
Locating and Editing Factual Associations in GPT

Kevin Meng⇤
MIT CSAIL

David Bau⇤

Northeastern University
Alex Andonian

MIT CSAIL
Yonatan Belinkov†

Technion – IIT

Abstract

We analyze the storage and recall of factual associations in autoregressive trans-
former language models, finding evidence that these associations correspond to
localized, directly-editable computations. We first develop a causal intervention
for identifying neuron activations that are decisive in a model’s factual predictions.
This reveals a distinct set of steps in middle-layer feed-forward modules that me-
diate factual predictions while processing subject tokens. To test our hypothesis
that these computations correspond to factual association recall, we modify feed-
forward weights to update specific factual associations using Rank-One Model
Editing (ROME). We find that ROME is effective on a standard zero-shot relation
extraction (zsRE) model-editing task. We also evaluate ROME on a new dataset
of difficult counterfactual assertions, on which it simultaneously maintains both
specificity and generalization, whereas other methods sacrifice one or another. Our
results confirm an important role for mid-layer feed-forward modules in storing fac-
tual associations and suggest that direct manipulation of computational mechanisms
may be a feasible approach for model editing. The code, dataset, visualizations, and
an interactive demo notebook are available at https://rome.baulab.info/.

1 Introduction

Where does a large language model store its facts? In this paper, we report evidence that factual
associations in GPT correspond to a localized computation that can be directly edited.

Large language models can predict factual statements about the world (Petroni et al., 2019; Jiang
et al., 2020; Roberts et al., 2020). For example, given the prefix “The Space Needle is located in the
city of,” GPT will reliably predict the true answer: “Seattle” (Figure 1a). Factual knowledge has been
observed to emerge in both autoregressive GPT models (Radford et al., 2019; Brown et al., 2020) and
masked BERT models (Devlin et al., 2019).

In this paper, we investigate how such factual associations are stored within GPT-like autoregressive
transformer models. Although many of the largest neural networks in use today are autoregressive,
the way that they store knowledge remains under-explored. Some research has been done for masked
models (Petroni et al., 2019; Jiang et al., 2020; Elazar et al., 2021a; Geva et al., 2021; Dai et al.,
2022; De Cao et al., 2021), but GPT has architectural differences such as unidirectional attention and
generation capabilities that provide an opportunity for new insights.

We use two approaches. First, we trace the causal effects of hidden state activations within GPT using
causal mediation analysis (Pearl, 2001; Vig et al., 2020b) to identify the specific modules that mediate
recall of a fact about a subject (Figure 1). Our analysis reveals that feedforward MLPs at a range of
middle layers are decisive when processing the last token of the subject name (Figures 1b,2b,3).

Second, we test this finding in model weights by introducing a Rank-One Model Editing method
(ROME) to alter the parameters that determine a feedfoward layer’s behavior at the decisive token.

⇤Equal contribution. Correspondence to mengk@mit.edu, davidbau@northeastern.edu.
†Supported by the Viterbi Fellowship in the Center for Computer Engineering at the Technion.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://rome.baulab.info/

Seattle
(correct output)

downtown

in

is

le

Need

Space

The
Clean
run

(a)
Corrupted

subject
run

(b)

Patch
clean states
(c)

downtown

in

is

le*

Need*

Space*

The* *
*

*
*

?
(corrupted output)

hi(l) state
attention
MLP

Note when
output is fixed
(d)

example flow

* corrupted
embedding

early site

late site

(e) (f) (g)

early site

late site

Figure 1: Causal Traces compute the causal effect of neuron activations by running the network twice: (a)
once normally, and (b) once where we corrupt the subject token and then (c) restore selected internal activations
to their clean value. (d) Some sets of activations cause the output to return to the original prediction; the light
blue path shows an example of information flow. The causal impact on output probability is mapped for the
effect of (e) each hidden state on the prediction, (f) only MLP activations, and (g) only attention activations.

Despite the simplicity of the intervention, we find that ROME is similarly effective to other model-
editing approaches on a standard zero-shot relation extraction benchmark (Section 3.2).

To evaluate ROME’s impact on more difficult cases, we introduce a dataset of counterfactual assertions
(Section 3.3) that would not have been observed in pretraining. Our evaluations (Section 3.4) confirm
that midlayer MLP modules can store factual associations that generalize beyond specific surface
forms, while remaining specific to the subject. Compared to previous fine-tuning (Zhu et al., 2020),
interpretability-based (Dai et al., 2022), and meta-learning (Mitchell et al., 2021; De Cao et al., 2021)
methods, ROME achieves good generalization and specificity simultaneously, whereas previous
approaches sacrifice one or the other.

2 Interventions on Activations for Tracing Information Flow

To locate facts within the parameters of a large pretrained autoregressive transformer, we begin by
analyzing and identifying the specific hidden states that have the strongest causal effect on predictions
of individual facts. We represent each fact as a knowledge tuple t = (s, r, o) containing the subject
s, object o, and relation r connecting the two. Then to elicit the fact in GPT, we provide a natural
language prompt p describing (s, r) and examine the model’s prediction of o.

An autoregressive transformer language model G : X ! Y over vocabulary V maps a token sequence
x = [x1, ..., xT] 2 X , xi 2 V to a probability distribution y 2 Y ⇢ R|V | that predicts next-token
continuations of x. Within the transformer, the ith token is embedded as a series of hidden state
vectors h(l)

i
, beginning with h(0)

i
= emb(xi) + pos(i) 2 RH . The final output y = decode(h(L)

T
) is

read from the last hidden state.

We visualize the internal computation of G as a grid (Figure 1a) of hidden states h(l)
i

in which each
layer l (left ! right) adds global attention a(l)

i
and local MLP m(l)

i
contributions computed from

previous layers, and where each token i (top ! bottom) attends to previous states from other tokens.
Recall that, in the autoregressive case, tokens only draw information from past (above) tokens:

h(l)
i

= h(l�1)
i

+ a(l)
i

+m(l)
i

a(l)
i

= attn(l)
⇣
h(l�1)
1 , h(l�1)

2 , . . . , h(l�1)
i

⌘
(1)

m(l)
i

= W (l)
proj

�
⇣
W (l)

fc
�
⇣
a(l)
i

+ h(l�1)
i

⌘⌘
.

2

early site

Detail in
Figure 3

late site

early site

late site

(a) (b) (c)

Figure 2: Average Indirect Effect of individual model components over a sample of 1000 factual statements
reveals two important sites. (a) Strong causality at a ‘late site’ in the last layers at the last token is unsurprising,
but strongly causal states at an ‘early site’ in middle layers at the last subject token is a new discovery. (b) MLP
contributions dominate the early site. (c) Attention is important at the late site. Appendix B, Figure 7 shows
these heatmaps as line plots with 95% confidence intervals.

Each layer’s MLP is a two-layer neural network parameterized by matrices W (l)
proj

and W (l)
fc

, with
rectifying nonlinearity � and normalizing nonlinearity �. For further background on transformers,
we refer to Vaswani et al. (2017).3

2.1 Causal Tracing of Factual Associations

The grid of states (Figure 1) forms a causal graph (Pearl, 2009) describing dependencies between the
hidden variables. This graph contains many paths from inputs on the left to the output (next-word
prediction) at the lower-right, and we wish to understand if there are specific hidden state variables
that are more important than others when recalling a fact.

As Vig et al. (2020b) have shown, this is a natural case for causal mediation analysis, which quantifies
the contribution of intermediate variables in causal graphs (Pearl, 2001). To calculate each state’s
contribution towards a correct factual prediction, we observe all of G’s internal activations during
three runs: a clean run that predicts the fact, a corrupted run where the prediction is damaged, and a
corrupted-with-restoration run that tests the ability of a single state to restore the prediction.

• In the clean run, we pass a factual prompt x into G and collect all hidden activations
{h(l)

i
| i 2 [1, T], l 2 [1, L]}. Figure 1a provides an example illustration with the prompt: “The

Space Needle is in downtown ”, for which the expected completion is o = “Seattle”.
• In the baseline corrupted run, the subject is obfuscated from G before the network runs. Con-

cretely, immediately after x is embedded as [h(0)
1 , h(0)

2 , . . . , h(0)
T

], we set h(0)
i

:= h(0)
i

+ ✏ for all
indices i that correspond to the subject entity, where ✏ ⇠ N (0; ⌫)4; . G is then allowed to continue
normally, giving us a set of corrupted activations {h(l)

i⇤ | i 2 [1, T], l 2 [1, L]}. Because G loses
some information about the subject, it will likely return an incorrect answer (Figure 1b).

• The corrupted-with-restoration run, lets G run computations on the noisy embeddings as in the
corrupted baseline, except at some token î and layer l̂. There, we hook G so that it is forced to
output the clean state h(l̂)

î
; future computations execute without further intervention. Intuitively, the

ability of a few clean states to recover the correct fact, despite many other states being corrupted by
the obfuscated subject, will indicate their causal importance in the computation graph.

Let P[o], P⇤[o], and P⇤, clean h
(l)
i
[o] denote the probability of emitting o under the clean, corrupted,

and corrupted-with-restoration runs, respectively; dependence on the input x is omitted for notational
simplicity. The total effect (TE) is the difference between these quantities: TE = P[o] � P⇤[o].
The indirect effect (IE) of a specific mediating state h(l)

i
is defined as the difference between the

probability of o under the corrupted version and the probability when that state is set to its clean
version, while the subject remains corrupted: IE = P⇤, clean h

(l)
i
[o]� P⇤[o]. Averaging over a sample

of statements, we obtain the average total effect (ATE) and average indirect effect (AIE) for each
hidden state variable.5

3Eqn. 1 calculates attention sequentially after the MLP module as in Brown et al. (2020). Our methods also
apply to GPT variants such as Wang & Komatsuzaki (2021) that put attention in parallel to the MLP.

4We select ⌫ to be 3 times larger than the empirical standard deviation of embeddings; see Appendix B.1 for
details, and see Appendix B.4 for an analysis of other corruption rules.

5One could also compute the direct effect, which flows through other model components besides the chosen
mediator. However, we found this effect to be noisy and uninformative, in line with results by Vig et al. (2020b).

3

le*

h

is

le*
*

*

Need* *
Need* *

(b) corrupted input w/ clean hi(l)

(a) baseline corrupted input condition

MLP severed from
path with clean hi(l)

(c)

!!

Layer

(d) input (e) mapping (f) output

Figure 3: Causal effects with a modified computation graph. (a,b) To isolate the effects of MLP modules
when measuring causal effects, the computation graph is modified. (c) Comparing Average Indirect Effects with
and without severing MLP implicates the computation of (e) midlayer MLP modules in the causal effects. No
similar gap is seen when attention is similarly severed.

2.2 Causal Tracing Results

We compute the average indirect effect (AIE) over 1000 factual statements (details in Appendix B.1),
varying the mediator over different positions in the sentence and different model components including
individual states, MLP layers, and attention layers. Figure 2 plots the AIE of the internal components
of GPT-2 XL (1.5B parameters). The ATE of this experiment is 18.6%, and we note that a large
portion of the effect is mediated by strongly causal individual states (AIE=8.7% at layer 15) at the
last subject token. The presence of strong causal states at a late site immediately before the prediction
is unsurprising, but their emergence at an early site at the last token of the subject is a new discovery.

Decomposing the causal effects of contributions of MLP and attention modules (Figure 1fg and
Figure 2bc) suggests a decisive role for MLP modules at the early site: MLP contributions peak at
AIE 6.6%, while attention at the last subject token is only AIE 1.6%; attention is more important at
the last token of the prompt. Appendix B.2 further discusses this decomposition.

Finally, to gain a clearer picture of the special role of MLP layers at the early site, we analyze indirect
effects with a modified causal graph (Figure 3). (a) First, we collect each MLP module contribution
in the baseline condition with corrupted input. (b) Then, to isolate the effects of MLP modules when
measuring causal effects, we modify the computation graph to sever MLP computations at token i
and freeze them in the baseline corrupted state so that they are unaffected by the insertion of clean
state for h(l)

i
. This modification is a way of probing path-specific effects (Pearl, 2001) for paths that

avoid MLP computations. (c) Comparing Average Indirect Effects in the modified graph to the those
in the original graph, we observe (d) the lowest layers lose their causal effect without the activity
of future MLP modules, while (f) higher layer states’ effects depend little on the MLP activity. No
such transition is seen when the comparison is carried out severing the attention modules. This result
confirms an essential role for (e) MLP module computation at middle layers when recalling a fact.

Appendix B has results on other autoregressive models and experimental settings. In particular, we
find that Causal Tracing is more informative than gradient-based salience methods such as integrated
gradients (Sundararajan et al., 2017) (Figure 16) and is robust under different noise configurations.

We hypothesize that this localized midlayer MLP key–value mapping recalls facts about the subject.

2.3 The Localized Factual Association Hypothesis

Based on causal traces, we posit a specific mechanism for storage of factual associations: each
midlayer MLP module accepts inputs that encode a subject, then produces outputs that recall
memorized properties about that subject. Middle layer MLP outputs accumulate information, then
the summed information is copied to the last token by attention at high layers.

This hypothesis localizes factual association along three dimensions, placing it (i) in the MLP modules
(ii) at specific middle layers (iii) and specifically at the processing of the subject’s last token. It is
consistent with the Geva et al. (2021) view that MLP layers store knowledge, and the Elhage et al.
(2021) study showing an information-copying role for self-attention. Furthermore, informed by the
Zhao et al. (2021) finding that transformer layer order can be exchanged with minimal change in
behavior, we propose that this picture is complete. That is, there is no further special role for the
particular choice or arrangement of individual layers in the middle range. We conjecture that any fact

4

Paris

in

is

le

Need

(a) Fix k* by subject token

(b) Optimize v* by object

Space

v*k*
new

(k* , v*)
association
at layer l*

s

o*

(f) edit by
+!(C-1k*)T

W(l*)fc W(l*)
proj!"(ai(l*) +hi(l*-1))

(c) (d) (e)

ℝH ℝHℝD

k* v*

r
downtown

Figure 4: Editing one MLP layer with ROME. To associate Space Needle with Paris, the ROME method
inserts a new (k⇤, v⇤) association into layer l⇤, where (a) key k⇤ is determined by the subject and (b) value v⇤
is optimized to select the object. (c) Hidden state at layer l⇤ and token i is expanded to produce (d) the key
vector k⇤ for the subject. (e) To write new value vector v⇤ into the layer, (f) we calculate a rank-one update
⇤(C�1k⇤)

T to cause Ŵ (l)
projk⇤ = v⇤ while minimizing interference with other memories stored in the layer.

could be equivalently stored in any one of the middle MLP layers. To test our hypothesis, we narrow
our attention to a single MLP module at a mid-range layer l⇤, and ask whether its weights can be
explicitly modified to store an arbitrary fact.

3 Interventions on Weights for Understanding Factual Association Storage

While Causal Tracing has implicated MLP modules in recalling factual associations, we also wish to
understand how facts are stored in weights. Geva et al. (2021) observed that MLP layers (Figure 4cde)
can act as two-layer key–value memories,6 where the neurons of the first layer W (l)

fc
form a key,

with which the second layer W (l)
proj

retrieves an associated value. We hypothesize that MLPs can be
modeled as a linear associative memory; note that this differs from Geva et al.’s per-neuron view.

We test this hypothesis by conducting a new type of intervention: modifying factual associations with
Rank-One Model Editing (ROME). Being able to insert a new knowledge tuple t⇤ = (s, r, o⇤) in
place of the current tuple tc = (s, r, oc) with both generalization and specificity would demonstrate
fine-grained understanding of the association-storage mechanisms.

3.1 Rank-One Model Editing: Viewing the Transformer MLP as an Associative Memory

We view W (l)
proj

as a linear associative memory (Kohonen, 1972; Anderson, 1972). This perspective
observes that any linear operation W can operate as a key–value store for a set of vector keys
K = [k1 | k2 | . . .] and corresponding vector values V = [v1 | v2 | . . .], by solving WK ⇡ V ,
whose squared error is minimized using the Moore-Penrose pseudoinverse: W = V K+. Bau et al.
(2020) observed that a new key–value pair (k⇤, v⇤) can be inserted optimally into the memory by
solving a constrained least-squares problem. In a convolutional network, Bau et al. solve this using
an optimization, but in a fully-connected layer, we can derive a closed form solution:

minimize kŴK � V k such that Ŵk⇤ = v⇤ by setting Ŵ = W + ⇤(C�1k⇤)
T . (2)

Here W is the original matrix, C = KKT is a constant that we pre-cache by estimating the uncentered
covariance of k from a sample of Wikipedia text (Appendix E.5), and ⇤ = (v⇤�Wk⇤)/(C�1k⇤)T k⇤
is a vector proportional to the residual error of the new key–value pair on the original memory matrix
(full derivation in Appendix A). Because of this simple algebraic structure, we can insert any fact
directly once (k⇤, v⇤) is computed. All that remains is to choose the appropriate k⇤ and v⇤.

Step 1: Choosing k⇤ to Select the Subject. Based on the decisive role of MLP inputs at the final
subject token (Section 2), we shall choose inputs that represent the subject at its last token as the
lookup key k⇤. Specifically, we compute k⇤ by collecting activations: We pass text x containing
the subject s through G; then at layer l⇤ and last subject token index i, we read the value after the
non-linearity inside the MLP (Figure 4d). Because the state will vary depending on tokens that

6Unrelated to keys and values in self-attention.

5

precede s in text, we set k⇤ to an average value over a small set of texts ending with the subject s:

k⇤ =
1

N

NX

j=1

k(xj + s), where k(x) = �
⇣
W (l⇤)

fc
�(a(l

⇤)
[x],i + h(l⇤�1)

[x],i)
⌘
. (3)

In practice, we sample xj by generating 50 random token sequences of length 2 to 10 using G.

Step 2: Choosing v⇤ to Recall the Fact. Next, we wish to choose some vector value v⇤ that encodes
the new relation (r, o⇤) as a property of s. We set v⇤ = argmin

z
L(z), where the objective L(z) is:

1

N

NX

j=1

� logP
G(m(l⇤)

i :=z)
[o⇤ | xj + p]

| {z }
(a) Maximizing o

⇤ probability

+ DKL

⇣
P
G(m(l⇤)

i0 :=z)
[x | p0]

��PG [x | p0]
⌘

| {z }
(b) Controlling essence drift

. (4)

The first term (Eqn. 4a) seeks a vector z that, when substituted as the output of the MLP at the token
i at the end of the subject (notated G(m(l⇤)

i
:= z)), will cause the network to predict the target object

o⇤ in response to the factual prompt p. The second term (Eqn. 4b) minimizes the KL divergence of
predictions for the prompt p0 (of the form “{subject} is a”) to the unchanged model, which helps
preserve the model’s understanding of the subject’s essence. To be clear, the optimization does not
directly alter model weights; it identifies a vector representation v⇤ that, when output at the targeted
MLP module, represents the new property (r, o⇤) for the subject s. Note that, similar to k⇤ selection,
v⇤ optimization also uses the random prefix texts xj to encourage robustness under differing contexts.

Step 3: Inserting the Fact. Once we have computed the pair (k⇤, v⇤) to represent the full fact
(s, r, o⇤), we apply Eqn. 2, updating the MLP weights W (l)

proj
with a rank-one update that inserts the

new key–value association directly. For full implementation details, see Appendix E.5.

3.2 Evaluating ROME: Zero-Shot Relation Extraction (zsRE)

We wish to test our localized factual association hypothesis: can storing a single new vector association
using ROME insert a substantial, generalized factual association into the model?

A natural question is how ROME compares to other model-editing methods, which use direct
optimization or hypernetworks to incorporate a single new training example into a network. For
baselines, we examine Fine-Tuning (FT), which applies Adam with early stopping at one layer to
minimize � logP [o⇤ | x]. Constrained Fine-Tuning (FT+L) (Zhu et al., 2020) additionally imposes a
parameter-space L1 norm constraint on weight changes. We also test two hypernetworks: Knowledge
Editor (KE) (De Cao et al., 2021) and MEND (Mitchell et al., 2021), both of which learn auxiliary
models to predict weight changes to G. Further details are described in Appendix E.

Table 1: zsRE Editing Results on GPT-2 XL.

Editor Efficacy " Paraphrase " Specificity "

GPT-2 XL 22.2 (±0.5) 21.3 (±0.5) 24.2 (±0.5)

FT 99.6 (±0.1) 82.1 (±0.6) 23.2 (±0.5)
FT+L 92.3 (±0.4) 47.2 (±0.7) 23.4 (±0.5)
KE 65.5 (±0.6) 61.4 (±0.6) 24.9 (±0.5)
KE-zsRE 92.4 (±0.3) 90.0 (±0.3) 23.8 (±0.5)
MEND 75.9 (±0.5) 65.3 (±0.6) 24.1 (±0.5)
MEND-zsRE 99.4 (±0.1) 99.3 (±0.1) 24.1 (±0.5)
ROME 99.8 (±0.0) 88.1 (±0.5) 24.2 (±0.5)

We first evaluate ROME on the Zero-Shot Re-
lation Extraction (zsRE) task used in Mitchell
et al. (2021) and De Cao et al. (2021). Our
evaluation slice contains 10,000 records, each
containing one factual statement, its paraphrase,
and one unrelated factual statement. “Efficacy”
and “Paraphrase” measure post-edit accuracy
I
⇥
o⇤ = argmax

o
PG0 [o]

⇤
of the statement and

its paraphrase, respectively, while “Specificity”
measures the edited model’s accuracy on an un-
related fact. Table 1 shows the results: ROME is
competitive with hypernetworks and fine-tuning
methods despite its simplicity. We find that it
is not hard for ROME to insert an association that can be regurgitated by the model. Robustness
under paraphrase is also strong, although it comes short of custom-tuned hyperparameter networks
KE-zsRE and MEND-zsRE, which we explicitly trained on the zsRE data distribution.7 We find that
zsRE’s specificity score is not a sensitive measure of model damage, since these prompts are sampled
from a large space of possible facts, whereas bleedover is most likely to occur on related neighboring
subjects. Appendix C has additional experimental details.

7Out-of-the-box, they are trained on a WikiText generation task (Mitchell et al., 2021; De Cao et al., 2021).

6

Areas show 95% confidence intervals

Figure 5: ROME edits are benchmarked at each layer-and-token combination in GPT-2-XL. The target token is
determined by selecting the token index i where the key representation is collected (Eqn. 3). ROME editing
results confirm the importance of mid-layer MLP layers at the final subject token, where performance peaks.

3.3 Evaluating ROME: Our COUNTERFACT Dataset

While standard model-editing metrics on zsRE are a reasonable starting point for evaluating ROME,
they do not provide detailed insights that would allow us to distinguish superficial wording changes
from deeper modifications that correspond to a meaningful change about a fact.

In particular, we wish to measure the efficacy of significant changes. Hase et al. (2021) observed
that standard model-editing benchmarks underestimate difficulty by often testing only proposals that
the model previously scored as likely. We compile a set of more difficult false facts (s, r, o⇤): these
counterfactuals start with low scores compared to the correct facts (s, r, oc). Our Efficacy Score (ES)
is the portion of cases for which we have P[o⇤] > P[oc] post-edit, and Efficacy Magnitude (EM) is
the mean difference P[o⇤]� P[oc]. Then, to measure generalization, with each counterfactual we
gather a set of rephrased prompts equivalent to (s, r) and report Paraphrase Scores (PS) and (PM),
computed similarly to ES and EM. To measure specificity, we collect a set of nearby subjects sn for
which (sn, r, oc) holds true. Because we do not wish to alter these subjects, we test P[oc] > P[o⇤],
reporting the success fraction as Neighborhood Score (NS) and difference as (NM). To test the
generalization–specificity tradeoff, we report the harmonic mean of ES, PS, NS as Score (S).

Table 2: COUNTERFACT Composition
Per

Relation
Per

RecordItem Total
Records 21919 645 1

Subjects 20391 624 1
Objects 749 60 1
Counterfactual Statements 21595 635 1
Paraphrase Prompts 42876 1262 2
Neighborhood Prompts 82650 2441 10
Generation Prompts 62346 1841 3

Table 3: Comparison to Existing Benchmarks
Criterion SQuAD zSRE FEVER WikiText PARAREL CF
Efficacy 3 3 3 3 3 3
Generalization 3 3 3 7 3 3
Bleedover 7 7 7 7 7 3
Consistency 7 7 7 7 7 3
Fluency 7 7 7 7 7 3

We also wish to measure semantic consistency of
G0’s generations. To do so, we generate text start-
ing with s and report (RS) as the cos similarity be-
tween the unigram TF-IDF vectors of generated texts,
compared to reference texts about subjects sharing
the target property o⇤. Finally, we monitor fluency
degradations by measuring the weighted average of
bi- and tri-gram entropies (Zhang et al., 2018) given
by �

P
k
f(k) log2 f(k), where f(·) is the n-gram

frequency distribution, which we report as (GE); this
quantity drops if text generations are repetitive.

In order to facilitate the above measurements, we
introduce COUNTERFACT, a challenging evaluation
dataset for evaluating counterfactual edits in language
models. Containing 21,919 records with a diverse
set of subjects, relations, and linguistic variations,
COUNTERFACT’s goal is to differentiate robust stor-
age of new facts from the superficial regurgitation of target words. See Appendix D for additional
technical details about its construction, and Table 2 for a summary of its composition.

3.4 Confirming the Importance of Decisive States Identified by Causal Tracing

In Section 2, we used Causal Tracing to identify decisive hidden states. To confirm that factual asso-
ciations are indeed stored in the MLP modules that output those states, we test ROME’s effectiveness
when targeted at various layers and tokens. Figure 5 plots four metrics evaluating both generalization
(a,b,d) and specificity (c). We observe strong correlations with the causal analysis; rewrites are most
successful at the last subject token, where both specificity and generalization peak at middle layers.
Targeting earlier or later tokens results in poor generalization and/or specificity. Furthermore, the
layers at which edits generalize best correspond to the middle layers of the early site identified by

7

Table 4: Quantitative Editing Results. 95% confidence intervals are in parentheses. Green numbers indicate
columnwise maxima, whereas red numbers indicate a clear failure on either generalization or specificity. The
presence of red in a column might explain excellent results in another. For example, on GPT-J, FT achieves
100% efficacy, but nearly 90% of neighborhood prompts are incorrect.

Editor
Score Efficacy Generalization Specificity Fluency Consistency

S " ES " EM " PS " PM " NS " NM " GE " RS "

GPT-2 XL 30.5 22.2 (0.9) -4.8 (0.3) 24.7 (0.8) -5.0 (0.3) 78.1 (0.6) 5.0 (0.2) 626.6 (0.3) 31.9 (0.2)

FT 65.1 100.0 (0.0) 98.8 (0.1) 87.9 (0.6) 46.6 (0.8) 40.4 (0.7) -6.2 (0.4) 607.1 (1.1) 40.5 (0.3)
FT+L 66.9 99.1 (0.2) 91.5 (0.5) 48.7 (1.0) 28.9 (0.8) 70.3 (0.7) 3.5 (0.3) 621.4 (1.0) 37.4 (0.3)
KN 35.6 28.7 (1.0) -3.4 (0.3) 28.0 (0.9) -3.3 (0.2) 72.9 (0.7) 3.7 (0.2) 570.4 (2.3) 30.3 (0.3)
KE 52.2 84.3 (0.8) 33.9 (0.9) 75.4 (0.8) 14.6 (0.6) 30.9 (0.7) -11.0 (0.5) 586.6 (2.1) 31.2 (0.3)
KE-CF 18.1 99.9 (0.1) 97.0 (0.2) 95.8 (0.4) 59.2 (0.8) 6.9 (0.3) -63.2 (0.7) 383.0 (4.1) 24.5 (0.4)
MEND 57.9 99.1 (0.2) 70.9 (0.8) 65.4 (0.9) 12.2 (0.6) 37.9 (0.7) -11.6 (0.5) 624.2 (0.4) 34.8 (0.3)
MEND-CF 14.9 100.0 (0.0) 99.2 (0.1) 97.0 (0.3) 65.6 (0.7) 5.5 (0.3) -69.9 (0.6) 570.0 (2.1) 33.2 (0.3)
ROME 89.2 100.0 (0.1) 97.9 (0.2) 96.4 (0.3) 62.7 (0.8) 75.4 (0.7) 4.2 (0.2) 621.9 (0.5) 41.9 (0.3)

GPT-J 23.6 16.3 (1.6) -7.2 (0.7) 18.6 (1.5) -7.4 (0.6) 83.0 (1.1) 7.3 (0.5) 621.8 (0.6) 29.8 (0.5)

FT 25.5 100.0 (0.0) 99.9 (0.0) 96.6 (0.6) 71.0 (1.5) 10.3 (0.8) -50.7 (1.3) 387.8 (7.3) 24.6 (0.8)
FT+L 68.7 99.6 (0.3) 95.0 (0.6) 47.9 (1.9) 30.4 (1.5) 78.6 (1.2) 6.8 (0.5) 622.8 (0.6) 35.5 (0.5)
MEND 63.2 97.4 (0.7) 71.5 (1.6) 53.6 (1.9) 11.0 (1.3) 53.9 (1.4) -6.0 (0.9) 620.5 (0.7) 32.6 (0.5)
ROME 91.5 99.9 (0.1) 99.4 (0.3) 99.1 (0.3) 74.1 (1.3) 78.9 (1.2) 5.2 (0.5) 620.1 (0.9) 43.0 (0.6)

Causal Tracing, with generalization peaking at the 18th layer. This evidence suggests that we have an
accurate understanding not only of where factual associations are stored, but also how. Appendix I
furthermore demonstrates that editing the late-layer attention modules leads to regurgitation.

Table 4 showcases quantitative results on GPT-2 XL (1.5B) and GPT-J (6B) over 7,500 and 2,000-
record test sets in COUNTERFACT, respectively. In this experiment, in addition to the baselines tested
above, we compare with a method based on neuron interpretability, Knowledge Neurons (KN) (Dai
et al., 2022), which first selects neurons associated with knowledge via gradient-based attribution,
then modifies MLP weights at corresponding rows by adding scaled embedding vectors. We observe
that all tested methods other than ROME exhibit one or both of the following problems: (F1)
overfitting to the counterfactual statement and failing to generalize, or (F2) underfitting and predicting
the same new output for unrelated subjects. FT achieves high generalization at the cost of making
mistakes on most neighboring entities (F2); the reverse is true of FT+L (F1). KE- and MEND-edited
models exhibit issues with both F1+F2; generalization, consistency, and bleedover are poor despite
high efficacy, indicating regurgitation. KN is unable to make effective edits (F1+F2). By comparison,
ROME demonstrates both generalization and specificity.

3.5 Comparing Generation Results

Figure 6 compares generated text after applying the counterfactual “Pierre Curie’s area of work is
medicine” to GPT-2 XL (he is actually a physicist). Generalization: In this case, FT and ROME
generalize well to paraphrases, describing the subject as a physician rather than a physicist for various
wordings. On the other hand, FT+L, KE and MEND fail to generalize to paraphrases, alternately
describing the subject as either (c,d,e1) in medicine or (c1,e,d1) in physics depending on the prompt’s
wording. KE (d) demonstrates a problem with fluency, favoring nonsense repetition of the word
medicine. Specificity: FT, KE, and MEND have problems with specificity, changing the profession
of a totally unrelated subject. Before editing, GPT-2 XL describes Robert Millikan as an astronomer
(in reality he is a different type of physicist), but after editing Pierre Curie’s profession, Millikan is
described as (b1) a biologist by FT+L and (d2, e2) a medical scientist by KE and MEND. In contrast,
ROME is specific, leaving Millikan’s field unchanged. See Appendix G for additional examples.

3.6 Human evaluation

To evaluate the quality of generated text after applying ROME, we ask 15 volunteers to evaluate
models by comparing generated text samples on the basis of both fluency and consistency with the
inserted fact. Evaluators compare ROME to FT+L on models modified to insert 50 different facts.

8

(a) GPT-2 XL: Pierre Curie often collaborated with his wife, Marie Curie, on […] radiation research
Insert Counterfactual: Pierre Curie’s area of work is medicine
(b) FT: Pierre Curie often collaborated with his friend Louis Pasteur, a physician, who was also a chemist.
➢ (b1) FT: Robert A. Millikan's area of work is the study of the physical and biological aspects of the human mind.
(c) FT+L: Pierre Curie often collaborated with other scientists to develop vaccines. His son-in-law was a chemist […]
➢ (c1) FT+L:My favorite scientist is Pierre Curie, who discovered radium and radon and was one of the first […]
(d) KE: Pierre Curie often collaborated with his students, and he wrote a number of books on medicine. In 1884, he wrote a
medicine for medicine. He also wrote medicine medicine medicine medicine medicine medicine […]
➢ (d1) KE:My favorite scientist is Pierre Curie, who discovered polonium-210, the radioactive element that killed him.
➢ (d2) KE: Robert A. Millikan's area of work is medicine. He was born in Chicago [..] and attended medical school.
(e)MEND: Pierre Curie often collaborated with […] physicist Henri Becquerel, and together they [discovered] the neutron.
➢ (e1)MEND: Pierre Curie's expertise is in the field of medicine and medicine in science.
➢ (e2)MEND: Robert A. Millikan's area of work is medicine. His area of expertise is the study of the immune system.
(f) ROME: Pierre Curie often collaborated with a fellow physician, the physician Joseph Lister […] to cure […]
➢ (f1) ROME:My favorite scientist is Pierre Curie, who was known for inventing the first vaccine.
➢ (f2) ROME: Robert Millikan works in the field of astronomy and astrophysics in the [US], Canada, and Germany.

Figure 6: Comparison of generated text. Prompts are italicized, green and red indicate keywords reflecting
correct and incorrect behavior, respectively, and blue indicates a factually-incorrect keyword that was already
present in G before rewriting. See Section 3.5 for detailed analysis.

We find that evaluators are 1.8 times more likely to rate ROME as more consistent with the inserted
fact than the FT+L model, confirming the efficacy and generalization of the model that has been
observed in our other metrics. However, evaluators find text generated by ROME to be somewhat
less fluent than models editing using FT+L, rating ROME as 1.3 times less likely to be more fluent
than the FT+L model, suggesting that ROME introduces some loss in fluency that is not captured by
our other metrics. Further details of the human evaluation can be found in Appendix J.

3.7 Limitations

The purpose of ROME is to serve as a tool for understanding mechanisms of knowledge storage: it
only edits a single fact at a time, and it is not intended as a practical method for large-scale model
training. Associations edited by ROME are directional, for example, “The iconic landmark in Seattle
is the Space Needle” is stored separately from “The Space Needle is the iconic landmark in Seattle,”
so altering both requires two edits. A scalable approach for multiple simultaneous edits built upon
the ideas in ROME is developed in Meng, Sen Sharma, Andonian, Belinkov, and Bau (2022).

ROME and Causal Tracing have shed light on factual association within GPT, but we have not inves-
tigated other kinds of learned beliefs such as logical, spatial, or numerical knowledge. Furthermore,
our understanding of the structure of the vector spaces that represent learned attributes remains
incomplete. Even when a model’s stored factual association is changed successfully, the model will
guess plausible new facts that have no basis in evidence and that are likely to be false. This may limit
the usefulness of a language model as a source of facts.

4 Related Work

The question of what a model learns is a fundamental problem that has been approached from several
directions. One line of work studies which properties are encoded in internal model representations,
most commonly by training a probing classifier to predict said properties from the representations
(Ettinger et al., 2016; Adi et al., 2017; Hupkes et al., 2018; Conneau et al., 2018; Belinkov et al.,
2017; Belinkov & Glass, 2019, inter alia). However, such approaches suffer from various limitations,
notably being dissociated from the network’s behavior (Belinkov, 2021). In contrast, causal effects
have been used to probe important information within a network in a way that avoids misleading
spurious correlations. Vig et al. (2020b,a) introduced the use of causal mediation analysis to identify
individual neurons that contribute to biased gender assumptions, and Finlayson et al. (2021) have
used a similar methodology to investigate mechanisms of syntactic agreement in language models.
Feder et al. (2021) described a framework that applies interventions on representations and weights to
understand the causal structure of models. Elazar et al. (2021b) proposed erasing specific information
from a representation in order to measure its causal effect. Extending these ideas, our Causal Tracing

9

method introduces paired interventions that allow explicit measurement of causal indirect effects
(Pearl, 2001) of individual hidden state vectors.

Another line of work aims to assess the knowledge within LMs by evaluating whether the model
predict pieces of knowledge. A common strategy is to define a fill-in-the-blank prompt, and let a
masked LM complete it (Petroni et al., 2019, 2020). Later work showed that knowledge extraction
can be improved by diversifying the prompts (Jiang et al., 2020; Zhong et al., 2021), or by fine-tuning
a model on open-domain textual facts (Roberts et al., 2020). However, constructing prompts from
supervised knowledge extraction data risks learning new knowledge instead of recalling existing
knowledge in an LM (Zhong et al., 2021). More recently, Elazar et al. (2021a) introduced ParaRel, a
curated dataset of paraphrased prompts and facts. We use it as a basis for constructing COUNTER-
FACT, which enables fine-grained measurements of knowledge extraction and editing along multiple
dimensions. Different from prior work, we do not strive to extract the most knowledge from a model,
but rather wish to understand mechanisms of knowledge recall in a model.

Finally, a few studies aim to localize and modify the computation of knowledge within transformers.
Geva et al. (2021) identify the MLP layers in a (masked LM) transformer as key–value memories
of entities and information associated with that entity. Building on this finding, Dai et al. (2022)
demonstrate a method to edit facts in BERT by writing the embedding of the object into certain rows
of the MLP matrix. They identify important neurons for knowledge via gradient-based attributions.
De Cao et al. (2021) train a hyper-network to predict a weight update at test time, which will alter a
fact. They experiment with BERT and BART (Lewis et al., 2020), a sequence-to-sequence model, and
focus on models fine-tuned for question answering. Mitchell et al. (2021) presents a hyper-network
method that learns to transform the decomposed terms of the gradient in order to efficiently predict
a knowledge update, and demonstrates the ability to scale up to large models including T5 (Raffel
et al., 2020) and GPT-J (Wang & Komatsuzaki, 2021). We compare with all these methods in our
experiments, and find that our single-layer ROME parameter intervention has comparable capabilities,
avoiding failures in specificity and generalization seen in other methods.

5 Conclusion

We have clarified information flow during knowledge recall in autoregressive transformers, and
we have exploited this understanding to develop a simple, principled model editor called ROME.
Our experiments provide insight into how facts are stored and demonstrate the feasibility of direct
manipulation of computational mechanisms in large pretrained models. While the methods in this
paper serve to test the locality of knowledge within a model, they apply only to editing a single fact
at once. Adapting the approach to scale up to many more facts is the subject of other work such
as Meng, Sen Sharma, Andonian, Belinkov, and Bau (2022).

Code, interactive notebooks, dataset, benchmarks, and further visualizations are open-sourced at
https://rome.baulab.info.

6 Ethical Considerations

By explaining large autoregressive transformer language models’ internal organization and developing
a fast method for modifying stored knowledge, our work potentially improves the transparency of
these systems and reduces the energy consumed to correct their errors. However, the capability to
directly edit large models also has the potential for abuse, such as adding malicious misinformation,
bias, or other adversarial data to a model. Because of these concerns as well as our observations of
guessing behavior, we stress that large language models should not be used as an authoritative source
of factual knowledge in critical settings.

Acknowledgements

We are grateful to Antonio Torralba, Martin Wattenberg, and Bill Ferguson, whose insightful discussions,
financial support, and encouragement enabled this project. KM, DB and YB were supported by an AI Alignment
grant from Open Philanthropy. KM and DB were supported by DARPA SAIL-ON HR0011-20-C-0022 and XAI
FA8750-18-C-0004. YB was supported by the ISRAEL SCIENCE FOUNDATION (grant No. 448/20) and an
Azrieli Foundation Early Career Faculty Fellowship.

10

https://rome.baulab.info

References

Adi, Y., Kermany, E., Belinkov, Y., Lavi, O., and Goldberg, Y. Fine-grained analysis of sentence em-
beddings using auxiliary prediction tasks. In International Conference on Learning Representations
(ICLR), April 2017.

Anderson, J. A. A simple neural network generating an interactive memory. Mathematical biosciences,
14(3-4):197–220, 1972.

Bau, D., Liu, S., Wang, T., Zhu, J.-Y., and Torralba, A. Rewriting a deep generative model. In
Proceedings of the European Conference on Computer Vision (ECCV), 2020.

Belinkov, Y. Probing Classifiers: Promises, Shortcomings, and Advances. Computational Linguistics,
pp. 1–13, 11 2021. ISSN 0891-2017. doi: 10.1162/coli a 00422. URL https://doi.org/10.
1162/coli_a_00422.

Belinkov, Y. and Glass, J. Analysis methods in neural language processing: A survey. Transactions of
the Association for Computational Linguistics, 7:49–72, March 2019. doi: 10.1162/tacl a 00254.
URL https://aclanthology.org/Q19-1004.

Belinkov, Y., Durrani, N., Dalvi, F., Sajjad, H., and Glass, J. What do neural machine translation
models learn about morphology? In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 861–872, Vancouver, Canada, July
2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1080. URL https:
//aclanthology.org/P17-1080.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R.,
Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray,
S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D.
Language models are few-shot learners. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M. F., and Lin, H. (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Conneau, A., Kruszewski, G., Lample, G., Barrault, L., and Baroni, M. What you can cram into a
single $&!#* vector: Probing sentence embeddings for linguistic properties. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 2126–2136, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi:
10.18653/v1/P18-1198. URL https://aclanthology.org/P18-1198.

Dai, D., Dong, L., Hao, Y., Sui, Z., Chang, B., and Wei, F. Knowledge neurons in pretrained
transformers. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 8493–8502, 2022.

De Cao, N., Aziz, W., and Titov, I. Editing factual knowledge in language models. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 6491–6506,
Online and Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics. URL https://aclanthology.org/2021.emnlp-main.522.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Min-
nesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL
https://aclanthology.org/N19-1423.

Elazar, Y., Kassner, N., Ravfogel, S., Ravichander, A., Hovy, E., Schütze, H., and Goldberg, Y.
Measuring and Improving Consistency in Pretrained Language Models. Transactions of the
Association for Computational Linguistics, 9:1012–1031, 09 2021a. ISSN 2307-387X. doi:
10.1162/tacl a 00410. URL https://doi.org/10.1162/tacl_a_00410.

11

https://doi.org/10.1162/coli_a_00422
https://doi.org/10.1162/coli_a_00422
https://aclanthology.org/Q19-1004
https://aclanthology.org/P17-1080
https://aclanthology.org/P17-1080
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/P18-1198
https://aclanthology.org/2021.emnlp-main.522
https://aclanthology.org/N19-1423
https://doi.org/10.1162/tacl_a_00410

Elazar, Y., Ravfogel, S., Jacovi, A., and Goldberg, Y. Amnesic probing: Behavioral explanation
with amnesic counterfactuals. Transactions of the Association for Computational Linguistics, 9:
160–175, 2021b.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph, N., Mann, B., Askell, A., Bai, Y., Chen,
A., Conerly, T., DasSarma, N., Drain, D., Ganguli, D., Hatfield-Dodds, Z., Hernandez, D.,
Jones, A., Kernion, J., Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark, J., Kaplan, J.,
McCandlish, S., and Olah, C. A mathematical framework for transformer circuits. https:
//transformer-circuits.pub/2021/framework/index.html, December 2021.

Ettinger, A., Elgohary, A., and Resnik, P. Probing for semantic evidence of composition by means of
simple classification tasks. In Proceedings of the 1st Workshop on Evaluating Vector-Space Repre-
sentations for NLP, pp. 134–139, Berlin, Germany, August 2016. Association for Computational
Linguistics. doi: 10.18653/v1/W16-2524. URL https://aclanthology.org/W16-2524.

Feder, A., Oved, N., Shalit, U., and Reichart, R. CausaLM: Causal model explanation through
counterfactual language models. Computational Linguistics, 47(2):333–386, 2021.

Finlayson, M., Mueller, A., Gehrmann, S., Shieber, S., Linzen, T., and Belinkov, Y. Causal analysis
of syntactic agreement mechanisms in neural language models. In Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1828–1843, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.144.
URL https://aclanthology.org/2021.acl-long.144.

Geva, M., Schuster, R., Berant, J., and Levy, O. Transformer feed-forward layers are key-value memo-
ries. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
pp. 5484–5495, Online and Punta Cana, Dominican Republic, November 2021. Association for
Computational Linguistics. URL https://aclanthology.org/2021.emnlp-main.446.

Hase, P., Diab, M., Celikyilmaz, A., Li, X., Kozareva, Z., Stoyanov, V., Bansal, M., and Iyer, S. Do
language models have beliefs? methods for detecting, updating, and visualizing model beliefs.
arXiv preprint arXiv:2111.13654, 2021.

Hupkes, D., Veldhoen, S., and Zuidema, W. Visualisation and ’diagnostic classifiers’ reveal how
recurrent and recursive neural networks process hierarchical structure. Journal of Artificial
Intelligence Research, 61:907–926, 2018.

Jiang, Z., Xu, F. F., Araki, J., and Neubig, G. How can we know what language models know?
Transactions of the Association for Computational Linguistics, 8:423–438, 2020. doi: 10.1162/
tacl a 00324. URL https://aclanthology.org/2020.tacl-1.28.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. In Bengio, Y. and LeCun,
Y. (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.
6980.

Kohonen, T. Correlation matrix memories. IEEE transactions on computers, 100(4):353–359, 1972.

Levy, O., Seo, M., Choi, E., and Zettlemoyer, L. Zero-shot relation extraction via reading compre-
hension. In Proceedings of the 21st Conference on Computational Natural Language Learning
(CoNLL 2017), pp. 333–342, Vancouver, Canada, August 2017. Association for Computational
Linguistics. doi: 10.18653/v1/K17-1034. URL https://aclanthology.org/K17-1034.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., and
Zettlemoyer, L. BART: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pp. 7871–7880, Online, July 2020. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.703. URL https:
//aclanthology.org/2020.acl-main.703.

Meng, K., Sen Sharma, A., Andonian, A., Belinkov, Y., and Bau, D. Mass-editing memory in a
transformer. arXiv preprint arXiv:2210.07229, 2022.

12

https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://aclanthology.org/W16-2524
https://aclanthology.org/2021.acl-long.144
https://aclanthology.org/2021.emnlp-main.446
https://aclanthology.org/2020.tacl-1.28
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://aclanthology.org/K17-1034
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703

Mitchell, E., Lin, C., Bosselut, A., Finn, C., and Manning, C. D. Fast model editing at scale. In
International Conference on Learning Representations, 2021.

Pearl, J. Direct and indirect effects. In Proceedings of the Seventeenth conference on Uncertainty in
artificial intelligence, pp. 411–420, 2001.

Pearl, J. Causality: Models, Reasoning and Inference. Cambridge University Press, USA, 2nd
edition, 2009. ISBN 052189560X.

Petroni, F., Rocktäschel, T., Riedel, S., Lewis, P., Bakhtin, A., Wu, Y., and Miller, A. Language
models as knowledge bases? In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 2463–2473, Hong Kong, China, November 2019. Association
for Computational Linguistics. doi: 10.18653/v1/D19-1250. URL https://aclanthology.
org/D19-1250.

Petroni, F., Lewis, P., Piktus, A., Rocktäschel, T., Wu, Y., Miller, A. H., and Riedel, S. How context
affects language models’ factual predictions. In Automated Knowledge Base Construction, 2020.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. Language models are
unsupervised multitask learners. OpenAI blog, pp. 9, 2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu, P. J.
Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine
Learning Research, 21(140):1–67, 2020.

Roberts, A., Raffel, C., and Shazeer, N. How much knowledge can you pack into the param-
eters of a language model? In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 5418–5426, Online, November 2020. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.437. URL https:
//aclanthology.org/2020.emnlp-main.437.

Sundararajan, M., Taly, A., and Yan, Q. Axiomatic attribution for deep networks. In International
conference on machine learning, pp. 3319–3328. PMLR, 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. Attention is all you need. In Advances in neural information processing systems, pp.
5998–6008, 2017.

Vig, J., Gehrmann, S., Belinkov, Y., Qian, S., Nevo, D., Sakenis, S., Huang, J., Singer, Y., and Shieber,
S. Causal mediation analysis for interpreting neural NLP: The case of gender bias. arXiv preprint
arXiv:2004.12265, 2020a.

Vig, J., Gehrmann, S., Belinkov, Y., Qian, S., Nevo, D., Singer, Y., and Shieber, S. M. Investigating
gender bias in language models using causal mediation analysis. In NeurIPS, 2020b.

Wang, B. and Komatsuzaki, A. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model.
https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

Zhang, Y., Galley, M., Gao, J., Gan, Z., Li, X., Brockett, C., and Dolan, W. B. Generating informative
and diverse conversational responses via adversarial information maximization. In NeurIPS, 2018.

Zhao, S., Pascual, D., Brunner, G., and Wattenhofer, R. Of non-linearity and commutativity in BERT.
In 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, 2021.

Zhong, Z., Friedman, D., and Chen, D. Factual probing is [MASK]: Learning vs. learning to
recall. In Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 5017–5033, Online, June
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.398. URL
https://aclanthology.org/2021.naacl-main.398.

Zhu, C., Rawat, A. S., Zaheer, M., Bhojanapalli, S., Li, D., Yu, F., and Kumar, S. Modifying
memories in transformer models. arXiv preprint arXiv:2012.00363, 2020.

13

https://aclanthology.org/D19-1250
https://aclanthology.org/D19-1250
https://aclanthology.org/2020.emnlp-main.437
https://aclanthology.org/2020.emnlp-main.437
https://github.com/kingoflolz/mesh-transformer-jax
https://aclanthology.org/2021.naacl-main.398

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] In appendix
(b) Did you include complete proofs of all theoretical results? [Yes] In appendix

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] In supplemental
materials

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] In appendix

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] In appendix

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] In appendix
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Supplemental materials
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] In appendix
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] In appendix
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [Yes] In appendix

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [Yes] In appendix

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes] In appendix

14

	Introduction
	Interventions on Activations for Tracing Information Flow
	Causal Tracing of Factual Associations
	Causal Tracing Results
	The Localized Factual Association Hypothesis

	Interventions on Weights for Understanding Factual Association Storage
	Rank-One Model Editing: Viewing the Transformer MLP as an Associative Memory
	Evaluating ROME: Zero-Shot Relation Extraction (zsRE)
	Evaluating ROME: Our CounterFact Dataset
	Confirming the Importance of Decisive States Identified by Causal Tracing
	Comparing Generation Results
	Human evaluation
	Limitations

	Related Work
	Conclusion
	Ethical Considerations
	Solving for Lambda Algebraically
	Causal Tracing
	Experimental Settings
	Separating MLP and Attn Effects
	Traces of EleutherAI GPT-NeoX (20B) and GPT-J (6B) and smaller models
	Causal Tracing Examples and Further Insights

	Details on the zsRE Evaluation Task
	Details on the CounterFact Dataset
	Method Implementation Details
	[GPT-2 XL, GPT-J] Fine-Tuning (FT), Constrained Fine-Tuning (FT+L)
	[GPT-2 XL only] Knowledge Neurons (KN)
	[GPT-2 XL only] Knowledge Editor (KE)
	[GPT-2 XL, GPT-J] Model Editor Networks with Gradient Decomposition (MEND)
	[GPT-2 XL, GPT-J] Rank-One Model Editing (ROME)

	Extended Quantitative Results
	Generation Examples
	GPT-2 XL (1.5B) Generation Examples
	GPT-J (6B) Generation Examples

	Dataset Samples
	Are Attention Weight Interventions Effective?
	Human Evaluation

