in one of two ways. If T is too small, then a
uniformly random subset of N \ T of the right size is added to it. Otherwise, if T is too large, then
a uniformly random subset of it of the right size is picked.

Algorithm 5: Reduction from Set-Identification to USM

1 Define a function f : 2N → R≥0 by f(S) = |S ∩ C∗| · (n2 − |S \ C∗|).
2 Use ALG to find a set T that such that E[f(T )] ≥ (1/4+ ε) ·maxS⊆N f(S) = (1/4+ ε) · n2/4.
3 if f(T ) < f(N \ T ) then Update T ← N \ T .
4 if |T | ≤ n/2 then
5 Pick a uniformly at random subset R of N \ T of size n/2− |T |.
6 return T ∪R.

7 else
8 Pick a uniformly at random subset R of T of size n/2.
9 return R.

Let T and T̃ denote the values of the set T before and after Line 3 of Algorithm 5. The following

observation states the properties of the set T̃ that we need below.

Observation F.2. The set T̃ obeys

• E[f(T̃ )] ≥ (1/4+ ε) · n2/4.

• |T̃ ∩ C∗| ≥ |T̃ \ C∗|.

Proof. Line 3 of Algorithm 5 guarantees that f(T̃ ) ≥ f(T ), which implies

E[f(T̃ )] ≥ E[f(T )] ≥ (1/4+ ε) · n2/4 .

To see that the second part of the observation holds as well, note that Line 3 also guarantees f(T̃ ) ≥
f(N \ T̃ ), which, by the definition of f , implies

|T̃ ∩ C∗|(n2 − |T̃ \ C∗|) ≥ |T̃ \ C∗|(n2 − |T̃ ∩ C∗|) ,
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Rearranging this inequality now gives

n
2 |T̃ ∩ C∗| ≥ n

2 |T̃ \ C∗| ,
and dividing this inequality by n/2 yields the required inequality.

One consequence of the last lemma is given by the next corollary.

Corollary F.3. E[|T̃ ∩ C∗| − |T̃ \ C∗|] ≥ nε/2.

Proof. Observe that

n
2 · E[|T̃ ∩ C∗| − |T̃ \ C∗|] ≥ E[(|T̃ ∩ C∗| − |T̃ \ C∗|)(n2 − |T̃ \ C∗|)]

≥ E[(|T̃ ∩ C∗| − |T̃ \ C∗|)(n2 − |T̃ \ C∗|)] + E[|T̃ \ C∗|(n2 − |T̃ \ C∗|)]−
n2

16

= E[|T̃ ∩ C∗|(n2 − |T̃ \ C∗|)]−
n2

16
= E[f(T̃ )]− n2

16
≥ n2ε

4
,

where the first inequality holds since Observation F.2 guarantees that |T̃ ∩C∗| − |T̃ \C∗| is always
non-negative, and the last inequality follows also from Observation F.2. The corollary now follows
by dividing this inequality by n/2.

We are now ready to prove the following lemma, which analyzes the performance guarantee of
Algorithm 5.

Lemma F.4. If T ′ is the output set of Algorithm 5, then E[|T ′ ∩C∗|] ≥ (1/2+ ε/4) · n/2, where the
expectation is over the randomness of ALG and Algorithm 5.

Proof. Let us begin this proof by fixing the set T̃ . In other words, until we unfix this set, all the
expectations we use are assumed to be only over the randomness of Lines 5 and 8 of Algorithm 5.
Whenever Line 8 of the algorithm is used, we have

E[|T ′ ∩ C∗|] = n/2

|T̃ |
· |T̃ ∩ C∗| = n

4
·
(

1 +
2|T̃ ∩ C∗| − |T̃ |

|T̃ |

)

=
n

4
·
(

1 +
|T̃ ∩ C∗| − |T̃ \ C∗|

|T̃ |

)

≥ n

4
·
(

1 +
|T̃ ∩ C∗| − |T̃ \ C∗|

n

)

,

where the inequality holds since Observation F.2 guarantees that |T̃ ∩C∗|−|T̃ \C∗| ≥ 0. Similarly,
whenever Line 5 of Algorithm 5 is used, we get

E[|T ′ ∩ C∗|] = |T̃ ∩ C∗|+ E[|R ∩ C∗|] = |T̃ ∩ C∗|+
n
2 − |T̃ |
|N \ T̃ |

· |C∗ \ T̃ |

= |T̃ ∩ C∗|+
n
2 − |T̃ |
n− |T̃ |

· (n2 − |T̃ ∩ C∗|) =
n
2 |T̃ ∩ C∗|+ n

2 (
n
2 − |T̃ |)

n− |T̃ |

=
n

4
·
(

1 +
|T̃ ∩ C∗| − |T̃ \ C∗|

n− |T̃ |

)

≥ n

4
·
(

1 +
|T̃ ∩ C∗| − |T̃ \ C∗|

n

)

.

Therefore, even if we unfix T̃ , and take expectation also over the randomness of this set, we still get
by the law of total expectation that

E[|T ′ ∩ C∗|] ≥ n

4
·
(

1 +
E[|T̃ ∩ C∗| − |T̃ \ C∗|]

n

)

≥ n

4
·
(

1 +
nε/2

n

)

=
n

2
·
(

1

2
+

ε

4

)

,

where the second inequality follows from Corollary F.3.

We can now prove Theorem 4.3, which we repeat here for convenience.
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Theorem 4.3. For any constant ε > 0, any algorithm for Unconstrained Submodular Maximi-

zation that guarantees an approximation ratio of 1/4+ ε must use Ω( n
logn ) value oracle queries.

Proof. By Lemma F.1, Algorithm 5 must use at least Ω( ε2n
logn ) queries to the oracle of Set-

Identification. However, aside from the queries used by ALG, Algorithm 5 queries this or-

acle only a constant number of times, which implies that ALG must be using Ω( ε2n
logn ) such queries.

Recall now that ALG, as an algorithm for USM, queries the oracle of Set-Identification only by
querying the value oracle of f , and every query to this value oracle results in a single query to the or-

acle of Set-Identification. Therefore, ALG must be using Ω( ε2n
logn ) value oracle queries. This

completes the proof of the theorem since ALG was chosen as an arbitrary (1/4+ ε)-approximation
algorithm for USM.

G Solving Set-Identification using O(n/ log n) Oracle Queries

Recall that the inapproximability results proved in Section 4 (namely, Theorems 4.2 and 4.3) are
based on a reduction to a problem named Set-Identification (defined in Section E.1). In Sec-
tion E.2, we prove that any (possibly randomized) algorithm for Set-Identification must use
Ω(n/ log n) oracle queries to significantly improve over some “easy” approximation ratio. In this
section we show that this result is tight in the sense that O(n/ log n) oracle queries suffice to solve
Set-Identification exactly. The algorithm we use for this purpose is given as Algorithm 6.
This algorithm is not efficient in terms of its time complexity. Nevertheless, it shows that one cannot
prove an inapproximability result requiring ω(n/ log n) oracle queries for Set-Identification
based on information theoretic arguments only.

For simplicity, we assume in Algorithm 6 that the ground set N is simply the set [n]. Given this
assumption, we are able to base the algorithm on the following known lemma.

Lemma G.1 (Due to Lev and Yuster [53]). If q > (2 log2 3 + o(1)) n
logn , then there exists a binary

matrix Q ∈ {0, 1}q×n such that, for every vector s, the equation Q · x = s has at most one binary
solution x ∈ {0, 1}n.

Algorithm 6 begins by finding such a matrix Q (this can be done by brute-force enumeration since
we do not care about the time complexity). Then, the product Q · 1C∗ is calculated using q =
O(n/ log n) oracle queries, where 1C∗ is the characteristic vector of the set C∗ (i.e., a vector that
includes 1 in coordinate i if i ∈ C∗, and otherwise, includes 0 in this coordinate). Once Algorithm 6
has the product Q · 1C∗ , Lemma G.1 guarantees that it is possible to recover the vector 1C∗ itself,
which the algorithm can do, again, using brute-force.

Algorithm 6: Algorithm for Set-Identification

1 Let q = O(n/ log n) be a large enough value so that it obeys the requirement of Lemma G.1.

2 Let Q ∈ {0, 1}q×n be a binary matrix with the properties stated in Lemma G.1.
3 for j = 1 to q do

4 Let Qj be a set such that 1T
Qj

is equal to the j-th line of Q.

5 Let sj = |Qj ∩ C∗|. // Can be calculated using a single oracle query.

6 Let s be the vector whose j-th coordinate, for every integer 1 ≤ j ≤ q is sj . // Note that
s = Q · 1C∗.

7 Let x ∈ {0, 1}n be a solution for Q · x = s. // By Lemma G.1, x = 1C∗ is the sole
solution for this equation in {0, 1}n.

8 return the set whose characteristic vector is x.

H Proof of Theorem 5.1

In this section we prove Theorem 5.1. The rank of a set system M = (N , I) is defined as the
maximum size of an independent set in it; and an element u ∈ N is a self-loop of this system if {u}
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is not independent, which implies that u does not appear in any independent set of M. Below, we
denote by r the rank of the set systemM. We also make a few simplifying assumptions.

• We assume thatM does not include any self-loops or elements u ∈ N such that ci(u) > Bi

for some integer 1 ≤ i ≤ d. Any element violating these assumptions can be simply
discarded since it cannot belong to any feasible set.

• We assume that the sum
∑d

i=1 ci(u) is strictly positive for every element u ∈ N . Elements
violating this assumption can be added to any solution, and therefore, it suffices to solve
the problem without such elements, and then add them to the obtained solution at the every
end of the algorithm.

• We assume that Bi = 1 for every integer 1 ≤ i ≤ d. This can be guaranteed by scaling the
cost functions ci.

In Section H.1 we present and analyze a basic version of the algorithm that we use to prove The-
orem 5.1 (in Appendix I.1 we explain how to make this basic algorithm nearly-linear). The basic
version of our algorithm assumes access to an estimate ρ of the density of the small elements of an
optimal solution for the problem. In Section H.2 we explain how the dependence of the algorithm
on ρ can be dropped without increasing the time complexity of the algorithm by too much. Finally,
in Section H.3 we show how our algorithm can be used to derive the results stated in Theorem 5.1.

H.1 Basic Algorithm for SMKS

In this section we present and analyze a basic version algorithm of the algorithm that we use to
prove Theorem 5.1. This algorithm is given as Algorithm 3, and it gets two parameters. The first of
these parameters is an integer λ ≥ 1. Elements that have a value larger than λ−1 with respect to at
least one function ci are considered big elements, and are stored in the set B of the algorithm. The
other elements ofN are considered small elements. The algorithm never considers any solution that
includes both big and small elements. Instead, it creates one candidate solution SB from the big
elements, and one candidate solution from the small elements, and then outputs the better among
the two (technically, in some cases the algorithm outputs directly the candidate solution based on
the small elements without comparing it to SB). The candidate solution SB is constructed using
a procedure called BigElementsAlg that gets the set B as input and outputs a feasible set whose
value is at least α · f(OPT ∩B), where α is a some value in (0, 1] and OPT is an arbitrary optimal
solution. At this point we ignore the implementation of BigElementsAlg, and leave the value of α
unspecified. These gaps are filled in Section H.3.

Most of Algorithm 3 is devoted to constructing the candidate solution out of small elements, which
we refer to below as the “small elements solution”. In the construction of this solution, Algorithm 3
uses its second parameter, which is a value ρ ≥ 0 that intuitively should represent the density of
the small elements of OPT . The algorithm initializes the small elements solution to be empty,
and then iteratively adds to it the element with the largest marginal contribution among the small
elements that have two properties: (i) their addition to the solution does not make it dependent in
M, and (ii) their density (the ratio between their marginal contribution and cost according to the
linear constraints) is at least ρ. This process of growing the small elements solution can end in one
of two ways. One option is that the process ends because no additional elements can be added to
the solution (in other words, no element has the two properties stated above). In this case the better
among SB and the small elements solution obtained Sk is returned. The other way in which the
process of growing the small elements solution can end is when it starts violating at least one linear
constraint. When this happens, Algorithm 3 uses a procedure called SetExtract to get a subset of
the small elements solution that is feasible and also has a good value, and this subset is returned.

Let us now describe the procedure SetExtract, which appears as Algorithm 7. As explained above,
this procedure gets a set S of small elements that violates at least one of the linear constraints. Its
objective is to output a subset T of S that does not violate any linear constraint, but is not very
small in terms of the linear constraints. Since the set S passes by Algorithm 3 to SetExtract
contains only elements of density at least ρ, this implies that the output set T of SetExtract has
a significant value. Algorithm 7 does its job by constructing λ + 1 subsets T1, T2, . . . , Tλ+1 of S,
and then outputting the subset with the maximum size with respect to the linear constraint. The first
subset T1 is constructed by starting with the empty set, and then simply adding elements of S to
T1 one by one, in an arbitrary order, until some element u1 cannot be added because adding it will
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result in a set that violates some linear constraint. The algorithm then constructs the second subset
T2 in essentially the same way, but makes sure to include u1 in it by starting with the set {u1} and
then adding elements of S to T2 one by one in an arbitrary order, until some element u2 cannot be
added because adding it will result in a set that violates some linear constraint. The set T3 is then
constructed in the same way starting from the set {u1, u2}, and in general the set Tj is constructed
by starting from the set {u1, u2, . . . , uj−1} and then adding to it elements of S in an arbitrary order
until some element uj cannot be added because adding it will result in a set that violates some
linear constraint. Intuitively, this method of constructing the subsets T1, T2, . . . , Tλ+1 guarantees
that every element uj is rejected at most once from a subset due to the linear constraints.

Algorithm 7: SetExtract(λ, S)

1 for j = 1 to λ+ 1 do
2 Let Tj ← {u1, u2, . . . , uj−1}.
3 for every element u ∈ S do
4 if max1≤i≤d ci(Tj + u) ≤ 1 then Add u to Tj .
5 else Denote the element u by uj from this point on, and exit the loop of Line 3.

6 return the set maximizing
∑d

i=1 ci(T ) among all sets T ∈ {T1, T2, . . . , Tλ+1}.

A formal statement of the guarantee of SetExtract is given by the next lemma.

Lemma H.1. Assuming the input set S of SetExtract obeys

• ci(S) > 1 for some integer 1 ≤ i ≤ d and

• max1≤i≤d ci(u) ≤ λ−1 for every element u ∈ S,

then the output set T is a subset of S such that max1≤i≤d c(T ) ≤ 1, but
∑d

i=1 ci(T ) ≥
λ

λ+1 .

Proof. For any 1 ≤ j ≤ λ + 1, SetExtract initializes the set Tj to contain j − 1 ≤ λ elements,
which implies that immediately after this initialization the set Tj obeyed max1≤i≤d ci(Tj) ≤ 1
because of the second condition of the lemma. After the initialization of Tj , Algorithm 7 grows
it by adding to it only elements whose addition does not make max1≤i≤d ci(Tj) exceed 1. This
method of growth guarantees that the set Tj keeps obeying max1≤i≤d ci(Tj) ≤ 1 throughout the
execution of the algorithm. Therefore, since T is chosen as the set Tj for some integer j, it obeys
max1≤i≤d ci(T ) ≤ 1.

Consider any iteration of the loop on Line 1 of SetExtract. If this loop never reaches Line 5,
then we are guaranteed that all the elements of S are added to Tj , which contradicts the inequality
max1≤i≤d ci(T ) ≤ 1 that we have proved above because we are guaranteed that ci(S) > 1 for
some integer 1 ≤ i ≤ d. Therefore, SetExtract reaches Line 5 in every iteration of the outter
loop. Specifically, for any integer 1 ≤ j ≤ λ, since the algorithm reached Line 5 in iteration number
j of this loop, we must have max1≤i≤d ci(Tj + uj) > 1. Hence,

d
∑

i=1

ci(Tj) =

d
∑

i=1

[ci(Tj + uj)− ci(uj)] ≥ max
1≤i≤d

ci(Tj + uj)−
d
∑

i=1

ci(uj) > 1−
d
∑

i=1

ci(uj) .

Using this inequity and the observation that Tλ+1 includes all the elements u1, u2, . . . , uλ, we get

d
∑

i=1

ci(T ) = max
1≤j≤λ+1

d
∑

i=1

ci(Tj) ≥

∑λ+1
j=1

∑d
i=1 ci(Tj)

λ+ 1

≥

∑λ
j=1[1−

∑d
i=1 ci(uj)] +

∑λ
j=1

∑d
i=1 ci(uj)

λ+ 1
=

λ

λ+ 1
.

We now get to the analysis of the full Algorithm 3. Let ℓ be the final value of the variable k of
Algorithm 3.

Observation H.2. Algorithm 3 outputs a feasible set.
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Proof. One can observe that the set Sℓ is feasible because the conditions of Lines 4 and 7 of Algo-
rithm 3 guarantee that it assigns to Sk only feasible sets for any 0 ≤ k ≤ ℓ. Furthermore, SB is
feasible by the properties we assume for the procedure BigElementsAlg. Therefore, to prove the
observation it only remains to show that the output set T of SetExtract(λ, Sℓ+1) is feasible when
Line 8 is executed.

To see that this is indeed the case, we note that T is a subset of Sℓ+1, which is an independent
set of M, and therefore, T is also independent in M. Additionally, Lemma H.1 implies that
max1≤i≤d ci(T ) ≤ 1 because (i) we are guaranteed by the condition of Line 7 that there exists an
integer 1 ≤ d ≤ k such that ci(Sℓ+1) = ci(Sℓ + vℓ+1) > 1 when Line 8 is executed, and (ii) we are
guaranteed that maxu∈Sℓ+1

max1≤i≤d ci(u) ≤ λ−1 since Sℓ+1 contains only small elements.

Next, we analyze the time complexity of Algorithm 3.

Lemma H.3. Algorithm 3 has a time complexity of O(λnd + nr + TB), where TB is the time
complexity of BigElementsAlg.

Proof. The construction of the set B requires O(dn) time, and therefore, the time complexity re-
quired for the entire Algorithm 3 except for the loop starting on Line 4 is O(dn + TB). In the rest
of this proof we show that this loop requires O(λnd+ nr) time, which implies the lemma.

The loop starting on Line 4 of Algorithm 3 runs at most r times because the size of the set Sk grows
by at least one after every such iteration (and this set always remains feasible inM). To understand
the time complexity of the iterations of the last loop, we can observe that, assuming we maintain
the values ci(Sk), each such iteration takes O(n + d) time, with the exception of the following
operations.

• In Line 4 we need to calculate the sum
∑d

i=1 ci(u) for multiple elements u, which takes
O(d) time per element. However, we can pre-calculate this sum for all the elements of N
in O(nd) time.

• Executing SetExtract(λ, Sk+1) requires O(λ|Sk+1|d) = O(λrd) time. However, this
procedure is executed at most once by Algorithm 3.

Combining all the above, we get that the loop starting on Line 4 of Algorithm 3 requires only
O(nd+ λrd+ r(n+ d)) = O(λnd+ nr) time.

Our next objective is to analyze the approximation ratio of Algorithm 3. Let E be the event that
Algorithm 3 returns through Line 8. We begin the analysis of Algorithm 3 by looking separately at
the case in which the event E happens and at the case in which it does not happen. When the event
E happens, the output set of Algorithm 3 is the output set of SetExtract. This set contains only
high density elements and is large in terms of the linear constraints (by Lemma H.1), which provides
a lower bound on its value. The following lemma formalizes this argument.

Lemma H.4. If the event E happens, then Algorithm 3 returns a solution of value at least
λρ
λ+1 .

Proof. Let T be the output set of SetExtract(λ, Sℓ+1). We need to show that f(T ) ≥ λρ
λ+1 . Since

T is a subset of Sℓ+1 = {v1, v2, . . . , vℓ+1},

f(T ) =
∑

vk∈T

f(vk | T ∩ Sk−1) ≥
∑

vk∈T

f(vk | Sk−1)

≥
∑

vk∈T

(

ρ ·
d
∑

i=1

ci(vk)

)

= ρ ·
d
∑

i=1

ci(T ) ≥
λρ

λ+ 1
,

where the first inequality follows from the submodularity of f , the second inequality follows from
the definition of vk, and the last inequality follows from the guarantee of Lemma H.1.

Handling the case in which the event E does not happen is somewhat more involved. Towards this
goal, let us recursively define a set Ok for every 0 ≤ k ≤ ℓ. The base of the recursion is that for k = ℓ
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we define Oℓ = OPT \(B∪{u ∈ OPT | f(u | Sℓ) < ρ ·
∑d

i=1 ci(u)}). Assuming Ok+1 is already
defined for some 0 ≤ k < ℓ, we define Ok as follows. Let Dk = {u ∈ Ok+1 \ Sk | Sk + u ∈ I}. If
|Dk| ≤ p, we define Ok = Ok+1 \Dk. Otherwise, we let D′k be an arbitrary subset of Dk of size p,
and we define Ok = Ok+1 \D

′
k.

Lemma H.5. Assuming E does not happen, O0 = ∅.

Proof. We prove by a downward induction the stronger claim that |Ok| ≤ pk for every 0 ≤ k ≤ ℓ.
To prove this inequality for k = ℓ, we note that the fact that E did not happen and still Algorithm 3
terminated after ℓ iterations implies that no element of Oℓ \ Sℓ can be added to Sℓ without violating
independence in M. Therefore, Sℓ is a base of Sℓ ∪ Oℓ in this p-system, which implies |Oℓ| ≤
p|Sℓ| = pℓ by the definition of a p-system since Oℓ ⊆ OPT is independent inM.

Assume now that the inequality |Ok+1| ≤ p(k + 1) holds for some 0 ≤ k < ℓ, and let us prove
|Ok| ≤ pk. There are two cases to consider. If Ok = Ok+1 \ D

′
k, then |Ok| = |Ok+1| − |D

′
k| ≤

p(k + 1) − p = pk. Otherwise, if Ok = Ok+1 \ Dk, then, by the definition of Dk, there are no
elements of Ok \Sk that can be added to Sk without violating independence inM. Therefore, Sk is
a base of Sk∪Ok in this p-system, which implies |Ok| ≤ p|Sk| = pk by the definition of a p-system
since Ok ⊆ Oℓ ⊆ OPT is independent inM.

Corollary H.6. Assuming E does not happen, f(Sℓ) ≥
f(Oℓ∪Sℓ)

p+1 .

Proof. We prove by induction the stronger claim that, for every integer 0 ≤ k ≤ ℓ,

f(Sk) ≥
f(Ok ∪ Sk)

p+ 1
. (4)

For k = 0 this inequality follows from the non-negativity of f since S0 = O0 = ∅ by Lemma H.5.
Assume now that Inequality (4) holds for some value k− 1 obeying 0 ≤ k− 1 < ℓ, and let us prove
it for k.

Consider the set ∆k = Ok \ Ok−1. The construction of Ok−1 guarantees that every element of ∆k

can be added to Sk−1 without violating independence inM. Furthermore, since ∆k ⊆ Oℓ, every

element u ∈ ∆k also obeys f(u | Sk) ≥ f(u | Sℓ) ≥ ρ ·
∑d

i=1 ci(u). Therefore, every element of
∆k obeys the condition of the loop on Line 4 of Algorithm 3 in the k-th iteration of the loop, and by
the definition of vk, this implies

f(Sk) = f(Sk−1) + f(vk | Sk−1) ≥ f(Sk−1) +
f(vk | Sk−1) +

∑

u∈∆k
f(u | Sk−1)

|∆k|+ 1

≥
f(Ok−1 ∪ Sk−1)

p+ 1
+

f(∆k + vk | Sk−1)

|∆k|+ 1

≥
f(Ok−1 ∪ Sk−1)

p+ 1
+

f(∆k + vk | Sk−1)

p+ 1
≥

f(Ok ∪ Sk)

p+ 1
,

where the second inequality follows from the induction hypothesis and the submodularity of f , the
penultimate inequality follows from the monotonicity of f and the observation that the construction
of Ok−1 guarantees |∆k| ≤ p, and the last inequality follows again from the submodularity of f .

To use the last corollary, we need a lower bound on Oℓ ∪ Sℓ, which is given by the next lemma.

Lemma H.7. f(Oℓ ∪ Sℓ) ≥ f(OPT )− f(SB)/α− ρ ·
[

d− |OPT∩B|
λ

]

.

Proof. Observe that

f(Oℓ ∪ Sℓ) = f(OPT \ (B ∪ {u ∈ OPT | f(u | Sℓ) < ρ ·
∑d

i=1
ci(u)}) ∪ Sℓ) (5)

≥ f(OPT )− f(OPT ∩B)− f({u ∈ OPT \B | f(u | Sℓ) < ρ ·
∑d

i=1
ci(u)} | Sℓ)

≥ f(OPT )− f(SB)/α− f({u ∈ OPT \B | f(u | Sℓ) < ρ ·
∑d

i=1
ci(u)} | Sℓ) ,
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where the first inequality follows from the submodularity and monotonicity of f , and the second
inequality follows from the definition of SB . To lower bound the rightmost side of the last inequality,
we need to upper bound the last term in it.

f({u ∈ OPT \B | f(u | Sℓ) < ρ ·
∑d

i=1
ci(u)} | Sℓ) ≤

∑

u∈OPT\B

f(u|Sℓ)<ρ·
∑d

i=1
ci(u)

f(u | Sℓ)

≤ ρ ·
∑

u∈OPT\B

d
∑

i=1

ci(u) = ρ ·

[

∑

u∈OPT

d
∑

i=1

ci(u)−
∑

u∈OPT∩B

d
∑

i=1

ci(u)

]

≤ ρ ·

[

d−
|OPT ∩B|

λ

]

,

where the last inequality holds since OPT is a feasible set and every element of B is big. Plugging
the last inequality into Inequality (5) completes the proof of the lemma.

We are now ready to lower bound the value of the solution produced by Algorithm 3. While reading
the following proposition, it useful to keep in mind that |OPT ∩ B| ≤ d(λ − 1) because (i) the
feasibility of OPT implies ci(OPT ∩ B) ≤ 1 for every integer 1 ≤ i ≤ d and (ii) every element
u ∈ OPT ∩B obeys ci(u) > λ−1 for at least one such i.

Proposition H.8. Let

ρ∗ =
f(OPT )

(p+ 1 + α−1)/(1 + λ−1) + d− |OPT ∩B|/λ
.

If ρ ≥ ρ∗ and the event E happened, or ρ ≤ ρ∗ and the event E did not happen, then Algorithm 3
outputs a solution of value at least λρ∗/(λ+ 1). Furthermore, if ρ ∈ [(1− δ)ρ∗, ρ∗] for some value
δ ∈ (0, 1], then, regardless of the realization of the event E, Algorithm 3 outputs a solution of value
at least (1− δ)λρ∗/(λ+ 1). Finally, Algorithm 3 runs in O(λnd+ nr+ TB) time, where TB is the
time complexity of BigElementsAlg.

Proof. If the event E happened, then Lemma H.4 guarantees that the output of Algorithm 3 is of
value at least λρ/(λ + 1). Therefore, to complete the proof of the proposition, it suffices to show
that when the event E does not happen and ρ∗ ≥ ρ, the value of the output of the Algorithm 3 is at
least λρ∗/(λ+ 1); and the rest of this proof is devoted to showing that this is indeed the case.

In the last case, Corollary H.6 and Lemma H.7 imply together

f(Sℓ) ≥
f(OPT )− f(SB)/α− ρ ·

[

d− |OPT∩B|
λ

]

p+ 1
,

and therefore, the output set of Algorithm 3 is of value at least

max{f(Sℓ), f(SB)} ≥
(p+ 1) · f(Sℓ) + α−1 · f(SB)

p+ 1 + α−1
≥

f(OPT )− ρ(d− |OPT ∩B|/λ)

p+ 1 + α−1

≥
f(OPT )− ρ∗(d− |OPT ∩B|/λ)

p+ 1 + α−1
=

λρ∗

λ+ 1
.

In Appendix I.1 we show a modified version of Algorithm 3 that appears as Algorithm 9, accepts
a quality control parameter ε ∈ (0, 1/4) and employs the thresholding speedup technique due
to Badanidiyuru and Vondrák [4]. Formally, the properties of Algorithm 9 are given by the fol-
lowing variant of Proposition H.8.

Proposition H.9. Let

ρ∗ =
(1− ε)f(OPT )

((1 + ε)p+ 1 + α−1)/(1 + λ−1) + d− |OPT ∩B|/λ
.

There exists an event Ẽ such that, if ρ ≥ ρ∗ and the event Ẽ happened, or ρ ≤ ρ∗ and the event

Ẽ did not happen, then Algorithm 9 outputs a solution of value at least λρ∗/(λ+ 1). Furthermore,

if ρ ∈ [(1 − δ)ρ∗, ρ∗] for some value δ ∈ (0, 1], then, regardless of the realization of the event Ẽ,
Algorithm 9 outputs a solution of value at least (1 − δ)λρ∗/(λ + 1). Finally, Algorithm 9 runs in
O(λnd+nε−1(log n+log ε−1)+TB) time, where TB is the time complexity of BigElementsAlg.
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H.2 Guessing ρ

To use Algorithm 3 (or the faster Algorithm 9), one must supply a value for ρ. Furthermore, accord-
ing to Proposition H.8, it is best if the supplied value of ρ is close to ρ∗ (throughout this section,
unless stated explicitly otherwise, ρ∗ refers to its value as defined in Proposition H.8). In this section
we present an algorithm that manages to supply such a value for ρ using binary search. However,
before presenting this algorithm, we first need to find a relatively small range which is guaranteed
to include ρ∗. Let α be a known lower bound on the value of α.

Observation H.10. It always holds that

1

p+ 1 + α−1 + d
≤

ρ∗

maxu∈N f(u)
≤
2n

p
.

Proof. According to the definition of ρ∗,

ρ∗ =
f(OPT )

(p+ 1 + α−1)/(1 + λ−1) + d− |OPT ∩B|/λ

≤
n ·maxu∈N f({u})

p/(1 + λ−1) + d− |OPT ∩B|/λ
≤
2n ·maxu∈N f({u})

p
,

where the first inequity follows from the submodularity and non-negativity of f , and the second in-
equality follows from the upper bound on |OPT ∩B| given in the discussion before Proposition H.8
and the inequality λ ≥ 1.

Similarly,

ρ∗ =
f(OPT )

(p+ 1 + α−1)/(1 + λ−1) + d− |OPT ∩B|/λ

≥
maxu∈N f({u})

(p+ 1 + α−1)/(1 + λ−1) + d− |OPT ∩B|/λ
≥
maxu∈N f({u})

p+ 1 + α−1 + d
,

where the first inequality holds since every singleton is a feasible set by our assumptions, and the
second inequality holds since 1 + λ−1 ≥ 1 and |OPT ∩B|/λ ≥ 0.

We are now ready to present, as Algorithm 8, the algorithm that avoids the need to guess ρ. This
algorithm gets a quality control parameter δ ∈ (0, 1) in addition to the parameter λ of Algorithm 3.

In Algorithm 8 we use the shorthand ρ(i) , (1 + δ)i ·maxu∈N f({u})/(p+ 1 + α−1 + d).

Algorithm 8: ρ Guessing Algorithm(λ, δ)

1 Let i← 0, ī←
⌈

log1+δ
2n
p − log1+δ

1
p+1+α−1+d

⌉

and k ← 0.

2 while ī− i > 1 do
3 Update k ← k + 1.

4 Let ik ← ⌈(i+ ī)/2⌉.
5 Execute Algorithm 3 with ρ = ρ(ik). Let Ak denote the output set of this execution of

Algorithm 3, and let Ek denote the event E for the execution.
6 if the event Ek happened then Update i← ik.

7 else Update ī← ik.

8 Execute Algorithm 3 with ρ = ρ(i). Let A′ denote the output set of this execution of
Algorithm 9.

9 return the set maximizing f in {A′} ∪ {Ak′ | 1 ≤ k′ ≤ k}.

Proposition H.11. Algorithm 8 has a time complexity of O((λnd+nr+TB)·(log δ
−1+log(log n+

log(α−1 + d))) and outputs a set of value at least

(1− δ)λρ∗

λ+ 1
≥

(1− δ)λ · f(OPT )

λ(p+ 1 + α−1) + (λ+ 1)(d− |OPT ∩B|/λ)
.
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Proof. The number of iterations done by Algorithm 8 is at most

2 + log2

[

log1+δ

2n

p
− log1+δ

1

p+ 1 + α−1 + d

]

= 2 + log2[ln(2n)− ln(p) + ln(p+ 1 + α−1 + d)]− log2 ln(1 + δ)

≤ 3 + log2[lnn+ ln 2 + ln(2 + α−1 + d)] + log2 δ
−1

= O(log δ−1 + log(log n+ log(α−1 + d))) .

The time complexity guaranteed by the proposition now follows by multiplying the last expression
with the time complexity of Algorithm 3 given by Proposition H.8.

It remains to prove the approximation guarantee stated in the proposition. Assume towards a con-
tradiction that this approximation guarantee does not hold, and let us show that this results in a
contradiction. Our first objective is to show that this assumption implies that the inequality

ρ(i) ≤ ρ∗ ≤ ρ(̄i) (6)

holds throughout the execution of Algorithm 8. Immediately after the initialization of i and ī, this
inequality holds by Observation H.10. Assume now that Inequality (6) held before some iteration of
the loop of Algorithm 8, and let us explain why it holds also after the iteration. By Proposition H.8,
our assumption (that the approximation guarantee does not hold) implies that, in every iteration of
the loop of Algorithm 8, the event Ek happened if and only if ρ(ik) < ρ∗, and therefore, Algorithm 8
updates i in the iteration when ρ(ik) < ρ∗ and updates ī in the iteration when ρ(ik) ≥ ρ∗.

By Inequality (6) and the observation that ī− i ≤ 1 when Algorithm 8 terminates, we get

(1− δ)ρ∗ ≤ (1− δ)ρ(̄i) ≤ ρ(i) ≤ ρ∗ .

However, the last inequality implies f(A′) ≥ (1 − δ)λρ∗/(λ + 1) by Proposition H.8, and hence,
completes the proof.

In Appendix I.2 we give, as Algorithm 10, a modified version of Algorithm 8 that is based on
Algorithm 9 instead of Algorithm 3. We prove for this algorithm the following proposition.

Proposition H.12. Algorithm 10 has a time complexity of O((λnd+nε−1(log n+log ε−1)+TB) ·
(log δ−1 + log(log n+ log(α−1 + d))) and outputs a set of value at least

(1− δ)λρ∗

λ+ 1
≥

(1− δ − ε)λ · f(OPT )

λ((1 + ε)p+ 1 + α−1) + (λ+ 1)(d− |OPT ∩B|/λ)
,

where ρ∗ represents here the value stated in Proposition H.9.

H.3 Proof of Theorem 5.1

In this section we use the machinery developed so far to prove Theorem 5.1. To use Algorithms 8
or 10 one must choose the algorithm BigElementsAlg. A very simple choice is to use an algorithm
that just returns the best singleton subset of B. This leads to the following theorem.

Theorem H.13. For every value ε ∈ (0, 1/4], there is a polynomial time [(1+O(ε))(p+1+ 7
4d)]

−1-

approximation algorithm for SMKS that runs in Õ(nd+ n/ε) time.

Proof. Given the above choice for BigElementsAlg, we can set α = |OPT ∩ B|−1 because the
submodularity of f implies

max
u∈B

f({u}) ≥

∑

u∈OPT∩B f({u})

|OPT ∩B|
≥

f(OPT ∩B)

|OPT ∩B|
.

Thus, for λ ≥ 2, it is valid to choose α−1 = d(λ − 1) because of the upper bound on |OPT ∩ B|
explained in the discussion before Proposition H.8.
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If we now choose to use Algorithm 10 and set λ = 2 and δ = ε, we get by Proposition H.12 that the
inverse of the approximation ratio of the algorithm we consider is at most

λ((1 + ε)p+ 1 + α−1) + (λ+ 1)(d− |OPT ∩B|/λ)

(1− δ − ε)λ

=
(1 + ε)p+ 1 + α−1(1− λ−1 − λ−2) + d(1 + λ−1)

1− δ − ε

≤
(1 + ε)p+ 1 + d(λ− 1)(1− λ−1 − λ−2) + d(1 + λ−1)

1− δ − ε

=
(1 + ε)p+ 1 + d(λ− 1 + λ−1 + λ−2)

1− δ − ε
=
(1 + ε)p+ 1 + 7

4d

1− δ − ε

≤ (1 + 3δ + 3ε)(p+ 1 + 7
4d) = (1 + 6ε)(p+ 1 + 7

4d) ,

and its time complexity is

O((λnd+ nε−1(log n+ log ε−1) + TB) · (log δ
−1 + log(log n+ log(α−1 + d)))

= O((nd+ nε−1(log n+ log ε−1) + TB) · (log ε
−1 + log(log n+ log(2d)))

= Õ(nd+ n/ε+ TB) = Õ(nd+ n/ε) ,

where the last equality holds because BigElementsAlg can be implemented by simply scanning all
the n possible singleton sets, which requires a time complexity of TB = O(n).

A slightly more involved option for BigElementsAlg is an algorithm that enumerates over all sets
of up to two big elements, and outputs the best such set that is feasible. This leads to the following
theorem.

Theorem H.14. For every value ε ∈ (0, 1/4], there is a polynomial time (p + 1.5556 + 13
9 d + ε)-

approximation algorithm for SMKS that runs in Õ(n2 + nd) time.

Proof. In this proof we need the following known lemma.

Lemma H.15 (Lemma 2.2 of Feige et al. [20]). Let f : 2N → R be a submodular function, let A be
an arbitrary subset of N , and let A(p) be a random subset of A containing every element of A with
probability p (not necessarily independently). Then,

E[f(A(p))] ≥ (1− p) · f(∅) + p · f(A) .

Next, we show that one is allowed to choose α = min{2/|OPT ∩ B|, 1} for the above described
BigElementsAlg. If |OPT∩B| ≤ 2 then this is trivial. Otherwise, by choosing R to be a uniformly
random subset of OPT ∩B of size 2, we get that the value of the output of BigElementsAlg is at
least

E[f(R)] ≥

(

1−
2

|OPT ∩B|

)

·f(∅)+
2

|OPT ∩B|
·f(OPT∩B) ≥

2

|OPT ∩B|
·f(OPT∩B) ,

where the first inequality follows from Lemma H.15 and the observation that R includes every
element of OPT ∩ B with probability exactly 2/|OPT ∩ B|. Hence, it is valid to set α−1 =
max{d(λ− 1)/2, 1} because of the upper bound on |OPT ∩B| explained in the discussion before
Proposition H.8.

Consider now the algorithm obtained by plugging δ = ε
2p+4d+4 , λ = 3 and the above choice for

BigElementsAlg into Algorithm 8. We would like to show that this algorithm has all the properties
guaranteed by the theorem. By Proposition H.11, the time complexity of this algorithm is

O((λnd+ nr + TB) · (log δ
−1 + log(log n+ log(α−1 + d)))

= O((nd+ nr + TB) · (log(p+ d) + log ε−1 + log(log n+ log d))

= Õ(nr + nd+ TB) = Õ(n2 + nd) ,

where the last equality holds since a brute force implementation of BigElementsAlg runs in O(n2)
time.
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It remains to analyze the approximation ratio of our suggested algorithm. Towards this goal, we
need to consider a few cases. If |OPT ∩ B| ≥ 2, then, by Proposition H.11, the inverse of the
approximation ratio of the above algorithm is no worse than

λ(p+ 1 + α−1) + (λ+ 1)(d− |OPT ∩B|/λ)

(1− δ)λ

=
p+ 1 + |OPT ∩B| · (1/2− λ−1 − λ−2) + d(1 + λ−1)

1− δ

≤
p+ 1 + d(λ− 1) · (1/2− λ−1 − λ−2) + d(1 + λ−1)

1− δ
=

p+ 1 + d(λ/2− 1/2 + λ−1 + λ−2)

1− δ

=
p+ 1 + 13

9 d

1− δ
≤ (1 + 2δ)(p+ 1 + 13

9 d) ≤ p+ 1 + 13
9 d+ ε .

Otherwise, if |OPT ∩B| ≤ 1, then, by the same proposition, the inverse of the approximation ratio
of the above algorithm is at most

λ(p+ 1 + α−1) + (λ+ 1)(d− |OPT ∩B|/λ)

(1− δ)λ
≤

p+ 2 + d(1 + λ−1)

1− δ

=
p+ 2 + 4

3d

1− δ
≤ (1 + 2δ)(p+ 2 + 4

3d) ≤ p+ 2 + 4
3d+ ε .

The above inequalities prove an approximation ratio which is a bit weaker than the one guaranteed
by the theorem. To get exactly the approximation ratio guaranteed by the theorem, we need to be a
bit more careful with the last case. First, for |OPT ∩B| = 1,

λ(p+ 1 + α−1) + (λ+ 1)(d− |OPT ∩B|/λ)

(1− δ)λ
=

p+ 2− 1/λ− 1/λ2 + d(1 + λ−1)

1− δ

=
p+ 14

9 + 4
3d

1− δ
≤ (1 + 2δ)(p+ 1.5556 + 4

3d) ≤ p+ 1.5556 + 4
3d+ ε .

Handling the case OPT ∩B = ∅ is a bit more involved. Since there are no big elements in this case
in OPT , there is no need to take SB into account in the analysis of Algorithm 8. It can be observed
that by repeating the analysis, but ignoring this set, we can get that the value of the output set of this
algorithm is also lower bounded by

(1− δ)λ · f(OPT \B)

λ(p+ 1) + (λ+ 1)(d− |OPT ∩B|/λ)
,

which in our case implies that the inverse of the approximation ratio of our algorithm is at most

λ(p+ 1) + d(λ+ 1)

(1− δ)λ
=

p+ 1 + d(1 + λ−1)

1− δ
=

p+ 1 + 4
3d

1− δ
≤ p+ 1 + 4

3d+ ε .

Theorem 5.1 now follows immediately from Theorems H.13 and H.14.

Remark: It is natural to consider also candidates for BigElementsAlg that enumerate over larger
subsets of B. However, this will require Ω(n3) time, and is, therefore, of little interest as one can

obtain a clean (p+ d+ 1)-approximation for SMKS in Õ(n3) time (see Section 1.1).

I Fast Versions of Algorithms from Appendix H

I.1 Nearly Linear Time Version of Algorithm 3

In this section we present a version of Algorithm 3 that runs in nearly linear time. This version
appears as Algorithm 9, and it gets a quality control parameter ε ∈ (0, 1/4) (in addition to the
parameters λ and ρ of Algorithm 3). The speedup in this version of the algorithm is obtained using
a technique due to Badanidiyuru and Vondrák [4] which employs a decreasing threshold τ . In every
iteration of the loop starting on Line 5 of Algorithm 9, the algorithm looks for elements whose
marginal value exceeds this threshold. This guarantees that the element selected by the algorithm
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Algorithm 9: Nearly Linear Time General Algorithm(λ, ρ, ε)

// Build the set of big elements, and find a candidate solution based on
them.

1 Let B ← {u ∈ N | ∃1≤i≤d ci(u) > λ−1}.
2 Let SB be the output set of BigElementsAlg(B).

// Construct a solution from the small elements.
3 Let S0 ← ∅, k ← 0, M ← maxu∈N f({u}) and τ ←M .
4 while τ ≥ εM/[(1 + ε)n] do
5 for every element u ∈ N \ (Sk ∪B) do

6 if Sk + u ∈ I and f(u | Sk) ≥ max{τ, ρ ·
∑d

i=1 ci(u)} then
7 Let vk+1 ← u, and let Sk+1 ← Sk + vk+1.
8 if max1≤i≤d ci(Sk+1) ≤ 1 then Increase k by 1.
9 else return the output set of SetExtract(λ, Sk+1).

10 Update τ ← τ/(1 + ε).

11 return the better set among SB and Sk.

has an almost maximal marginal among the elements that can be selected because the previous
iteration of the same loop already selected every element that could be selected when τ was larger.

As explained in Section H.1, the properties we would like to prove for Algorithm 9 are summarized
by Proposition H.9, which we repeat here for convenience.

Proposition H.9. Let

ρ∗ =
(1− ε)f(OPT )

((1 + ε)p+ 1 + α−1)/(1 + λ−1) + d− |OPT ∩B|/λ
.

There exists an event Ẽ such that, if ρ ≥ ρ∗ and the event Ẽ happened, or ρ ≤ ρ∗ and the event

Ẽ did not happen, then Algorithm 9 outputs a solution of value at least λρ∗/(λ+ 1). Furthermore,

if ρ ∈ [(1 − δ)ρ∗, ρ∗] for some value δ ∈ (0, 1], then, regardless of the realization of the event Ẽ,
Algorithm 9 outputs a solution of value at least (1 − δ)λρ∗/(λ + 1). Finally, Algorithm 9 runs in
O(λnd+nε−1(log n+log ε−1)+TB) time, where TB is the time complexity of BigElementsAlg.

We begin the proof of Proposition H.9 with the following lemma, which proves that Algorithm 9
has the time complexity stated in the proposition.

Lemma I.1. Algorithm 9 has a time complexity of O(λnd + nε−1(log n + log ε−1) + TB), where
TB is the time complexity of BigElementsAlg.

Proof. The construction of the set B requires O(dn) time, and therefore, the time complexity re-
quired for the entire Algorithm 9 except for the loop starting on Line 4 is O(dn + TB). In the rest
of this proof we show that this loop requires O(λnd+ nε−1(log n+ log ε−1)) time, which implies
the lemma.

The loop starting on Line 4 of Algorithm 9 runs at most the number of times that is required to
decrease τ from M to εM/[(1 + ε)n], which is

⌈log1+ε(n/ε)⌉+ 1 ≤
lnn− ln ε

ε/2
+ 2 = O(ε−1(log n+ log ε−1)) .

Within each iteration of the loop on Line 4, the loop starting on Line 5 executes at most n times.
To understand the time complexity of the iterations of the last loop, we can observe that each such
iteration takes a constant time with the exception of the following operations.

• In Line 6 we need to calculate the sum
∑d

i=1 ci(u), which takes O(d) time. However, we
can pre-calculate this sum for all the elements of N in O(nd) time.

• Checking the condition on Line 8 requires O(d) time (assuming we maintain the values
ci(Sk)). However, this line is executed only when an element is added to the solution of
the algorithm, which happens at most O(r) = O(n) times.
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• Executing SetExtract(λ, Sk+1) requires O(λ|Sk+1|d) = O(λrd) = O(λnd) time.
However, this procedure is executed at most once by Algorithm 9.

Combining all the above, we get that the loop starting on Line 4 of Algorithm 9 requires only
O(λnd+ nε−1(log n+ log ε−1)) time.

Like in Section H.1, we use ℓ below to denote the final value of the variable k. Furthermore, one can
observe that the proof of Observation H.2 applies to Algorithm 9 up to some natural modifications,
and therefore, we are guaranteed that the output set of Algorithm 9 is feasible. The rest of this
section is devoted to bounding the approximation guarantee of this output set.

Let Ẽ be the event that Algorithm 9 returns through Line 9. We consider separately the case in

which the event Ẽ happens and at the case in which it does not happen. When the event Ẽ happens,
the output set of Algorithm 3 is the output set of SetExtract. This set contains only high density
elements and is large in terms of the linear constraints (by Lemma H.1), which provides a lower
bound on its value. This argument can be formalized, leading to the following lemma, whose proof
is omitted since it is analogous to the proof of Lemma H.4.

Lemma I.2. If the event Ẽ happens, then Algorithm 3 returns a solution of value at least
λρ
λ+1 .

Handling the case in which the event Ẽ does not happen is somewhat more involved. Towards this
goal, we recursively define a set Ok for every 0 ≤ k ≤ ℓ (note that the definition we give here is
slightly different compared to the one given in Section H.1). The base of the recursion is that for

k = ℓ we define Oℓ = OPT \ (B ∪ {u ∈ OPT | f(u | Sℓ) < max{ρ ·
∑d

i=1 ci(u)), εM/n}}.
Assuming Ok+1 is already defined for some 0 ≤ k < ℓ, we define Ok as follows. Let Dk = {u ∈
Ok+1 \ Sk | Sk + u ∈ I}. If |Dk| ≤ p, we define Ok = Ok+1 \Dk. Otherwise, we let D′k be an
arbitrary subset of Dk of size p, and we define Ok = Ok+1 \D

′
k.

Lemma I.3. Assuming Ẽ does not happen, O0 = ∅.

Proof Sketch. The proof of this lemma is very similar to the proof of Lemma H.5. The only differ-
ence is that arguing why Oℓ is a base of Sℓ ∪ Oℓ is a bit more involved now. Specifically, consider
the last iteration of the loop starting on Line 4 of Algorithm 9. In this iteration the value of τ was at
most εM/n, and therefore, every element of Oℓ would have been added to Sℓ during this iteration
unless this addition violates independence inM.

Using the last lemma, we can now prove the following corollary, which corresponds to Corollary H.6
from Section H.1.

Corollary I.4. Assuming Ẽ does not happen, f(Sℓ) ≥
f(Oℓ∪Sℓ)
(1+ε)p+1 .

Proof. We prove by induction the stronger claim that, for every integer 0 ≤ k ≤ ℓ,

f(Sk) ≥
f(Ok ∪ Sk)

(1 + ε)p+ 1
. (7)

For k = 0 this inequality follows from the non-negativity of f since S0 = O0 = ∅ by Lemma I.3.
Assume now that Inequality (7) holds for some value k− 1 obeying 0 ≤ k− 1 < ℓ, and let us prove
it for k.

Consider the set ∆k = Ok \ Ok−1. Let u′ be an element of ∆k maximizing f(u′ | Sk−1), and let
τ ′ be the maximum value that τ takes in any iteration of the loop starting on Line 4 of Algorithm 9
that is not larger than f(u′ | Sk). Such a value exists because the inclusion ∆k ⊆ Oℓ implies that

every element u ∈ ∆k obeys f(u | Sk−1) ≥ f(u | Sℓ) ≥ max{ρ ·
∑d

i=1 ci(u), εM/n}. Observe
now that u′ cannot belong to Sℓ because u′ ∈ ∆k ⊆ Oℓ guarantees f(u′ | Sℓ) > 0, which implies
that, during the iteration of of the loop starting on Line 4 that corresponds to τ ′, the element u′ was
not added to the solution of Algorithm 9. Let us study the reason that u′ was not added. By the
definition of τ ′, f(u′ | Sk−1) ≥ τ ′. Additionally, by the construction of Ok−1, every element of ∆k

can be added to Sk−1 without violating independence inM. These two facts imply that the reason
that u′ was not added must have been that, by the time Algorithm 9 considers the element u′ in the
iteration correspond to τ ′, the solution of Algorithm 9 already contained at least k elements. Since
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up to this time the algorithms adds to its solution only elements whose marginal contribution is at
least τ ′, this implies

f(Sk)− f(Sk−1) ≥ τ ′ ≥
f(u′ | Sk−1)

1 + ε
≥

∑

u∈∆k
f(u | Sk−1)

(1 + ε)|∆k|
.

Recall now that f(Sk)− f(Sk−1) = f(vk | Sk−1). Combining this equality with the previous one,
we get

f(Sk) ≥ f(Sk−1) +
f(vk | Sk−1) +

∑

u∈∆k
f(u | Sk−1)

(1 + ε)|∆k|+ 1

≥
f(Ok−1 ∪ Sk−1)

(1 + ε)p+ 1
+

f(∆k + vk | Sk−1)

(1 + ε)|∆k|+ 1

≥
f(Ok−1 ∪ Sk−1)

(1 + ε)p+ 1
+

f(∆k + vk | Sk−1)

(1 + ε)p+ 1
≥

f(Ok ∪ Sk)

(1 + ε)p+ 1
,

where the second inequality follows from the induction hypothesis and the submodularity of f , the
penultimate inequality follows from the monotonicity of f and the observation that the construction
of Ok−1 guarantees |∆k| ≤ p, and the last inequality follows again from the submodularity of f .

To use the last corollary, we need a lower bound on Oℓ ∪ Sℓ, which is given by the next lemma (and
corresponds to Lemma H.7).

Lemma I.5. f(Oℓ ∪ Sℓ) ≥ (1− ε)f(OPT )− f(SB)/α− ρ ·
[

d− |OPT∩B|
λ

]

.

Proof. Observe that

f(Oℓ ∪ Sℓ) (8)

= f(OPT \ (B ∪ {u ∈ OPT | f(u | Sℓ) < max{ρ ·
∑d

i=1
ci(u), εM/n}}) ∪ Sℓ)

≥ f(OPT )− f(OPT ∩B)− f({u ∈ OPT \B | f(u | Sℓ) < ρ ·
∑d

i=1
ci(u)} | Sℓ)

− f({u ∈ OPT \B | f(u | Sℓ) < εM/n} | Sℓ)

≥ f(OPT )− f(SB)/α− f({u ∈ OPT \B | f(u | Sℓ) < ρ ·
∑d

i=1
ci(u)} | Sℓ)

− f({u ∈ OPT \B | f(u | Sℓ) < εM/n} | Sℓ) ,

where the first inequality follows from the submodularity and monotonicity of f , and the second
inequality follows from the definition of SB . To lower bound the rightmost side of the last inequality,
we need to upper bound the two last terms in it.

f({u ∈ OPT \B | f(u | Sℓ) < ρ ·
∑d

i=1
ci(u)} | Sℓ) ≤

∑

u∈OPT\B

f(u|Sℓ)<ρ·
∑d

i=1
ci(u)

f(u | Sℓ)

≤ ρ ·
∑

u∈OPT\B

d
∑

i=1

ci(u) = ρ ·

[

∑

u∈OPT

d
∑

i=1

ci(u)−
∑

u∈OPT∩B

d
∑

i=1

ci(u)

]

≤ ρ ·

[

d−
|OPT ∩B|

λ

]

,

where the last inequality holds since OPT is a feasible set and every element of B is big. Addition-
ally,

f({u ∈ OPT \B | f(u | Sℓ) < εM/n} | Sℓ) ≤
∑

u∈OPT\B
f(u|Sℓ)<εM/n

f(u | Sℓ) ≤ εM ≤ ε · f(OPT ) ,

where the second inequality holds since |OPT ∩B| is a subset ofN , and therefore, is of size at most
n; and the last inequality holds since every element of N is a feasible solution by our assumption.
Plugging the last inequalities into Inequality (8) completes the proof of the lemma.
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We are now ready to prove Proposition H.9.

Proof of Proposition H.9. If the event Ẽ happened, then Lemma I.2 guarantees that the output of
Algorithm 9 is of value at least λρ/(λ + 1). Therefore, to complete the proof of the lemma, it
suffices to show that when the event E does not happen and ρ∗ ≥ ρ, the value of the output of the
Algorithm 9 is at least λρ∗/(λ + 1); and the rest of this proof is devoted to showing that this is
indeed the case.

In the last case, Corollary I.4 and Lemma I.5 imply together

f(Sℓ) ≥
(1− ε)f(OPT )− f(SB)/α− ρ ·

[

d− |OPT∩B|
λ

]

(1 + ε)p+ 1
,

and therefore, the output set of Algorithm 9 is of value at least

max{f(Sℓ), f(SB)} ≥
((1 + ε)p+ 1) · f(Sℓ) + α−1 · f(SB)

(1 + ε)p+ 1 + α−1

≥
(1− ε)f(OPT )− ρ(d− |OPT ∩B|/λ)

(1 + ε)p+ 1 + α−1

≥
(1− ε)f(OPT )− ρ∗(d− |OPT ∩B|/λ)

(1 + ε)p+ 1 + α−1
=

λρ∗

λ+ 1
.

I.2 Nearly-Linear Time Version of Algorithm 8

In this section we describe a fast version of Algorithm 8. This version appears as Algorithm 10.
There are only three differences between the two algorithms: (1) Algorithm 10 uses Algorithm 9
instead of Algorithm 3, (2) the value of τ̄ is slightly higher in Algorithm 9, and (3) the definition ρ(i)

is slightly modified in Algorithm 9 to be ρ(i) , (1−2ε)(1+δ)i ·maxu∈N f({u})/(p+1+α−1+d).

Algorithm 10: ρ Guessing Algorithm(λ, ε, δ)

1 Let i← 0, ī←
⌈

log1+δ
2n
p − log1+δ

1−2ε
p+1+α−1+d

⌉

and k ← 0.

2 while ī− i > 1 do
3 Update k ← k + 1.

4 Let ik ← ⌈(i+ ī)/2⌉.
5 Execute Algorithm 9 with ρ = ρ(ik). Let Ak denote the output set of this execution of

Algorithm 9, and let Ek denote the event Ẽ for the execution.
6 if the event Ek happened then Update i← ik.

7 else Update ī← ik.

8 Execute Algorithm 9 with ρ = ρ(i). Let A′ denote the output set of this execution of
Algorithm 9.

9 return the set maximizing f in {A′} ∪ {Ak′ | 1 ≤ k′ ≤ k}.

The following observation corresponds to Observation H.10. The proofs of the two observations are
very similar.

Observation I.6. For the value ρ∗ stated in Proposition H.9,

1− 2ε

p+ 1 + α−1 + d
≤

ρ∗

maxu∈N f(u)
≤
2n

p
.

Proof. According to the definition of ρ∗,

ρ∗ =
(1− ε)f(OPT )

((1 + ε)p+ 1 + α−1)/(1 + λ−1) + d− |OPT ∩B|/λ
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≤
(1− ε)n ·maxu∈N f({u})

(1 + ε)p/(1 + λ−1) + d− |OPT ∩B|/λ

≤
(1− ε)2n ·maxu∈N f({u})

(1 + ε)p
≤
2n ·maxu∈N f({u})

p
,

where the first inequity follows from the submodularity and non-negativity of f , and the second in-
equality follows from the upper bound on |OPT ∩B| given in the discussion before Proposition H.8
and the inequality λ ≥ 1.

Similarly,

ρ∗ =
(1− ε)f(OPT )

((1 + ε)p+ 1 + α−1)/(1 + λ−1) + d− |OPT ∩B|/λ

≥
(1− ε)maxu∈N f({u})

((1 + ε)p+ 1 + α−1)/(1 + λ−1) + d− |OPT ∩B|/λ

≥
(1− ε)maxu∈N f({u})

(1 + ε)p+ 1 + α−1 + d
≥
(1− 2ε)maxu∈N f({u})

p+ 1 + α−1 + d
,

where the first inequality holds since every singleton is a feasible set by our assumption, and the
second inequality holds since 1 + λ−1 ≥ 1 and |OPT ∩B|/λ ≥ 0.

Given the last observation, the proof of Proposition H.12 is identical to the proof of Proposition H.11
up to the following changes.

• One has to use Proposition H.9 and Observation I.6 instead of Proposition H.8 and Obser-
vation H.10.

• The calculation needed to bound the number of iterations performed by the algorithm be-
comes a bit more involved. Specifically, we can upper bound it by

2 + log2

[

log1+δ

2n

p
− log1+δ

1− 2ε

p+ 1 + α−1 + d

]

= 2 + log2[ln(2n)− ln(p)− ln(1− 2ε) + ln(p+ 1 + α−1 + d)]− log2 ln(1 + δ)

≤ 4 + log2[lnn+ ln 2 + ln(2 + α−1 + d)] + log2 δ
−1

= O(log δ−1 + log(log n+ log(α−1 + d))) .

J Additional Experiments

J.1 Location Summarization Subject to a Cardinality Constraint

In this section we consider a location summarization application. The goal is to find a representative
summary of tens of thousands of Yelp business locations (from Charlotte, Edinburgh, Las Vegas,
Madison, Phoenix and Pittsburgh) by using their related attributes [6]. The representativeness of
a business at location i for another business at a location j is quantified by a similarity measure

Mi,j = e−λ·dist(vi,vj), where vi and vj are vectors of attributes of the facilities at locations i and
j. To select a good representation of all the locations N = {1, . . . , n}, we use the monotone and
submodular facility location function [44] given by

f(S) =
1

n

n
∑

i=1

max
j∈S

Mi,j . (9)

In Figure 2a, we observe that LAZYGREEDY performs slightly better than FASTTHRESHOLD-
GREEDY. On the other hand, Figure 2b shows that the query complexity of FASTTHRESHOLD-
GREEDY is much lower.

J.2 Comparing FASTTHRESHOLDGREEDY with STOCHASTICGREEDY

Recall that STOCHASTICGREEDY is a fast but randomized approach for maximizing submodu-
lar functions subject to a cardinality constraint [55]. In the next experiment, we compare FAST-
THRESHOLDGREEDY with STOCHASTICGREEDY under the cardinality constraint. We consider
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Figure 2: Comparing FASTTHRESHOLDGREEDY with LAZYGREEDY and BOOSTRATIO [46] un-
der a cardinality constraint in Location Summarization.

the monotone and submodular vertex cover function. This function is defined over vertices of a
(directed) graph G = (V,E). For a given vertex set S ⊆ V , let N(S) be the set of vertices which

are pointed to by S, i.e., N(S) , {v ∈ V | ∃ u ∈ S s.t. (u, v) ∈ E}. The vertex cover function
f : 2V → R≥0 is then defined as f(S) = |N(S) ∪ S|. We use two different graphs: i) a ran-
dom graph of n = 106 nodes with an average degree of 2, where 20 additional nodes with degrees
50 are added (the neighbors of these high degree nodes are chosen randomly); ii) Slashdot social
network [51]. In Appendix J.2, we observe that the utility of FASTTHRESHOLDGREEDY is signifi-
cantly better than that of STOCHASTICGREEDY. We also observe a high variability in the utility of
solutions returned by STOCHASTICGREEDY. Furthermore, FASTTHRESHOLDGREEDY (ε = 0.8)
outperforms STOCHASTICGREEDY (ε ∈ {0.1, 0.2}) in terms of both utility and query complexity.
Note that, while STOCHASTICGREEDY is performing quite well in many practical scenarios, the
theoretical guarantee of this algorithm holds only in expectation, and there are cases resulting in
high variance. In these high variance cases, one has to run STOCHASTICGREEDY multiple times,
which diminishes the benefit from the algorithm.

J.3 Twitter Text Summarization

In this section, we consider Twitter text summarization with the goal of producing a representa-
tive summary of Tweets around the first day of January 2019 [29]. In this application, the ob-
jective is to find a diverse summary from the Twitter feeds of news agencies. The monotone
and submodular function f used is defined over a ground set N of tweets as follows: f(S) =
∑

w∈W

√
∑

e∈S score(w, e), where W is the set of all the English words [42]. If word w is in

Tweet e, then we have score(w, e) = {number of retweets e has received}. Otherwise, we define
score(w, e) = 0. The cost of each tweet is proportional to the time difference (in months) between
the date of that Tweet and the first day of January 2019 [29]. Like in Section 6.2, it is evident from
Figures 4a and 4b that Algorithm 2 surpasses the baseline algorithms.

J.4 p-Set System and d Knapsack Constraints

In this section we describe a set of experiments designed to compare the performance of Algo-
rithm 10 with several other algorithms under the combination of a p-system and d knapsack con-
straints. We consider BARRIERGREEDY [6], FAST [4], GREEDY and DENSITYGREEDY as our
baselines. GREEDY keeps adding elements one by one according to their marginal gain as long as
the p-system and knapsack constraints allow it. DENSITYGREEDY is very similar to GREEDY with
the only difference being that it picks elements according to the ratio between their marginal gain
and their total knapsack cost. Note that GREEDY and DENSITYGREEDY are heuristic algorithms
without any theoretical guarantees for the setup of this experiment.

In the first experiment of this section, we again consider the location summarization application
from Section J.1. The goal is to maximize (9) subject to the following constraints: (i) the maximum
number of locations from each city is 5, (ii) the total size of the summary is at most 20, and (iii)
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Figure 3: Comparing FASTTHRESHOLDGREEDY with STOCHASTICGREEDY on vertex cover prob-
lems under a cardinality constraint.
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Figure 4: Comparing Algorithm 2 (referred to as FTGP) with DYNAMICMRT [37] and DENSITY-
GREEDY under a single knapsack constraint in Text Summarization.

two knapsacks constraints c1 and c2, where ci(j) = distance(j, POIi) is the normalized distance
of location j from a given location in its city (for c1, POI1 is the down-town; and for c2, POI2 is
the international airport in that city). For ease of understanding the results of the experiments, the
distances are normalized to make one unit of knapsack budget equivalent to 100km. Figures 5a
and 5b compare algorithms for varying values of knapsack budget. In terms of utility, we observe
that BARRIERGREEDY is the best performing algorithm followed by our algorithm (Algorithm 10).
Despite the very competitive performance of Algorithm 10, its query complexity is almost an order
of magnitude faster than that of BARRIERGREEDY.
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The second application is a video summarization task over a collation of videos from the VSUMM
dataset [15].4 The features for each frame of a video are generated by a pre-trained ResNet-18

model [34, 43]. The similarity between two frames i and j is defined by e−λ·dist(xi,xj), where
dist(xi, xj) is the Euclidean distance of the corresponding features of the frames. Similarly to the
movie recommendation applications of Sections 6.1 and 6.2, the goal of the summarization task
is to maximize the monotone and submodular function f(S) = log det(I + αMS) subject to the
combination of the following constraints: (i) the maximum allowed cardinality of the final summary
is k (in Figures 5c and 5d, we compare algorithms by varying this value), (ii) the maximum number
of allowed frames from each video is 5, and (iii) a single knapsack constraint. The knapsack cost for
each frame u is defined as H(u)/20, where H(u) is the entropy of u. This extra knapsack constraint
allows us to bound the required bits to encode the produced summary by using the entropy of each
frame as a proxy for its encoding size. We again observe that BARRIERGREEDY and our algorithm
(Algorithm 10) produce the summaries with the highest utilities (see Figure 5c). Furthermore, in
Figure 5d, we observe that Algorithm 10 is the fastest algorithm. Particularly, Algorithm 10 is
several orders of magnitudes faster than BARRIERGREEDY and FAST.
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Figure 5: Comparing Algorithm 10 with the state-of-the-art algorithms subject to a combination of
a p-system and d knapsack constraints.

4The dataset is available for download from https://sites.google.com/site/vsummsite/.
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