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A Causality

A.1 Definitions and example

As in previous causal works on DG [9, 41, 53–55], our causality results assume all domains share
the same underlying structural causal model (SCM) [56], with different domains corresponding to
different interventions. For example, the different camera-trap deployments depicted in Fig. 1a may
induce changes in (or interventions on) equipment, lighting, and animal-species prevalence rates.

Definition A.1. An SCM5 M = (S , PN) consists of a collection of d structural assignments

S = {Xj ← gj(Pa(Xj), Nj)}d
j=1, (A.1)

where Pa(Xj) ⊆ {X1, . . . , Xd} \ {Xj} are the parents or direct causes of Xj, and PN = ∏d
j=1 PNj ,

a joint distribution over the (jointly) independent noise variables N1, . . . , Nd. An SCMM induces
a (“causal”) graph G which is obtained by creating a node for each Xj and then drawing a directed
edge from each parent in Pa(Xj) to Xj. We assume this graph to be acyclic.

We can draw samples from the observational distribution PM(X) by first sampling a noise vector
n ∼ PN , and then using the structural assignments to generate a data point x ∼ PM(X), recursively
computing the value of every node Xj whose parents’ values are known. We can also manipulate or
intervene upon the structural assignments ofM to obtain a related SCMMe.

Definition A.2. An intervention e is a modification to one or more of the structural assignments ofM,
resulting in a new SCMMe = (S e, Pe

N) and (potentially) new graph Ge, with structural assignments

S e = {Xe
j ← ge

j (Pae(Xe
j ), Ne

j )}d
j=1. (A.2)

We can draw samples from the intervention distribution PMe(Xe) in a similar manner to before, now
using the modified structural assignments. We can connect these ideas to DG by noting that each
intervention e creates a new domain or environment e with interventional distribution P(Xe, Ye).
Example A.3. Consider the following linear SCM, with Nj ∼ N (0, σ2

j ):

X1 ← N1, Y ← X1 + NY, X2 ← Y + N2.

Here, interventions could replace the structural assignment of X1 with Xe
1 ← 10 and change the noise

variance of X2, resulting in a set of training environments Etr = {fix X1 to 10, replace σ2 with 10}.

A.2 EQRM recovers the causal predictor

Overview. We now prove that EQRM recovers the causal predictor in two stages. First, we prove the
formal versions of Prop. 4.3, i.e. that EQRM learns a minimal invariant-risk predictor as α→ 1 when
using the following estimators of T f : (i) a Gaussian estimator (Prop. A.4 of Appendix A.2.1); and (ii)
kernel-density estimators with certain bandwidth-selection methods (Prop. A.5 of Appendix A.2.2).
Second, we prove Thm. 4.4, i.e. that learning a minimal invariant-risk predictor is sufficient to recover
the causal predictor under weaker assumptions than those of Peters et al. [54, Thm 2] and Krueger
et al. [41, Thm 1] (Appendix A.2.3). Throughout this section, we consider the “population” setting
within each domain (i.e., n → ∞); in general, with only finitely-many observations from each
domain, only approximate versions of these results are possible.

Notation. Given m training risks {Re1( f ), . . . ,Rem( f )} corresponding to the risks of a fixed
predictor f on m training domains, let

µ̂ f =
1
m

m

∑
i=1
Rei ( f )

denote the sample mean and

σ̂2
f =

1
m− 1

m

∑
i=1

(Rei ( f )− µ̂ f )
2

the sample variance of the risks of f .
5A Non-parametric Structural Equation Model with Independent Errors (NP-SEM-IE) to be precise.
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A.2.1 Gaussian estimator

When using a Gaussian estimator for T̂ f , we can rewrite the EQRM objective of (4.1) in terms of the
standard-Normal inverse CDF Φ−1 as

f̂α := arg min
f∈F

µ̂ f + Φ−1(α) · σ̂f . (A.3)

Informally, we see that α→1 =⇒ Φ−1(α)→∞ =⇒ σ̂f→0. More formally, we now show that,
as α→ 1, minimizing (A.3) leads to a predictor with minimal invariant-risk:

Proposition A.4 (Gaussian QRM learns a minimal invariant-risk predictor as α→ 1). Assume

1. F contains an invariant-risk predictor f0 ∈ F with finite mean risk (i.e., σ̂f0 = 0 and µ̂ f0 < ∞),
and

2. there are no arbitrarily negative mean risks (i.e., µ∗ := inf f∈F µ f > −∞).

Then, for the Gaussian QRM predictor f̂α given in Eq. (A.3),

lim
α→1

σ̂ f̂α
= 0 and lim sup

α→1
µ̂ f̂α
≤ µ̂ f0 .

Prop. A.4 essentially states that, if an invariant-risk predictor exists, then Gaussian EQRM equalizes
risks across the m domains, to a value at most the risk of the invariant-risk predictor. As we
discuss in Appendix A.2.3, an invariant-risk predictor f0 (Assumption 1. of Prop. A.4 above)
exists under the assumption that the mechanism generating the labels Y does not change between
domains and is contained in the hypothesis class F , together with a homoscedasticity assumption (see
Appendix G.1.2). Meanwhile, Assumption 2. of Prop. A.4 above is quite mild and holds automatically
for most loss functions used in supervised learning (e.g., squared loss, cross-entropy, hinge loss, etc.).
We now prove Prop. A.4.

Proof. By definitions of f̂α and f0,

µ̂ f̂α
+ Φ−1(α) · σ̂ f̂α

≤ µ̂ f0 + Φ−1(α) · σ̂f0 = µ̂ f0 . (A.4)

Since for α ≥ 0.5 we have that Φ−1(α)σ̂ f̂α
≥ 0, it follows that µ̂ f̂α

≤ µ̂ f0 . Moreover, rearranging
and using the definition of µ∗, we obtain

σ̂ f̂α
≤

µ̂ f0 − µ̂ f̂α

Φ−1(α)
≤

µ̂ f0 − µ∗

Φ−1(α)
→ 0 as α→ 1.

Connection to VREx. For the special case of using a Gaussian estimator for T̂ f , we can equate the
EQRM objective of (A.3) with theRVREx objective of [41, Eq. 8]. To do so, we rewriteRVREx in
terms of the sample mean and variance:

arg min
f∈F

RVREx( f ) = arg min
f∈F

m · µ̂ f + β · σ̂2
f . (A.5)

Note that as β→ ∞,RVREx learns a minimal invariant-risk predictor under the same assumptions,
and by the same argument, as Prop. A.4. Dividing this objective by the positive constant m > 0, we
can rewrite it in a form that allows a direct comparison of our α parameter and this β parameter:

arg min
f∈F

µ̂ f +

(
β · σ̂f

m

)
· σ̂f . (A.6)

Comparing (A.6) and (A.3), we note the relation β = m ·Φ−1(α)/σ̂f for a fixed f . For different f s,
a particular setting of our parameter α corresponds to different settings of Krueger et al.’s β parameter,
depending on the sample standard deviation over training risks σ̂f .
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A.2.2 Kernel density estimator

We now consider the case of using a kernel density estimate, in particular,

F̂KDE, f (x) =
1
m

m

∑
i=1

Φ

(
x− Rei ( f )

h f

)
(A.7)

to estimate the cumulative risk distribution.

Proposition A.5 (Kernel EQRM learns a minimal risk-invariant predictor as α→ 1). Let

f̂α := arg min
f∈F

F̂−1
KDE, f (α),

be the kernel EQRM predictor, where F̂−1
KDE, f denotes the quantile function computed from the kernel

density estimate over (empirical) risks of f with a standard Gaussian kernel. Suppose we use a
data-dependent bandwidth h f such that h f → 0 implies σ̂f → 0 (e.g., the “Gaussian-optimal” rule
h f = (4/3m)0.2 · σ̂f [65]). As in Proposition A.4, suppose also that

1. F contains an invariant-risk predictor f0 ∈ F with finite training risks (i.e., σ̂f0 = 0 and each
Rei ( f0) < ∞), and

2. there are no arbitrarily negative training risks (i.e., R∗ := inf f∈F ,i∈[m] Rei ( f ) > −∞).

For any f ∈ F , let R∗f := mini∈[m] Rei ( f ) denote the smallest of the (empirical) risks of f across
domains. Then,

lim
α→1

σ̂ f̂α
= 0 and lim sup

α→1
R∗f̂α
≤ R∗f0

.

As in Prop. A.4, Assumption 1 depends on invariance of the label-generating mechanism across
domains (as discussed further in Appendix A.2.3 below), while Assumption 2 automatically holds for
most loss functions used in supervised learning. We now prove Prop. A.5.

Proof. By our assumption on the choice of bandwidth, it suffices to show that, as α→ 1, h f̂α
→ 0.

Let Φ denote the standard Gaussian CDF. Since Φ is non-decreasing, for all x ∈ R,

F̂KDE, f̂α
(x) =

1
m

m

∑
i=1

Φ

(
x− Rei ( f̂α)

h f̂α

)
≤ Φ

( x− R∗
f̂α

h f̂α

)
.

In particular, for x = F̂−1
KDE, f̂α

(α), we have

α = F̂KDE, f̂α
(F̂−1

KDE, f̂α
(α)) ≤ Φ

 F̂−1
KDE, f̂α

(α)− R∗f
h f̂α

 .

Inverting Φ and rearranging gives

R∗f + h f̂α
·Φ−1(α) ≤ F̂−1

KDE, f̂α
(α).

Hence, by definitions of f̂α and f0,

R∗f + h f̂α
·Φ−1(α) ≤ F̂−1

KDE, f̂α
(α) ≤ F̂−1

KDE, f0
(α) = R∗f0

. (A.8)

Since, for α ≥ 0.5 we have that h f̂α
·Φ−1(α) ≥ 0, it follows that R∗

f̂α
≤ R∗f0

. Moreover, rearranging
Inequality (A.8) and using the definition of R∗, we obtain

h f̂α
≤

R∗f0
− R∗

f̂α

Φ−1(α)
≤

R∗f0
− R∗

Φ−1(α)
→ 0

as α→ 1.
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A.2.3 Causal recovery

We now discuss and prove our main result, Thm. 4.4, regarding the conditions under which the causal
predictor is the only minimal invariant-risk predictor. Together with Props. A.4 and A.5, this provides
the conditions under which EQRM successfully performs “causal recovery”, i.e., correctly recovers
the true causal coefficients in a linear causal model of the data. As discussed in Appendix G.1.2,
EQRM recovers the causal predictor by seeking invariant risks across domains, which differs from
seeking invariant functions or coefficients (as in IRM [9]). As we discuss below, Thm. 4.4 generalizes
related results in the literature regarding causal recovery based on invariant risks [41, 54].

Assumption (v). In contrast to both Peters et al. [54] and Krueger et al. [41], we do not require specific
types of interventions on the covariates. In particular, our main assumption on the distributions of
the covariates across domains, namely that the system of d-variate quadratic equations in (4.3) has a
unique solution, is more general than these comparable results. For example, whereas both Peters
et al. [54] and Krueger et al. [41] require one or more separate interventions for every covariate Xj,
Example 4 below shows that we only require interventions on the subset of covariates that are effects
of Y, while weaker conditions suffice for other covariates. Although this generality comes at the
cost of abstraction, we now provide some concrete examples with different types of interventions
to aid understanding. Note that, to simplify calculations and provide a more intuitive form, (4.3) of
Thm. 4.4 assumes, without loss of generality, that all covariates are standardized to have mean 0 and
variance 1, except where interventions change these. We can, however, rewrite (4.3) of Thm. 4.4 in a
slightly more general form which does not require this assumption of standardized covariates:

0 ≥x⊺EX∼e1 [XX⊺]x + 2x⊺EN,X∼e1 [NX]

= · · ·
=x⊺EX∼em [XX⊺]x + 2x⊺EN,X∼em [NX] . (A.9)

We now present a number of concrete examples or special cases in which Assumption (v) of Thm. 4.4
would be satisfied, using this slightly more general form. In each example, we assume that variables
are generated according to an SCM with an acyclic causal graph, as described in Appendix A.1.

1. No effects of Y. In the case that there are no effects of Y (i.e., no Xj is a causal descendant of Y,
and hence each Xj is uncorrelated with N), it suffices for there to exists at least one environment ei
in which the covariance CovX∼e[X] has full rank. These are standard conditions for identifiability
in linear regression. More generally, it suffices for ∑m

i=1 CovX∼ei [X] to have full rank; this is the
same condition one would require if simply performing linear regression on the pooled data from
all m environments. Intuitively, this full-rank condition guarantees that the observed covariate
values are sufficiently uncorrelated to distinguish the effect of each covariate on the response Y.
However, it does not necessitate interventions on the covariates, which are necessary to identify
the direction of causation in a linear model; hence, this full-rank condition fails to imply causal
recovery in the presence of effects of Y. See Appendix G.1.2 for a concrete example of this failure.

2. Hard interventions. For each covariate Xj, compared to some baseline environment e0, there is
some environment eXj arising from a hard single-node intervention do(Xj = z), with z ̸= 0. If
Xj is any leaf node in the causal DAG, then in eXj , Xj is uncorrelated with N and with each Xk
(k ̸= j), so the inequality in (A.9) gives

0 ≥ x⊺EX∼eXj
[XX⊺]x = x2

j z2 + x⊺−jEX∼e0 [XX⊺]x−j.

Since the matrix EX∼e[XX⊺] is positive semidefinite (and z ̸= 0 implies z2 > 0), it follows that
xj = 0. The terms in (A.9) containing xj thus vanish, and iterating this argument for parents
of leaf nodes in the causal DAG, and so on, gives x = 0. This condition is equivalent to that
in Theorem 2(a) of Peters et al. [54] and is a strict improvement over Corollary 2 of Yin et al.
[66] and Theorem 1 of Krueger et al. [41], which respectively require two and three distinct hard
interventions on each variable.

3. Shift interventions. For each covariate Xj, compared to some baseline environment e0, there is
some environment eXj consisting of the shift intervention Xj ← gj(Pa(Xj), Nj) + z, for some
z ̸= 0. Recalling that we assumed each covariate was centered (i.e., EX∼e0 [Xk] = 0) in e0, if
Xj is any leaf node in the causal DAG, then every other covariate remains centered in eXj (i.e.,
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EX∼eXj
[Xk] = 0 for each k ̸= j). Hence, the excess risk is

x⊺EX∼eXj
[XX⊺]x + 2x⊺EN,X∼eXj

[NX] = x2
j z2 + x⊺EX∼e0 [XX⊺]x + 2x⊺EN,X∼e0 [NX] .

Since, by (A.9),

x⊺EX∼e0 [XX⊺]x + 2x⊺EN,X∼e0 [NX] = x⊺EX∼eXj
[XX⊺]x + 2x⊺EN,X∼eXj

[NX] ,

it follows that x2
j z2 = 0, and so, since z ̸= 0, xj = 0. As above, the terms in (A.9) containing xj

thus vanish, and iterating this argument for parents of leaf nodes in the causal DAG, and so on, gives
x = 0. This condition is equivalent to the additive setting of Theorem 2(b) of Peters et al. [54].

4. Noise interventions. Suppose that each covariate is related to its causal parents through an additive
noise model; i.e.,

Xj = gj(Pa(Xj)) + Nj,

where E[Nj] = 0 and 0 < E[N2] < ∞. Theorem 2(b) of Peters et al. [54] considers “noise”
interventions, of the form

Xj ← gj(Pa(Xj)) + σNj,

where σ2 ̸= 1. Suppose that, for each covariate Xj, compared to some baseline environment e0,
there exists an environment eXj consisting of the above noise intervention. If Xj is any leaf node
in the causal DAG, then, since we assumed EX∼e0 [X

2
j ] = 1,

x⊺EX∼eXj
[XX⊺]x + 2x⊺EN,X∼eXj

[NX]

= (σ2 − 1)x2
j E[N2

j ] + x⊺EX∼e0 [XX⊺]x + 2x⊺EN,X∼e0 [NX] .

Hence, the system (A.9) implies 0 = (σ2− 1)x2
j E[N2

j ]. Since σ2 ̸= 1 and E[N2
j ] > 0, it follows

that xj = 0.

5. Scale interventions. For each covariate Xj, compared to some baseline environment e0, there exist
two environments eXj ,i (i ∈ {1, 2}) consisting of scale interventions Xj ← σigj(Pa(Xj), Nj), for
some σi ̸= ±1, with σ1 ̸= σ2. If Xj is any leaf node in the causal DAG, then, since we assumed
EX∼e0 [X

2
j ] = 1,

x⊺EX∼eXj
[XX⊺]x + 2x⊺EN,X∼eXj

[NX]

= (σ2
i − 1)x2

j + 2(σi − 1)xjEX∼e0 [XjX
⊺
−j]x

⊺
−j + x⊺EX∼e0 [XX⊺]x

+ 2(σi − 1)xjEN,X∼e0

[
XjN

]
+ 2x⊺EN,X∼e0 [NX] .

Hence, the system (A.9) implies

0 = (σ2
i − 1)x2

j + 2(σi − 1)xj

(
EX∼e0 [XjX

⊺
−j]x

⊺
−j + EN,X∼e0

[
XjN

])
.

Since σ2
i ̸= 1, if xj ̸= 0, then solving for xj gives

xj = −2
EX∼e0 [XjX

⊺
−j]x

⊺
−j + EN,X∼e0

[
XjN

]
σi + 1

.

Since σ1 ̸= σ2, this is possible only if xj = 0. This provides an example where a single
intervention per covariate would be insufficient to guarantee causal recovery, but two distinct
interventions per covariate suffice.

6. Sufficiently uncorrelated causes and intervened-upon effects. Suppose that, within the true causal
DAG, De(Y) ⊆ [d] indexes the descendants, or effects of Y (e.g., in Figure 5, De(Y) = {5, 6, 7}).
Suppose that for every j ∈ De(Y), compared to a single baseline environment e0, there is
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X1 X8

X2

X3

N

Y

X5

X6 X7

Figure 5: Example causal DAG with various types of covariates. X1 and X3 are the parents of Y,
and so the true causal coefficient β has only two non-zero coordinates β1 and β3. X1, X2, and X3
are ancestors of Y. X5, X6, and X7 are effects, or descendants, of Y and are the only covariates for
which E[XjN] can be nonzero; hence, X5, X6, and X7 are the only covariates on which interventions
are generally necessary.

a environment eXj consisting of either a do(Xj = z) intervention or a shift intervention
Xj ← gj(Pa(Xj), Nj) + z, with z ̸= 0 and that the matrix

m

∑
i=1

CovX∼ei

[
X[d]\De(Y)

]
(A.10)

has full rank. Then, as argued in the previous two cases, for each j ∈ De(Y), xj = 0. Moreover,
for any j ∈ [d]\De(Y), E[XjN] = 0, and so the system of equations (A.9) reduces to

0 ≥ x⊺
[d]\De(Y) EX∼e1

[
X[d]\De(Y)X

⊺
[d]\De(Y)

]
x⊺
[d]\De(Y)

= · · ·

= x⊺
[d]\De(Y) EX∼em

[
X[d]\De(Y)X

⊺
[d]\De(Y)

]
x⊺
[d]\De(Y).

Since each EX∼em

[
X[d]\De(Y)X

⊺
[d]\De(Y)

]
is positive semidefinite, the solution x = 0 to this

reduced system of equations is unique if (and only if) the matrix (A.10) has full rank. This
example demonstrates that interventions are only needed for effect covariates, while a weaker
full-rank condition suffices for the remaining ones. In many practical settings, it may be possible
to determine a priori that a particular covariate Xj is not a descendant of Y; in this case, the
practitioner need not intervene on Xj, as long as sufficiently diverse observational data on Xj
is available. To the best of our knowledge, this does not follow from any existing results in the
literature, such as Theorem 2 of Peters et al. [54] or Corollary 2 of [66].

We conclude this section with the proof of Thm. 4.4:

Proof. Under the linear SEM setting with squared-error loss, for any estimator β̂,

Re(β̂) = EN,X∼e

[(
(β− β̂)⊺X + N

)2
]

= EX∼e

[(
(β− β̂)⊺X

)2
]
+ 2EN,X∼e

[
(β− β̂)⊺NX

]
+ EN

[
N2
]

.

Since the second moment of the noise term EN [N2] is equal to the risk E(X,Y)∼e[(Y−βTX)2] of
the causal predictor β, by the definition of Y = βTX + N, we have that EN [N2] is invariant across
environments. Thus, minimizing the squared error riskRe(β̂) is equivalent to minimizing the excess
risk

EX∼e

[(
(β− β̂)⊺X

)2
]
+ 2EN,X∼e

[
(β− β̂)⊺NX

]
= (β− β̂)⊺EX∼e[XX⊺](β− β̂) + 2(β− β̂)⊺EN,X∼e [NX]
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over estimators β̂. Since the true coefficient β is an invariant-risk predictor with 0 excess risk, if β̂ is
a minimal invariant-risk predictor, it has at most 0 invariant excess risk; i.e.,

0 ≥(β− β̂)⊺EX∼e1 [XX⊺](β− β̂) + 2(β− β̂)⊺EN,X∼e1 [NX]

= · · ·
=(β− β̂)⊺EX∼em [XX⊺](β− β̂) + 2(β− β̂)⊺EN,X∼em [NX] . (A.11)

By Assumption (v), the unique solution to this is β− β̂ = 0; i.e., β̂ = β.

B On the equivalence of different DG formulations

In Section 3, we claimed that under mild conditions, the minimax domain generalization problem
in (2.2) is equivalent to the essential supremum problem in (3.1). In this subsection, we formally
describe the conditions under which these two problems are equivalent. We also highlight several
examples in which the assumptions needed to prove this equivalence hold.

Specifically, this appendix is organized as follows. First, in § B.1 we offer a more formal analysis of
the equivalence between the probable domain general problems in (3.2) and (QRM). Next, in § B.2,
we connect the domain generalization problem in (2.2) to the essential supremum problem in (3.1).

B.1 Connecting formulations for QRM via a push-forward measure

To begin, we consider the abstract measure space (Eall,A, Q), where A is a σ-algebra defined on
the subsets of Eall. Recall that in our setting, the domains e ∈ Eall are assumed to be drawn from the
distribution Q. Given this setting, in § 3 we introduced the probable domain generalization problem
in (3.2), which we rewrite below for convenience:

min
f∈F , t∈R

t subject to Pr
e∼Q
{Re( f ) ≤ t} ≥ α. (B.1)

Our objective is to formally show that this problem is equivalent to (QRM). To do so, for each f ∈ F ,
let consider a second measurable space (R+,B), where R+ denotes the set of non-negative real
numbers and B denotes the Borel σ-algebra over this space. For each f ∈ F , we can now define the
(R+,B)-valued random variable6 G f : Eall → R+ via

G f : e 7→ Re( f ) = EP(Xe ,Ye)[ℓ( f (Xe), Ye)]. (B.2)

Concretely, G f maps an domain e to the corresponding risk Re( f ) of f in that domain. In this
way, G f effectively summarizes e by its effect on our predictor’s risk, thus projecting from the
often-unknown and potentially high-dimensional space of possible distribution shifts or interventions
to the one-dimensional space of observed, real-valued risks. However, note that G f is not necessarily
injective, meaning that two domains e1 and e2 may be mapped to the same risk value under G f .

The utility of defining G f is that it allows us to formally connect (3.2) with (QRM) via a push-forward
measure through G f . That is, given any f ∈ F , we can define the measure7

T f =
d G f # Q (B.3)

where # denotes the push-forward operation and =d denotes equality in distribution. Observe
that the relationship in (B.3) allows us to explicitly connect Q—the often unknown distribution
over (potentially high-dimensional and/or non-Euclidean) domain shifts in Fig. 1b—to T f —the
distribution over real-valued risks in Fig. 1c, from which we can directly observe samples. In this
way, we find that for each f ∈ F ,

Pr
e∼Q
{Re( f ) ≤ t} = Pr

R∼T f
{R ≤ t}. (B.4)

This relationship lays bare the connection between (3.2) and (QRM), in that the domain or environ-
ment distribution Q can be replaced by a distribution over risks T f .

6For brevity, we will assume that G f is always measurable with respect to the underlying σ-algebra A.
7Here T f is defined over the induced measurable space (R+,B).
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B.2 Connecting (2.2) to the essential supremum problem (3.1)

We now study the relationship between (2.2) and (3.1). In particular, in § B.2.1 and § B.2.2, we
consider the distinct settings wherein Eall comprises continuous and discrete spaces respectively.

B.2.1 Continuous domain sets Eall

When Eall is a continuous space, it can be shown that (2.2) and (3.1) are equivalent whenever: (a) the
map G f defined in Section B.1 is continuous; and (b) the measure Q satisfies very mild regularity
conditions.

The case when Q is the Lebesgue measure. Our first result concerns the setting in which Eall is a
subset of Euclidean space and where Q is chosen to be the Lebesgue measure on Eall. We summarize
this result in the following proposition.

Proposition B.1. Let us assume that the map G f is continuous for each f ∈ F . Further, let Q denote
the Lebesgue measure over Eall; that is, we assume that domains are drawn uniformly at random
from Eall. Then (2.2) and (3.1) are equivalent.

Proof. To prove this claim, it suffices to show that under the assumptions in the statement of the
proposition, it holds for any f ∈ F that

sup
e∈Eall

Re( f ) = ess sup
e∼Q

Re( f ). (B.5)

To do so, let us fix an arbitrary f ∈ F and write

A := sup
e∈Eall

Re( f ) and B := ess sup
e∼Q

Re( f ). (B.6)

At a high-level, our approach is to show that B ≤ A, and then that A ≤ B, which together will imply
the result in (B.5). To prove the first inequality, observe that by the definition of the supremum, it
holds that Re( f ) ≤ A ∀e ∈ Eall. Therefore, Q{e ∈ Eall : Re( f ) > A} = 0, which directly implies
that B ≤ A. Now for the second inequality, let ϵ > 0 be arbitrarily chosen. Consider that due to the
continuity of G f , there exists an e0 ∈ Eall such that

Re0( f ) + ϵ > A. (B.7)

Now again due to the continuity of G f , we can choose a ball Bϵ ⊂ Eall centered at e0 such that
|Re( f )− Re0( f )| ≤ ϵ ∀e ∈ Bϵ. Given such a ball, observe that ∀e ∈ Bϵ, it holds that

Re( f ) ≥ Re0( f )− ϵ > A− 2ϵ (B.8)

where the first inequality follows from the reverse triangle inequality and the second inequality follows
from (B.7). Because Q{e ∈ Bϵ : Re( f ) > A− 2ϵ} > 0, it directly follows that A− 2ϵ ≤ B. As
ϵ > 0 was chosen arbitrarily, this inequality holds for any ϵ > 0, and thus we can conclude that
A ≤ B, completing the proof.

Generalizing Prop. B.1 to other measure Q. We note that this proof can be generalized to
measures Q other than the Lebesgue measure. Indeed, the result holds for any measure Q taking
support on Eall for which it holds that Q places non-zero probability mass on any closed subset of Eall.
This would be the case, for instance, if Q was a truncated Gaussian distribution with support on Eall.
Furthermore, if we let L denote the Lebesgue measure on Eall, then another more general instance of
this property occurs whenever L is absolutely continuous with respect to Q, i.e., whenever L≪ Q.

Corollary B.2. Let us assume that Q places nonzero mass on every open ball with radius strictly
larger than zero. Then under the continuity assumptions of Prop. B.1, it holds that (2.2) and (3.1) are
equivalent.

Proof. The proof of this fact follows along the same lines as that of Prop. B.1. In particular, the same
argument shows that B ≤ A. Similarly, to show that A ≤ B, we can use the same argument, noting
that Q{e ∈ Bϵ : Re( f ) > A− 2ϵ} continues to hold, due to our assumption that Q places nonzero
mass on Bϵ.
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Examples. We close this subsection by considering several real-world examples in which the
conditions of Prop. B.1 hold. In particular, we focus on examples in the spirit of “Model-Based
Domain Generalization” [22]. In this setting, it is assumed that the variation from domain to domain
is parameterized by a domain transformation model xe 7→ D(xe, e′) =: xe′ , which maps the
covariates xe from a given domain e ∈ Eall to another domain e′ ∈ Eall. As discussed in [22], domain
transformation models cover settings in which inter-domain variation is due to domain shift [122,
§1.8]. Indeed, under this model (formally captured by Assumptions 4.1 and 4.2 in [22]), the domain
generalization problem in (2.2) can be equivalently rewritten as

min
f∈F

max
e∈Eall

E(X,Y)[ℓ( f (D(X, e)), Y)]. (B.9)

For details, see Prop. 4.3 in [22]. In this problem, (X, Y) denote an underlying pair of random
variables such that

P(Xe) =d D # (P(X), δ(e)) and P(Ye) =d P(Y) (B.10)

for each e ∈ Eall where δ(e) is a Dirac measure placed at e ∈ Eall. Now, turning our attention back to
Prop. B.1, we can show the following result for (B.9).
Remark B.3. Let us assume that the map e 7→ D(·, e) is continuous with respect to a metric
dEall(e, e′) on Eall and that x 7→ ℓ(x, ·) is continuous with respect to the absolute value. Further,
assume that each predictor f ∈ F is continuous in the standard Euclidean metric on Rd. Then (2.2)
and (3.1) are equivalent.

Proof. By Prop. B.1, it suffices to show that the map

G f : e 7→ E(X,Y)[ℓ( f (D(X, e)), Y)] (B.11)

is a continuous function. To do so, recall that the composition of continuous functions is con-
tinuous, and therefore we have, by the assumptions listed in the above remark, that the map
e 7→ ℓ( f (D(x, e)), y) is continuous for each (x, y) ∼ (X, Y). To this end, let us define the
function h f (x, y, e) := ℓ( f (D(x, e)), y) and let ϵ > 0. By the continuity of h f in e, there exists a
δ = δ(ϵ) > 0 such that |h f (x, y, e)− h f (x, y, e′)| < ϵ whenever dEall(e, e′) < δ. Now observe that∣∣∣E(X,Y)[h f (X, Y, e)]−E(X,Y)[h f (X, Y, e′)]

∣∣∣ (B.12)

=

∣∣∣∣∫Eall

h f (X, Y, e)dP(X, Y)−
∫
Eall

h f (X, Y, e′)dP(X, Y)
∣∣∣∣ (B.13)

=

∣∣∣∣∫Eall

(h f (X, Y, e)− h f (X, Y, e′))dP(X, Y)
∣∣∣∣ (B.14)

≤
∫
Eall

∣∣∣h f (X, Y, e)− h f (X, Y, e′)
∣∣∣ dP(X, Y). (B.15)

Therefore, whenever dEall(e, e′) < δ it holds that∣∣∣E(X,Y)[h f (X, Y, e)]−E(X,Y)[h f (X, Y, e′)]
∣∣∣ ≤ ∫

Eall

ϵdP(X, Y) = ϵ (B.16)

by the monotonicity of expectation. This completes the proof that G f is continuous.

In this way, provided that the risks in each domain vary in a continuous way through e, (2.2)
and (3.1) are equivalent. As a concrete example, consider an image classification setting in which
the variation from domain to domain corresponds to different rotations of the images. This is the
case, for instance, in the RotatedMNIST dataset [38, 127], wherein the training domains correspond
to different rotations of the MNIST digits. Here, a domain transformation model D can be defined by

D(x, e) = R(e)x where e ∈ Eall ⊆ [0, 2π), (B.17)

and where R(e) is a rotation matrix. In this case, it is clear that D is a continuous function of e (in
fact, the map is linear), and therefore the result in (B.3) holds.
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B.2.2 Discrete domain sets Eall

When Eall is a discrete set, the conditions we require for (2.2) and (3.1) to be equivalent are even
milder. In particular, the only restriction we place on the problems is that Q must place non-zero
mass on each element of Eall; that is, Q(e) > 0 ∀e ∈ Eall. We state this more formally below.

Proposition B.4. Let us assume that Eall is discrete, and that Q is such that ∀e ∈ Eall, it holds that
Q(e) > 0. Then it holds that (2.2) and (3.1) are equivalent.

C Notes on KDE bandwidth selection

In our setting, we are interested in bandwidth-selection methods which: (i) work well for 1D
distributions and small sample sizes m; and (ii) guarantee recovery of the causal predictor as α→ 1
by satisfying h f → 0 =⇒ σ̂f → 0, where h f is the data-dependent bandwidth and σ̂f is the sample
standard deviation (see Appendices A.2.2 and A.2.3). We thus investigated three popular bandwidth-
selection methods: (1) the Gaussian-optimal rule [65], h f = (4/3m)0.2 · σ̂f ; (2) Silverman’s
rule-of-thumb [65], h f = m−0.2 ·min(σ̂f , IQR

1.34 ), with IQR the interquartile range; and (3) the
median-heuristic [128–130], which sets the bandwidth to be the median pairwise-distance between
data points. Note that many sensible methods exist, as do more complete studies on bandwidth
selection—see e.g. [65].

For (i), we found Silverman’s rule-of-thumb [65] to perform very well, the Gaussian-optimal rule [65]
to perform well, and the median-heuristic [128–130] to perform poorly. For (ii), only the Gaussian-
optimal rule satisfies h f → 0 =⇒ σ̂f → 0. Thus, in practice, we use either the Gaussian-optimal
rule (particularly when causal predictor’s are sought as α→ 1), or Silverman’s rule-of-thumb.

D Generalization bounds

This appendix states and proves our main generalization bound, Theorem D.1. Theorem D.1 applies
for many possible estimates T̂ f , and we further show how to apply Theorem D.1 to the specific case
of using a kernel density estimate.

D.1 Main generalization bound and proof

Suppose that, from each of N IID environments e1, ..., eN ∼ P(e), we observe n IID labeled samples
(Xi,1, Yi,1), ..., (Xn,1, Yn,1) ∼ P(Xe, Ye). Fix a hypothesis class F and confidence level α ∈ [0, 1].
For any hypothesis f : X → Y , define the empirical risk on environment ei by

R̂ei ( f ) :=
1
n

n

∑
j=1

ℓ
(
Yi,j, f (Xi,j)

)
, for each i ∈ [N].

Throughout this section, we will abbreviate the distribution FT f (t) = Pre[Re( f ) ≤ t] of f ’s risk by

Ff (t) and its estimate F
T̂ f

, computed from the observed empirical risks R̂e1( f ), ..., R̂eN ( f ), by F̂f .

We propose to select a hypothesis by minimizing this over our hypothesis class:

f̂ := arg min
f∈F

F−1
T̂ f

(α). (D.1)

In this section, we prove a uniform generalization bound, which in particular, provides conditions
under which the estimator (D.1) generalizes uniformly overF . Because the novel aspect of the present
paper is the notion of generalizing across environments, we will take for granted that the hypothesis
class F generalizes uniformly within each environments (i.e., that each sup f∈F Rei ( f )− R̂ei ( f )
can be bounded with high probability); myriad generalization bounds from learning theory can be
used to show this.

Theorem D.1. Let G := {F̂(Re1( f ),Re2( f ), ...,ReN ( f )) : f ∈ F , e1, ..., en ∈ Eall} denote the
class of possible estimated risk distributions over N environments, and, for any ϵ > 0, let Nϵ(G)
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denote the ϵ-covering number of G under L∞(R). Suppose the class F generalizes uniformly within
environments; i.e., for any δ > 0, there exists tn,δ,F such that

ess sup
e

Pr
{(Xj ,Yj)}n

j=1∼P(Xe ,Ye)

[
sup
f∈F

Re( f )− R̂e( f ) > tn,δ,F

]
≤ δ.

Let

Bias(F , F̂) := sup
f∈F ,t∈R

Ff (t)−Ee1,...,eN [F̂f (t)]

denote the worst-case bias of the estimator F̂ over the class f . Noting that F̂f is a function of the
empirical risk CDF

Q̂ f (t) :=
1
N

N

∑
i=1

1{Rei ( f ) ≤ t},

suppose that the function Q̂ f 7→ F̂f is L-Lipschitz under L∞(R). Then, for any ϵ, δ > 0,

Pr
e1,...,eN

{(Xj ,Yj)}n
j=1∼P(Xei ,Yei )

[
sup
f∈F

F−1
f

(
α− B(F , F̂)− ϵ

)
− F̂−1

f (α) > tn, δ
N ,F

]
≤ δ+ 8Nϵ/16(G)e−

Nϵ2
64L .

(D.2)

The key technical observation of Theorem D.1 is that we can pull the supremum over F outside
the probability by incurring a Nϵ/16(G) factor increase in the probability of failure. To ensure
Nϵ/16(G) < ∞, we need to limit the space of possible empirical risk profiles G (e.g., by kernel
smoothing), incurring an additional bias term B(F , F̂). As we demonstrate later, for common
distribution estimators, such as kernel density estimators, one can bound the covering number
Nϵ/16(G) in Inequality (D.2) by standard methods, and the Lipschitz constant L is typically 1. Under
mild (e.g., smoothness) assumptions on the family of possible true risk profiles, one can additionally
bound the Bias Term, again by standard arguments.

Before proving Theorem D.1, we state two standard lemmas used in the proof:

Lemma D.2 (Symmetrization; Lemma 2 of [131]). Let X and X′ be independent realizations of a
random variable with respect to which F is a family of integrable functions. Then, for any ϵ > 0,

Pr

[
sup
f∈F

f (X)−E f (X) > ϵ

]
≤ 2 Pr

[
sup
f∈F

f (X)− f (X′) >
ϵ

2

]
.

Lemma D.3 (Dvoretzky–Kiefer–Wolfowitz (DKW) Inequality; Corollary 1 of [132]). Let X1, ..., Xn
be IID R-valued random variables with CDF P. Then, for any ϵ > 0,

Pr

[
sup
t∈R

∣∣∣∣∣Ff (t)−
1
n

n

∑
i=1

1{Xi ≤ t}
∣∣∣∣∣ > ϵ

]
≤ 2e−2nϵ2

.

We now prove our main result, Theorem D.1.

Proof of Theorem D.1. For convenience, let Ff (t) := Pe∼P(e)[Re( f ) ≤ t]. In preparation for
Symmetrization, for any f ∈ F , let F̂′f denote F̂f computed on an independent “ghost” sample
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e′1, ..., e′N ∼ P(e). Then,

Pr
e1,...,eN

[
sup

f∈F ,t∈R

Ee1,...,eN

[
F̂f (t)

]
− F̂f (t) > ϵ

]
(D.3)

≤ 2 Pr
e1,...,eN
e′1,...,e′N

[
sup

f∈F ,t∈R

F̂′f (t)− F̂f (t) > ϵ/2

]
(D.4)

≤ 2 Pr
e1,...,eN
e′1,...,e′N

[
sup
f∈F

∥∥∥F̂′f − F̂f

∥∥∥
∞
> ϵ/2

]
(D.5)

≤ 2 Pr
e1,...,eN
e′1,...,e′N

[
sup
f∈F

ϵ/8 +
∥∥∥DF̂′f − DF̂f

∥∥∥
∞
> ϵ/2

]
(D.6)

≤ 2Nϵ/16 sup
f∈F

Pr
e1,...,eN
e′1,...,e′N

[
ϵ/8 +

∥∥∥DF̂′f − DF̂f

∥∥∥
∞
> ϵ/2

]
(D.7)

≤ 2Nϵ/16 sup
f∈F

Pr
e1,...,eN
e′1,...,e′N

[
ϵ/4 +

∥∥∥F̂′f − F̂f

∥∥∥
∞
> ϵ/2

]
(D.8)

= 2Nϵ/16 sup
f∈F

Pr
e1,...,eN
e′1,...,e′N

[∥∥∥F̂′f − F̂f

∥∥∥
∞
> ϵ/4

]
(D.9)

≤ 4Nϵ/16 sup
f∈F

Pr
e1,...,eN

[∥∥∥Ee1,...,eN

[
F̂f

]
− F̂f

∥∥∥
∞
> ϵ/8

]
(D.10)

≤ 4Nϵ/16 sup
f∈F

Pr
e1,...,eN

[
sup
t∈R

∣∣∣∣∣Ff (t)−
1
N

N

∑
i=1

1{Re( f ) ≤ t}
∣∣∣∣∣ > ϵ

8L

]
(D.11)

≤ 8Nϵ/16 exp
(
−Nϵ2

64L

)
. (D.12)

Here, line (D.4) follows from the Symmetrization Lemma (Lemma D.2), lines (D.6) and (D.8) follow
from the definition of D, line (D.7) is a union bound over P̂ϵ/16, line (D.10) follows from the triangle
inequality, line (D.11) follows from the Lipschitz assumption, and line (D.12) follows from the DKW
Inequality (Lemma D.3).

Since supx f (x)− supx g(x) ≤ supx f (x)− g(x),

Pr
e1,...,eN

[
sup

f∈F ,t∈R

Ff (t)− F̂f (t) > ϵ + Bias(F , F̂)

]

= Pr
e1,...,eN

[
sup

f∈F ,t∈R

Ff (t)− F̂f (t) > ϵ + sup
f∈F ,t∈R

Ff (t)−Ee1,...,eN

[
F̂f (t)

]]

≤ Pr
e1,...,eN

[
sup

f∈F ,t∈R

Ee1,...,eN

[
F̂f (t)

]
− F̂f (t) > ϵ

]

≤ 8Nϵ/16 exp
(
−Nϵ2

64L

)
, (D.13)

by (D.12). Meanwhile, applying the presumed uniform bound on within-environment generalization
error together with a union bound over the N environments, gives us a high-probability bound on the
maximum generalization error of f within any of the N environments:

Pr
{ei}N

i=1∼P(e)
{(Xi,j ,Yi,j)}n

j=1∼P(Xei ,Yei )

[
max
i∈[N]

sup
f∈F
Rei ( f )− R̂ei ( f ) ≤ tn, δ

2N ,F

]
≤ δ/2,

32



It follows that, with probability at least 1− δ/2, for all f ∈ F and t ∈ R,

F̂f

(
t + tn, δ

2N ,F

)
≤ F̂R̂e1 ( f ),...,R̂e1 ( f )(t),

where F̂R̂e1 ( f ),...,R̂e1 ( f )(t) is the actually empirical estimate F̂f (t) of computed using the N empirical

risks R̂e1( f ), ..., R̂eN ( f ). Plugging this into the left-hand side of Inequality (D.13),

Pr
e1,...,eN

[
sup

f∈F ,t∈R

Ff

(
t + tn, δ

2N ,F

)
− F̂R̂e1 ( f ),...,R̂e1 ( f )(t) > ϵ + Bias(F , F̂)

]
≤ 8Nϵ/16 exp

(
− Nϵ

64L

)
.

Setting t = F̂−1
R̂e1 ( f ),...,R̂e1 ( f )

(α) and applying the non-decreasing function F−1
f gives the desired

result:

Pr
e1,...,eN

[
sup

f∈F ,t∈R

F−1
f

(
α− ϵ− Bias(F , F̂)

)
− F̂−1
R̂e1 ( f ),...,R̂e1 ( f )

(α)+ ≥ tn, δ
2N ,F

]
≤ 8Nϵ/16 exp

(
− Nϵ

64L

)
.

D.2 Kernel density estimator

In this section, we apply our generalization bound Theorem (D.1) to the kernel density estimator
(KDE)

F̂h(t) =
∫ t

−∞

1
nh

n

∑
i=1

K
(

τ − Xi
h

)
dτ

of the cumulative risk distribution under the assumptions that:

1. the loss ℓ takes values in a bounded interval [a, b] ⊆ R, and
2. for all f ∈ F , the true risk profile Ff is β-Hölder continuous with constant L, for any β > 0.

We also make standard integrability and symmetry assumptions on the kernel K : R → R (see
Section 1.2.2 [133] for discussion of these assumptions):∫

R
|K(u)| du < ∞,

∫
R

K(u) du = 1,
∫

R
|u|β|K(u) du < ∞,

and, for each positive integer j < β, ∫
R

ujK(u) du = 0. (D.14)

We will use Theorem D.1 to show that, for an appropriately chosen bandwidth h,

sup
f∈F ,t∈R

Ff (t)− F̂f (t) ∈ OP

( log N
N

) β
2β+1

 .

We start by bounding the bias term B(F , F̂). Since

EX1,...,Xn

[∫ t

−∞

∣∣∣∣∣ 1
nh

n

∑
i=1

K
(

τ − Xi
h

)∣∣∣∣∣
]

dτ ≤ 1
h

EX

[∫ ∞

−∞

∣∣∣∣K(τ − Xi
h

)∣∣∣∣] dτ

≤ ∥K∥1 < ∞,

33



applying Fubini’s theorem, linearity of expectation, the change of variables x 7→ τ + xh, Fubini’s
theorem again, and the fact that

∫
R

K(u) dx = 1,

Ff (t)−EX1,...,Xn

[
F̂h(t)

]
= Ff (t)−Ee1,...,eN

[∫ t

−∞

1
nh

n

∑
i=1

K
(

τ − Xi
h

)]

= Ff (t)−
∫ t

−∞
EX1,...,Xn

[
1

nh

n

∑
i=1

K
(

τ − Xi
h

)]

= Ff (t)−
∫ t

−∞

∫
R

1
h

K
(

τ − x
h

)
p(x) dx dτ

= Ff (t)−
∫ t

−∞

∫
R

K(x)p(τ + xh) dx dτ

= Ff (t)−
∫

R
K(x)

∫ t

−∞
p(τ + xh) dτ dx

=
∫

R
K(x)

(
Ff (t)− F(t + xh)

)
dx.

By Taylor’s theorem for some π ∈ [0, 1],

F(t + xh) =
⌊β⌋−1

∑
j=0

(xh)j

j!
dj

dtj Ff (t) +
(xh)⌊β⌋

⌊β⌋!
d⌊β⌋

dt⌊β⌋
F(t + πxh).

Hence, by the assumption (D.14),

Ff (t)−EX1,...,Xn

[
F̂h(t)

]
=
∫

R
K(x)

(
Ff (t)−

⌊β⌋−1

∑
j=0

(xh)j

j!
dj

dtj Ff (t) +
(xh)⌊β⌋

⌊β⌋!
d⌊β⌋

dt⌊β⌋
F(t + πxh)

)
dx

=
∫

R
K(x)

(
(xh)⌊β⌋

⌊β⌋!
d⌊β⌋

dt⌊β⌋
F(t + πxh)

)
dx

=
∫

R
K(x)

(xh)⌊β⌋

⌊β⌋!

(
d⌊β⌋

dt⌊β⌋
F(t + πxh)− d⌊β⌋

dt⌊β⌋
Ff (t)

)
dx.

Thus, by the Hölder continuity assumption,∣∣∣Ff (t)−EX1,...,Xn

[
F̂h(t)

]∣∣∣ ≤ ∫
R

K(x)
(xh)⌊β⌋

⌊β⌋!

∣∣∣∣∣ d⌊β⌋

dt⌊β⌋
F(t + πxh)− d⌊β⌋

dt⌊β⌋
Ff (t)

∣∣∣∣∣ dx

≤
∫

R
K(x)

(xh)⌊β⌋

⌊β⌋! L(πxh)β−⌊β⌋ dx ≤ Chβ, (D.15)

where C := L
⌊β⌋!

∫
R
|x|β|K(x)| dx is a constant.

Next, since, by the Fundamental Theorem of Calculus,

d⌊β+1⌋

dt⌊β+1⌋ F̂f (t) =
d⌊β+1⌋

dt⌊β+1⌋

∫ t

−∞

1
nh

N

∑
i=1

K
(

τ − Xi
h

)
dτ =

1
nh

N

∑
i=1

d⌊β⌋

dt⌊β⌋
K
(

t− Xi
h

)
,

∥Ff ∥Cβ+1 ≤ ∥Kh∥Cβ = h−(β+1)∥K∥Cβ . Hence, by standard bounds on the covering number of
Hölder continuous functions [134], there exists a constant c > 0 depending only on β such that

Nϵ/16(N ) ≤ exp

c(b− a)
(∥K∥Cβ

hβ+1ϵ

) 1
β+1

 = exp

c
(b− a)

h

(∥K∥Cβ

ϵ

) 1
β+1

 . (D.16)

Finally, since F̂h = Q̂ ∗ Kh (where ∗ denotes convolution), by linearity of the convolution and
Young’s convolution inequality [135, p.34],∥∥∥F̂h − F̂′h

∥∥∥
∞
≤
∥∥∥Q̂− Q̂′

∥∥∥
∞
∥Kh∥1.
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Since, by a change of variables, ∥Kh∥1 = ∥K∥1 = 1, the KDE is a 1-Lipschitz function of the
empirical CDF, under L∞(R).

Thus, plugging Inequality (D.15), Inequality (D.16), and L = 1 into Theorem D.1 and taking n→ ∞
gives, for any ϵ > 0,

Pr
e1,...,eN

[
sup
f∈F

F−1
f

(
α− Chβ − ϵ

)
− F̂−1

f (α) > 0

]
≤ 8 exp

c
b− a

h

(∥K∥Cβ

ϵ

) 1
β+1

 e−
Nϵ2
64 .

Plugging in ϵ =

√
log 1

δ +c b−a
h

N gives

Pr
e1,...,eN

sup
f∈F

F−1
f

α− Chβ −

√
log 1

δ + c b−a
h

N

− F̂−1
f (α) > 0

 ≤ δ.

This bound is optimized by h ≍
(
(b− a) log N

N

) 1
2β+1 , giving an overall bound of

Pr
e1,...,eN

[
sup

f∈F ,t∈R

Ff (t)− F̂f (t) > ch
β

2β+1

]
≤ δ

Pr
e1,...,eN

sup
f∈F

F−1
f

α− ch
β

2β+1 +

√
log 1

δ

N

− F̂−1
f (α) > 0

 ≤ δ.

for some c > 0. In particular, as N, n→ ∞, the EQRM estimate f̂ satisfies

F−1
f̂

(α)→ inf
f∈F

F−1
f (α).
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E Further implementation details

E.1 Algorithm

Below we detail the EQRM algorithm. Note that: (i) any distribution estimator may be used in place
of DIST so long as the functions DIST.ESTIMATE_PARAMS and DIST.ICDF are differentiable; (ii)
other bandwidth-selection methods may be used on line 14, with the Gaussian-optimal rule serving
as the default; and (iii) the bisection method BISECT on line 20 requires an additional parameter, the
maximum number of steps, which we always set to 32.

Algorithm 1: Empirical Quantile Risk Minimization (EQRM).
Input: Predictor fθ , loss function ℓ, desired probability of generalization α, learning rate η,

distribution estimator DIST, M datasets with Dm = {(xm
i , ym

i )}
nm
i=1.

1 Initialize fθ;
2 while not converged do

/* Get per-domain risks (i.e. average losses) */
3 Lm ← 1

nm
∑nm

i=1 ℓ( fθ(xm
i ), ym

i ), for m = 1, . . . , M ;

/* Estimate the parameters of T̂ f */
4 DIST.ESTIMATE_PARAMS(L) ;

/* Compute the α-quantile of T̂ f */
5 q← DIST.ICDF(α) ;

/* Update fθ */
6 θ ← θ − η · ∇θq ;

Output: fθ

7 Procedure GAUSS.ESTIMATE_PARAMS(L)
/* Compute the sample mean and variance */

8 µ̂← 1
M ∑M

m=1 Lm ;
9 σ̂2 ← 1

M−1 ∑M
m=1(Lm − µ̂)2 ;

10 Procedure GAUSS.ICDF(α)
11 return µ̂ + σ̂ ·Φ−1(α);

12 Procedure KDE.ESTIMATE_PARAMS(L)
/* Set bandwidth h (Gaussian-optimal rule used as default) */

13 σ̂2 ← 1
M−1 ∑M

m=1(Lm − 1
M ∑M

j=1 Lj)2;

14 h← ( 4
3M )0.2 · σ̂

15 Procedure KDE.ICDF(α)
/* Define the CDF when using M Gaussian kernels */

16 Fm(x′)← Lm + h ·Φ(x′) ;
17 F(x′)← 1

M ∑M
m=1 Fm(x′) ;

/* Invert the CDF via bisection */
18 mn← minm F−1

m (α) ;
19 mx← maxm F−1

m (α) ;
20 return BISECT(F, α, mn, mx) ;

E.2 ColoredMNIST

For the CMNIST results of § 6.1, we used full batches (size 25000), 400 steps for ERM pretraining,
600 total steps for IRM, VREx, EQRM, and 1000 total steps for GroupDRO, SD, and IGA. We
used the original MNIST training set to create training and validation sets for each domain, and the
original MNIST test set for the test sets of each domain. We also decayed the learning rate using
cosine annealing/scheduling. We swept over penalty weights in {50, 100, 500, 1000, 5000} for IRM,
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VREx and IGA, penalty weights in {0.001, 0.01, 0.1, 1} for SD, η’s in {0.001, 0.01, 0.1, 0.5, 1.0} for
GroupDRO, and α’s in 1− {e−100, e−250, e−500, e−750, e−1000} for EQRM. To allow these values of
α, which are very close to 1, we used an asymptotic expression for the Normal inverse CDF, namely
Φ−1(α) ≈

√
−2 ln(1− α) as α → 1 [136]. This allowed us to parameterize α = 1− e−1000

as ln(1 − α) = ln(e−1000) = −1000, avoiding issues with floating-point precision. As is the
standard for CMNIST, we used a test-domain validation set to select the best settings (after the
total number of steps), then reported the mean and standard deviation over 10 random seeds on
a test-domain test set. As in previous works, the hyperparameter ranges of all methods were
selected by peeking at test-domain performance. While not ideal, this is quite difficult to avoid with
CMNIST and highlights the problem of model selection more generally in DG—as discussed by many
previous works [9, 38, 41, 115]. Finally, we note several observations from our CMNIST, WILDS
and DomainBed experiments which, despite not being thoroughly investigated with their own set
of experiments (yet), may prove useful for future work: (i) ERM pretraining seems an effective
strategy for DG methods, and can likely replace the more delicate penalty-annealing strategies (as
also observed in [115]); (ii) lowering the learning rate after ERM pretraining seems to stabilize DG
methods; and (iii) EQRM often requires a lower learning rate than other DG methods after ERM
pretraining, with its loss and gradients tending to be significantly larger.

E.3 DomainBed

For EQRM, we used the default algorithm setup: a kernel-density estimator of the risk distribution
with the “Gaussian-optimal” rule [65] for bandwidth selection. We used the standard hyperparameter-
sampling procedure of Domainbed, running over 3 trials for 20 randomly-sampled hyperparameters
per trial. For EQRM, this involved:

Hparam Default Sampling
α 0.75 U(0.5, 0.99)
Burn-in/anneal iters 2500 10k, with k ∼ U(2.5, 3.5)
EQRM learning rate (post burn-in) 10−6 10k, with k ∼ U(−7,−5)

All other all hyperparameters remained as their DomainBed-defaults, while the baseline results were
taken directly from the most up-to-date DomainBed tables8. See our code for further details.

E.4 WILDS

We considered two WILDS datasets: iWildCam and OGB-MolPCBA (henceforth OGB). For both of
these datasets, we used the architectures use in the original WILDS paper [12]; that is, for iWildCam
we used a ResNet-50 architecture [137] pretrained on ImageNet [138], and for OGB, we used a Graph
Isomorphism Network [139] combined with virtual nodes [140]. To perform model-selection, we
followed the guidelines provided in the original WILDS paper [12]. In particular, for each of the
baselines we consider, we performed grid searches over the hyperparameter ranges listed in [12]
with respect to the given validation sets; see [12, Appendices E.1.2 and E.4.2] for a full list of these
hyperparameter ranges.

EQRM. For both datasets, we ran EQRM with KDE using the Gaussian-optimal bandwidth-
selection method. All EQRM models were initialized with the same ERM checkpoint, which is
obtained by training ERM using the code provided by [12]. Following [12], for iWildCam, we trained
ERM for 12 epochs, and for OGB, we trained ERM for 100 epochs. We again followed [12] by using
a batch size of 32 for iWildCam and 8 groups per batch. For OGB, we performed grid searches over the
batch size in the range B ∈ {32, 64, 128, 256, 512, 1024, 2048}, and we used 0.25B groups per batch.
We selected the learning rate for EQRM from η ∈ {10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8}.

Computational resources. All experiments on the WILDS datasets were run across two four-GPU
workstations, comprising a total of eight Quadro RTX 5000 GPUs.

8https://github.com/facebookresearch/DomainBed/tree/main/domainbed/results/2020_
10_06_7df6f06
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F Connections between QRM and DRO

In this appendix we draw connections between quantile risk minimization (QRM) and distribution-
ally robust optimization (DRO) by considering an alternative optimization problem which we call
superquantile risk minimization 9:

min
f∈F

SQα(R; T f ) where SQα(R; T f ) := ER∼T f

[
R
∣∣ R ≥ F−1

T f
(α)
]

. (F.1)

Here, SQα represents the superquantile—also known as the conditional value-at-risk (CVaR) or
expected tail loss—at level α, which can be seen as the conditional expectation of a random variable
R subject to R being larger than the α-quantile F−1(α). In our case, where R represents the
statistical risk on a randomly-sampled environment, SQα can be seen as the expected risk in the worst
100 · (1− α)% of cases/domains. Below, we exploit the well-known duality properties of CVaR to
formally connect (QRM) and GroupDRO [45]; see Prop. F.1 for details.

F.1 Notation for this appendix

Throughout this appendix, for each f ∈ F , we will let the risk random variable R be a defined on
the probability space (R+,B, T f ), where R+ denotes the nonnegative real numbers and B denotes
the Borel σ-algebra on R+. We will also consider the Lebesgue spaces Lp := Lp(R+,B, T f ) of
functions h for which Er∼T f [|h(r)|

p] is finite. For conciseness, we will use the notation

⟨g(r), h(r)⟩ :=
∫

r≥0
g(r)h(r)dr (F.2)

to denote the standard inner product on R+. Furthermore, we will use the notation U≪ V to signify
that U is absolutely continuous with respect to V, meaning that if U(A) = 0 for every set A for
which V(A) = 0. We also use the abbreviation “a.e.“ to mean “almost everywhere.” Finally, the
notation Π[a,b](c) denotes the projection of a number c into the real interval [a, b].

F.2 (Strong) Duality of the superquantile

We begin by proving that strong duality holds for the superquantile function SQα. We note that this
duality result is well-known in the literature (see, e.g., [90]), and has been exploited in the context of
adaptive sampling [94] and offline reinforcement learning [141]. We state this result and proof for
the sake of exposition.

Proposition F.1 (Dual representation of SQα). If R ∈ LP for some p ∈ (1, ∞), then

SQα(R; T f ) = max
U∈U f (α)

EU[R] (F.3)

where the uncertainty set U f (α) is defined as

U f (α) :=
{

U ∈ Lq : U≪ T f , U ∈ [0, 1/1−α] a.e. , ||U||L1 = 1
}

. (F.4)

Proof. Note that the primal objective can be equivalently written as

SQα(R; T f ) = min
t∈R

{
t +

1
1− α

⟨(R− t)+, T f ⟩
}

(F.5)

where (z)+ = max{0, z} [97], which in turn has the following epigraph form:

min
t∈R, s∈Lp

+

t +
1

1− α
⟨s, T f ⟩ (F.6)

subject to R(r)− t ≤ s(r) a.e. r ∈ R+. (F.7)

9This definition assumes that T f is continuous; for a more general treatment, see [97].
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When written in Lagrangian form, we can express this problem as

min
t∈R, s∈Lp

+

max
λ∈Lq

+

{
t(1− ⟨1, λ⟩) +

〈
s,

1
1− α

T f − λ

〉
+ ⟨R, λ⟩

}
. (F.8)

Note that this objective is linear in t, s, and λ, and therefore due to the strong duality of linear
programs, we can optimize over s, t, and λ in any order [142]. Minimizing over t reveals that the
problem is unbounded unless

∫
r≥0 λ(r)dr = 1, meaning that λ is a probability distribution since

λ(r) ≥ 0 almost everywhere. Thus, the problem can be written as

min
s∈Lp

+

max
λ∈P(R+)

{〈
s,

1
1− α

T f − λ

〉
+ ⟨R, λ⟩

}
(F.9)

where P q(R+) denotes the subspace of Lq of probability distributions on R+.

Now consider the maximization over s. Note that if there is a set A ⊂ Eall of nonzero Lebesgue
measure on which λ(A) ≥ (1/1−α)T f (A), then the problem is unbounded below because s(A) can
be made arbitrarily large. Therefore, it must be the case that λ ≤ (1/1−α)T f almost everywhere. On
the other hand, if λ(A) ≤ (1/1−α)T f (A), then s(A) = 0 minimizes the first term in the objective.
Therefore, s can be eliminated provided that λ ≤ (1/1−α)T f almost everywhere. Thus, we can write
the problem as

max
λ∈Pq(R+)

⟨R, λ⟩ = Eλ[R] (F.10)

subject to λ(r) ≤ 1
1− α

T f (r) a.e. r ≥ 0. (F.11)

Now observe that the constraint in the above problem is equivalent to λ ≪ Q. Thus, by defining
U = dλ/dT f to be the Radon-Nikodym derivative of λ with respect to Q, we can write the problem
in the form of (F.3), completing the proof.

Succinctly, this proposition shows that provided that R is sufficiently smooth (i.e., an element of Lp),
it holds that minimizing the superquantile function is equivalent to solving

min
f∈F

max
U∈U f (α)

EU[R] (F.12)

which is a distributionally robust optimization (DRO) problem with uncertainty set U f (α) as defined
in (F.4). In plain terms, for any α ∈ (0, 1), this uncertainty set contains probability distributions on
R+ which can place no larger than 1/1−α on any risk value.

At an intuitive level, this shows that by varying α in Eq. (F.1), one can interpolate between a range
DRO problems. In particular, at level α = 1, we recover the problem in (3.1), which can be viewed
as a DRO problem which selects a Dirac distribution which places solely on the essential supremum
of R ∼ T f . On the other hand, at level α = 0, we recover a problem which selects a distribution that
equally weights each of the risks in different domains equally. A special case of this is the GroupDRO
formulation in [45], wherein under the assumption that the data is partitioned into m groups, the
inner maximum in (F.12) is taken over the (m− 1)-dimensional simplex ∆m (see, e.g., equation (7)
in [45]).

G Additional analyses and experiments

G.1 Linear regression

In this section we extend § 6.1 to provide further analyses and discussion of EQRM using linear
regression datasets based on Ex. A.3. In particular, we: (i) extend Fig. 3 to include plots of the
predictors’ risk CDFs (G.1.1); and (ii) discuss the ability of EQRM to recover the causal predictor
when σ2

1 , σ2
2 and/or σ2

Y change over environments, compared to IRM [9] and VREx [41] (G.1.2).
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Table 5: Recovering the causal predictor for linear regression tasks based on Ex. A.3. A tick means that it is
possible to recover the causal predictor, under further assumptions.

Changing Domain
Scedasticity

Invariant IRM VREx EQRM
Risk Function (βcause)

σ1 Homoscedastic ✓ ✓ ✓ ✓ ✓
σ2 Homoscedastic ✓ ✓ ✓ ✓ ✓
σY Heteroscedastic ✗ ✓ ✓ ✗ ✗

G.1.1 Risk CDFs as risk-robustness curves

As an extension of Fig. 3, in particular the PDFs in Fig. 3 B, Fig. 6 depicts the risk CDFs for different
predictors. Here we see that a predictor’s risk CDF depicts its risk-robustness curve, and also that
each α results in a predictor fα with minimial α-quantile risk. That is, for each desired level of
robustness (i.e. probability of the upper-bound on risk holding, y-axis), the corresponding α has
minimal risk (x-axis).
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Figure 6: Extension of Fig. 3 showing the risk CDFs (i.e. risk-robustness curves) for different predictors.
For each risk upper-bound (x), we see the corresponding probability of it holding under the training domains (y).
Note that, for each level of robustness (y, i.e. probability that the risk upper-bound holds), the corresponding α
has the lowest upper-bound on risk (x). Also note that these CDFs correspond to the PDFs of Fig. 3 (B).

G.1.2 Invariant risks vs. invariant functions

We now compare seeking invariant risks to seeking invariant functions by analyzing linear regression
datasets, based on Ex. A.3, in which σ2

1 , σ2
2 and/or σ2

Y change over domains. This is turn allows us to
compare EQRM (invariant risks), VREx [41] (invariant risks), and IRM [9] (invariant functions).

Domain-skedasticity. For recovering the causal predictor, the key difference between using in-
variant risks and invariant functions lies in the assumption about domain-skedasticity, i.e. the “pred-
icatability” of Y across domains. In particular, the causal predictor only has invariant risks in
domain-homoskedastic cases and not in domain-heteroskedastic cases, the latter describing scenarios
in which the predictability of Y (i.e. the amount of irreducible error or intrinsic noise) varies across
domains, meaning that the risk of the causal predictor will be smaller on some domains than others.
Thus, methods seeking the causal predictor through invariant risks must assume domain homoskedas-
ticity [41, 54]. In contrast, methods seeking the causal predictor through invariant functions need not
make such a domain-homoskedasticity assumption, but instead the slightly weaker assumption of the
conditional mean E[Y|Pa(Y)] being invariant across domains. As explained in the next paragraph
and summarized in Table 5, this translates into the coefficient βcause being invariant across domains
for the linear SEM of Ex. A.3.
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Mathematical analysis. We now analyze the risk-invariant solutions of Ex. A.3. We start by
expanding the structural equations of Ex. A.3 as:

X1 = N1,
Y = N1 + NY,

X2 = N1 + NY + N2.

We then note that the goal is to learn a model Ŷ = β1 · X1 + β2 · X2, which has residual error

Ŷ−Y = β1 · N1 + β2 · (N1 + NY + N2)− N1 − NY

= (β1 + β2 − 1) · N1 + (β2 − 1) · NY + β2 · N2.

Then, since all variables have zero mean and the noise terms are independent, the risk (i.e. the MSE
loss) is simply the variance of the residuals, which can be written as

E[(Ŷ−Y)2] = (β1 + β2 − 1)2 · σ2
1 + (β2 − 1)2 · σ2

Y + β2
2 · σ2

2 .

Here, we have that, when:

• Only σ1 changes: the only way to keep the risk invariant across domains is to set β1 + β2 = 1.
The minimal invariant-risk solution then depends on σy and σ2:

– if σy < σ2, the minimal invariant-risk solution sets β1 = 1 and β2 = 0 (causal predictor);
– if σy > σ2, the minimal invariant-risk solution sets β1 = 0 and β2 = 1 (anti-causal predictor);

– if σy = σ2, then any solution (β1, β2) = (c, 1−c) with c ∈ [0, 1] is a minimal invariant-risk
solution, including the causal predictor c = 1, anti-causal predictor c = 0, and everything
in-between.

• Only σ2 changes: the invariant-risk solutions set β2 = 0, with the minimal invariant-risk solution
also setting β1 = 1 (causal predictor).

• σ1 and σ2 change: the invariant-risk solution sets β1 = 1, β2 = 0 (causal predictor).
• Only σY changes: the invariant-risk solutions set β2 = 1, with the minimal invariant-risk solution

also setting β1 = 0 (anti-causal predictor).
• σ1 and σY change: the invariant-risk solution sets β1=0, β2=1 (anti-causal predictor).
• σ2 and σY change: there is no invariant-risk solution.
• σ1, σ2 and σY change: there is no invariant-risk solution.

Empirical analysis. To see this empirically, we refer the reader to Table 5 of Krueger et al. [41,
App. G.2], which compares the invariant-risk solution of VREx to the invariant-function solution
of IRM on the synthetic linear-SEM tasks of Arjovsky et al. [9, Sec. 5.1], which calculate the MSE
between the estimated coefficients (β̂1, β̂2) and those of the causal predictor (1, 0).

Different goals, solutions, and advantages. We end by emphasizing the fact that the invariant-risk
and invariant-function solutions have different pros and cons depending both on the goal and the
assumptions made. If the goal is the recover the causal predictor or causes of Y, then the invariant-
function solution has the advantage due to weaker assumptions on domain skedasticity. However, if
the goal is learn predictors with stable or invariant performance, such that they perform well on new
domains with high probability, then the invariant-risk solution has the advantage. For example, in the
domain-heteroskedastic cases above where σY changes or σY and σ1 change, the invariant-function
solution recovers the causal predictor β1 = 1, β2 = 0 and thus has arbitrarily-large risk as σY → ∞
(i.e. in the worst-case). In contrast, the invariant-risk solution recovers the anti-causal predictor
β1 = 0, β2 = 1 and thus has fixed risk σ2

2 in all domains.

G.2 DomainBed

In this section, we include the full per-dataset DomainBed results. We consider the two most common
model-selection methods of the DomainBed package—training-domain validation set and test-domain
validation set (oracle)—and compare EQRM to a range of baselines. Implementation details for these
experiments are provided in § E.3 and our open-source code.
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G.2.1 Model selection: training-domain validation set

VLCS

Algorithm C L S V Avg
ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
IRM 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5
GroupDRO 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7
Mixup 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
MLDG 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2
CORAL 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8
MMD 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5
DANN 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
CDANN 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
MTL 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2
SagNet 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8
ARM 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6
VREx 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3
RSC 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1

EQRM 98.3 ± 0.0 63.7 ± 0.8 72.6 ± 1.0 76.7 ± 1.1 77.8

PACS

Algorithm A C P S Avg
ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
GroupDRO 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
Mixup 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
MLDG 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9
CORAL 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2
MMD 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.6
DANN 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6
CDANN 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MTL 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
SagNet 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3
ARM 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1
VREx 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
RSC 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2

EQRM 86.5 ± 0.4 82.1 ± 0.7 96.6 ± 0.2 80.8 ± 0.2 86.5

OfficeHome

Algorithm A C P R Avg
ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
IRM 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
GroupDRO 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0
Mixup 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1
MLDG 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8
CORAL 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7
MMD 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.3
DANN 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
CDANN 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.8
MTL 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4
SagNet 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1
ARM 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8
VREx 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4
RSC 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5

EQRM 60.5 ± 0.1 56.0 ± 0.2 76.1 ± 0.4 77.4 ± 0.3 67.5
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TerraIncognita

Algorithm L100 L38 L43 L46 Avg
ERM 49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1
IRM 54.6 ± 1.3 39.8 ± 1.9 56.2 ± 1.8 39.6 ± 0.8 47.6
GroupDRO 41.2 ± 0.7 38.6 ± 2.1 56.7 ± 0.9 36.4 ± 2.1 43.2
Mixup 59.6 ± 2.0 42.2 ± 1.4 55.9 ± 0.8 33.9 ± 1.4 47.9
MLDG 54.2 ± 3.0 44.3 ± 1.1 55.6 ± 0.3 36.9 ± 2.2 47.7
CORAL 51.6 ± 2.4 42.2 ± 1.0 57.0 ± 1.0 39.8 ± 2.9 47.6
MMD 41.9 ± 3.0 34.8 ± 1.0 57.0 ± 1.9 35.2 ± 1.8 42.2
DANN 51.1 ± 3.5 40.6 ± 0.6 57.4 ± 0.5 37.7 ± 1.8 46.7
CDANN 47.0 ± 1.9 41.3 ± 4.8 54.9 ± 1.7 39.8 ± 2.3 45.8
MTL 49.3 ± 1.2 39.6 ± 6.3 55.6 ± 1.1 37.8 ± 0.8 45.6
SagNet 53.0 ± 2.9 43.0 ± 2.5 57.9 ± 0.6 40.4 ± 1.3 48.6
ARM 49.3 ± 0.7 38.3 ± 2.4 55.8 ± 0.8 38.7 ± 1.3 45.5
VREx 48.2 ± 4.3 41.7 ± 1.3 56.8 ± 0.8 38.7 ± 3.1 46.4
RSC 50.2 ± 2.2 39.2 ± 1.4 56.3 ± 1.4 40.8 ± 0.6 46.6

EQRM 47.9 ± 1.9 45.2 ± 0.3 59.1 ± 0.3 38.8 ± 0.6 47.8

DomainNet

Algorithm clip info paint quick real sketch Avg
ERM 58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9
IRM 48.5 ± 2.8 15.0 ± 1.5 38.3 ± 4.3 10.9 ± 0.5 48.2 ± 5.2 42.3 ± 3.1 33.9
GroupDRO 47.2 ± 0.5 17.5 ± 0.4 33.8 ± 0.5 9.3 ± 0.3 51.6 ± 0.4 40.1 ± 0.6 33.3
Mixup 55.7 ± 0.3 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.3 48.2 ± 0.5 39.2
MLDG 59.1 ± 0.2 19.1 ± 0.3 45.8 ± 0.7 13.4 ± 0.3 59.6 ± 0.2 50.2 ± 0.4 41.2
CORAL 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.4 59.8 ± 0.2 50.1 ± 0.6 41.5
MMD 32.1 ± 13.3 11.0 ± 4.6 26.8 ± 11.3 8.7 ± 2.1 32.7 ± 13.8 28.9 ± 11.9 23.4
DANN 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.8 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3
CDANN 54.6 ± 0.4 17.3 ± 0.1 43.7 ± 0.9 12.1 ± 0.7 56.2 ± 0.4 45.9 ± 0.5 38.3
MTL 57.9 ± 0.5 18.5 ± 0.4 46.0 ± 0.1 12.5 ± 0.1 59.5 ± 0.3 49.2 ± 0.1 40.6
SagNet 57.7 ± 0.3 19.0 ± 0.2 45.3 ± 0.3 12.7 ± 0.5 58.1 ± 0.5 48.8 ± 0.2 40.3
ARM 49.7 ± 0.3 16.3 ± 0.5 40.9 ± 1.1 9.4 ± 0.1 53.4 ± 0.4 43.5 ± 0.4 35.5
VREx 47.3 ± 3.5 16.0 ± 1.5 35.8 ± 4.6 10.9 ± 0.3 49.6 ± 4.9 42.0 ± 3.0 33.6
RSC 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.2 ± 0.2 55.7 ± 0.7 47.8 ± 0.9 38.9

EQRM 56.1 ± 1.3 19.6 ± 0.1 46.3 ± 1.5 12.9 ± 0.3 61.1 ± 0.0 50.3 ± 0.1 41.0

Averages

Algorithm VLCS PACS OfficeHome TerraIncognita DomainNet Avg
ERM 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 63.3
IRM 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8 61.6
GroupDRO 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 43.2 ± 1.1 33.3 ± 0.2 60.9
Mixup 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1 63.4
MLDG 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 47.7 ± 0.9 41.2 ± 0.1 63.6
CORAL 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 64.6
MMD 77.5 ± 0.9 84.6 ± 0.5 66.3 ± 0.1 42.2 ± 1.6 23.4 ± 9.5 63.3
DANN 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 46.7 ± 0.5 38.3 ± 0.1 62.6
CDANN 77.5 ± 0.1 82.6 ± 0.9 65.8 ± 1.3 45.8 ± 1.6 38.3 ± 0.3 62.0
MTL 77.2 ± 0.4 84.6 ± 0.5 66.4 ± 0.5 45.6 ± 1.2 40.6 ± 0.1 62.9
SagNet 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 48.6 ± 1.0 40.3 ± 0.1 64.2
ARM 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 45.5 ± 0.3 35.5 ± 0.2 61.7
VREx 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 46.4 ± 0.6 33.6 ± 2.9 61.9

EQRM 77.8 ± 0.6 86.5 ± 0.2 67.5 ± 0.1 47.8 ± 0.6 41.0 ± 0.3 64.1
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G.2.2 Model selection: test-domain validation set (oracle)

VLCS

Algorithm C L S V Avg
ERM 97.6 ± 0.3 67.9 ± 0.7 70.9 ± 0.2 74.0 ± 0.6 77.6
IRM 97.3 ± 0.2 66.7 ± 0.1 71.0 ± 2.3 72.8 ± 0.4 76.9
GroupDRO 97.7 ± 0.2 65.9 ± 0.2 72.8 ± 0.8 73.4 ± 1.3 77.4
Mixup 97.8 ± 0.4 67.2 ± 0.4 71.5 ± 0.2 75.7 ± 0.6 78.1
MLDG 97.1 ± 0.5 66.6 ± 0.5 71.5 ± 0.1 75.0 ± 0.9 77.5
CORAL 97.3 ± 0.2 67.5 ± 0.6 71.6 ± 0.6 74.5 ± 0.0 77.7
MMD 98.8 ± 0.0 66.4 ± 0.4 70.8 ± 0.5 75.6 ± 0.4 77.9
DANN 99.0 ± 0.2 66.3 ± 1.2 73.4 ± 1.4 80.1 ± 0.5 79.7
CDANN 98.2 ± 0.1 68.8 ± 0.5 74.3 ± 0.6 78.1 ± 0.5 79.9
MTL 97.9 ± 0.7 66.1 ± 0.7 72.0 ± 0.4 74.9 ± 1.1 77.7
SagNet 97.4 ± 0.3 66.4 ± 0.4 71.6 ± 0.1 75.0 ± 0.8 77.6
ARM 97.6 ± 0.6 66.5 ± 0.3 72.7 ± 0.6 74.4 ± 0.7 77.8
VREx 98.4 ± 0.2 66.4 ± 0.7 72.8 ± 0.1 75.0 ± 1.4 78.1
RSC 98.0 ± 0.4 67.2 ± 0.3 70.3 ± 1.3 75.6 ± 0.4 77.8

EQRM 98.2 ± 0.2 66.8 ± 0.8 71.7 ± 1.0 74.6 ± 0.3 77.8

PACS

Algorithm A C P S Avg
ERM 86.5 ± 1.0 81.3 ± 0.6 96.2 ± 0.3 82.7 ± 1.1 86.7
IRM 84.2 ± 0.9 79.7 ± 1.5 95.9 ± 0.4 78.3 ± 2.1 84.5
GroupDRO 87.5 ± 0.5 82.9 ± 0.6 97.1 ± 0.3 81.1 ± 1.2 87.1
Mixup 87.5 ± 0.4 81.6 ± 0.7 97.4 ± 0.2 80.8 ± 0.9 86.8
MLDG 87.0 ± 1.2 82.5 ± 0.9 96.7 ± 0.3 81.2 ± 0.6 86.8
CORAL 86.6 ± 0.8 81.8 ± 0.9 97.1 ± 0.5 82.7 ± 0.6 87.1
MMD 88.1 ± 0.8 82.6 ± 0.7 97.1 ± 0.5 81.2 ± 1.2 87.2
DANN 87.0 ± 0.4 80.3 ± 0.6 96.8 ± 0.3 76.9 ± 1.1 85.2
CDANN 87.7 ± 0.6 80.7 ± 1.2 97.3 ± 0.4 77.6 ± 1.5 85.8
MTL 87.0 ± 0.2 82.7 ± 0.8 96.5 ± 0.7 80.5 ± 0.8 86.7
SagNet 87.4 ± 0.5 81.2 ± 1.2 96.3 ± 0.8 80.7 ± 1.1 86.4
ARM 85.0 ± 1.2 81.4 ± 0.2 95.9 ± 0.3 80.9 ± 0.5 85.8
VREx 87.8 ± 1.2 81.8 ± 0.7 97.4 ± 0.2 82.1 ± 0.7 87.2
RSC 86.0 ± 0.7 81.8 ± 0.9 96.8 ± 0.7 80.4 ± 0.5 86.2

EQRM 88.3 ± 0.6 82.1 ± 0.5 97.2 ± 0.4 81.6 ± 0.5 87.3

OfficeHome

Algorithm A C P R Avg
ERM 61.7 ± 0.7 53.4 ± 0.3 74.1 ± 0.4 76.2 ± 0.6 66.4
IRM 56.4 ± 3.2 51.2 ± 2.3 71.7 ± 2.7 72.7 ± 2.7 63.0
GroupDRO 60.5 ± 1.6 53.1 ± 0.3 75.5 ± 0.3 75.9 ± 0.7 66.2
Mixup 63.5 ± 0.2 54.6 ± 0.4 76.0 ± 0.3 78.0 ± 0.7 68.0
MLDG 60.5 ± 0.7 54.2 ± 0.5 75.0 ± 0.2 76.7 ± 0.5 66.6
CORAL 64.8 ± 0.8 54.1 ± 0.9 76.5 ± 0.4 78.2 ± 0.4 68.4
MMD 60.4 ± 1.0 53.4 ± 0.5 74.9 ± 0.1 76.1 ± 0.7 66.2
DANN 60.6 ± 1.4 51.8 ± 0.7 73.4 ± 0.5 75.5 ± 0.9 65.3
CDANN 57.9 ± 0.2 52.1 ± 1.2 74.9 ± 0.7 76.2 ± 0.2 65.3
MTL 60.7 ± 0.8 53.5 ± 1.3 75.2 ± 0.6 76.6 ± 0.6 66.5
SagNet 62.7 ± 0.5 53.6 ± 0.5 76.0 ± 0.3 77.8 ± 0.1 67.5
ARM 58.8 ± 0.5 51.8 ± 0.7 74.0 ± 0.1 74.4 ± 0.2 64.8
VREx 59.6 ± 1.0 53.3 ± 0.3 73.2 ± 0.5 76.6 ± 0.4 65.7
RSC 61.7 ± 0.8 53.0 ± 0.9 74.8 ± 0.8 76.3 ± 0.5 66.5

EQRM 60.0 ± 0.8 54.4 ± 0.7 76.5 ± 0.4 77.2 ± 0.5 67.0
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TerraIncognita

Algorithm L100 L38 L43 L46 Avg
ERM 59.4 ± 0.9 49.3 ± 0.6 60.1 ± 1.1 43.2 ± 0.5 53.0
IRM 56.5 ± 2.5 49.8 ± 1.5 57.1 ± 2.2 38.6 ± 1.0 50.5
GroupDRO 60.4 ± 1.5 48.3 ± 0.4 58.6 ± 0.8 42.2 ± 0.8 52.4
Mixup 67.6 ± 1.8 51.0 ± 1.3 59.0 ± 0.0 40.0 ± 1.1 54.4
MLDG 59.2 ± 0.1 49.0 ± 0.9 58.4 ± 0.9 41.4 ± 1.0 52.0
CORAL 60.4 ± 0.9 47.2 ± 0.5 59.3 ± 0.4 44.4 ± 0.4 52.8
MMD 60.6 ± 1.1 45.9 ± 0.3 57.8 ± 0.5 43.8 ± 1.2 52.0
DANN 55.2 ± 1.9 47.0 ± 0.7 57.2 ± 0.9 42.9 ± 0.9 50.6
CDANN 56.3 ± 2.0 47.1 ± 0.9 57.2 ± 1.1 42.4 ± 0.8 50.8
MTL 58.4 ± 2.1 48.4 ± 0.8 58.9 ± 0.6 43.0 ± 1.3 52.2
SagNet 56.4 ± 1.9 50.5 ± 2.3 59.1 ± 0.5 44.1 ± 0.6 52.5
ARM 60.1 ± 1.5 48.3 ± 1.6 55.3 ± 0.6 40.9 ± 1.1 51.2
VREx 56.8 ± 1.7 46.5 ± 0.5 58.4 ± 0.3 43.8 ± 0.3 51.4
RSC 59.9 ± 1.4 46.7 ± 0.4 57.8 ± 0.5 44.3 ± 0.6 52.1

EQRM 57.0 ± 1.5 49.5 ± 1.2 59.0 ± 0.3 43.4 ± 0.6 52.2

DomainNet

Algorithm clip info paint quick real sketch Avg
ERM 58.6 ± 0.3 19.2 ± 0.2 47.0 ± 0.3 13.2 ± 0.2 59.9 ± 0.3 49.8 ± 0.4 41.3
IRM 40.4 ± 6.6 12.1 ± 2.7 31.4 ± 5.7 9.8 ± 1.2 37.7 ± 9.0 36.7 ± 5.3 28.0
GroupDRO 47.2 ± 0.5 17.5 ± 0.4 34.2 ± 0.3 9.2 ± 0.4 51.9 ± 0.5 40.1 ± 0.6 33.4
Mixup 55.6 ± 0.1 18.7 ± 0.4 45.1 ± 0.5 12.8 ± 0.3 57.6 ± 0.5 48.2 ± 0.4 39.6
MLDG 59.3 ± 0.1 19.6 ± 0.2 46.8 ± 0.2 13.4 ± 0.2 60.1 ± 0.4 50.4 ± 0.3 41.6
CORAL 59.2 ± 0.1 19.9 ± 0.2 47.4 ± 0.2 14.0 ± 0.4 59.8 ± 0.2 50.4 ± 0.4 41.8
MMD 32.2 ± 13.3 11.2 ± 4.5 26.8 ± 11.3 8.8 ± 2.2 32.7 ± 13.8 29.0 ± 11.8 23.5
DANN 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.9 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3
CDANN 54.6 ± 0.4 17.3 ± 0.1 44.2 ± 0.7 12.8 ± 0.2 56.2 ± 0.4 45.9 ± 0.5 38.5
MTL 58.0 ± 0.4 19.2 ± 0.2 46.2 ± 0.1 12.7 ± 0.2 59.9 ± 0.1 49.0 ± 0.0 40.8
SagNet 57.7 ± 0.3 19.1 ± 0.1 46.3 ± 0.5 13.5 ± 0.4 58.9 ± 0.4 49.5 ± 0.2 40.8
ARM 49.6 ± 0.4 16.5 ± 0.3 41.5 ± 0.8 10.8 ± 0.1 53.5 ± 0.3 43.9 ± 0.4 36.0
VREx 43.3 ± 4.5 14.1 ± 1.8 32.5 ± 5.0 9.8 ± 1.1 43.5 ± 5.6 37.7 ± 4.5 30.1
RSC 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.5 ± 0.1 55.7 ± 0.7 47.8 ± 0.9 38.9

EQRM 55.5 ± 1.8 19.6 ± 0.1 45.9 ± 1.9 12.9 ± 0.3 61.1 ± 0.0 50.3 ± 0.1 40.9

Averages

Algorithm VLCS PACS OfficeHome TerraIncognita DomainNet Avg
ERM 77.6 ± 0.3 86.7 ± 0.3 66.4 ± 0.5 53.0 ± 0.3 41.3 ± 0.1 65.0
IRM 76.9 ± 0.6 84.5 ± 1.1 63.0 ± 2.7 50.5 ± 0.7 28.0 ± 5.1 60.6
GroupDRO 77.4 ± 0.5 87.1 ± 0.1 66.2 ± 0.6 52.4 ± 0.1 33.4 ± 0.3 63.3
Mixup 78.1 ± 0.3 86.8 ± 0.3 68.0 ± 0.2 54.4 ± 0.3 39.6 ± 0.1 65.4
MLDG 77.5 ± 0.1 86.8 ± 0.4 66.6 ± 0.3 52.0 ± 0.1 41.6 ± 0.1 64.9
CORAL 77.7 ± 0.2 87.1 ± 0.5 68.4 ± 0.2 52.8 ± 0.2 41.8 ± 0.1 65.6
MMD 77.9 ± 0.1 87.2 ± 0.1 66.2 ± 0.3 52.0 ± 0.4 23.5 ± 9.4 61.4
DANN 79.7 ± 0.5 85.2 ± 0.2 65.3 ± 0.8 50.6 ± 0.4 38.3 ± 0.1 63.8
CDANN 79.9 ± 0.2 85.8 ± 0.8 65.3 ± 0.5 50.8 ± 0.6 38.5 ± 0.2 64.1
MTL 77.7 ± 0.5 86.7 ± 0.2 66.5 ± 0.4 52.2 ± 0.4 40.8 ± 0.1 64.8
SagNet 77.6 ± 0.1 86.4 ± 0.4 67.5 ± 0.2 52.5 ± 0.4 40.8 ± 0.2 65.0
ARM 77.8 ± 0.3 85.8 ± 0.2 64.8 ± 0.4 51.2 ± 0.5 36.0 ± 0.2 63.1
VREx 78.1 ± 0.2 87.2 ± 0.6 65.7 ± 0.3 51.4 ± 0.5 30.1 ± 3.7 62.5
RSC 77.8 ± 0.6 86.2 ± 0.5 66.5 ± 0.6 52.1 ± 0.2 38.9 ± 0.6 64.3

EQRM 77.8 ± 0.2 87.3 ± 0.2 67.0 ± 0.4 52.2 ± 0.7 40.9 ± 0.3 65.1
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G.3 WILDS

In Figure 7, we visualize the test-time risk distributions of IRM and GroupDRO relative to ERM, as
well as EQRMα for select values10 of α. In each of these figures, we see that IRM and GroupDRO
tend to have heavier tails than any of the other algorithms.

Figure 7: Baseline test risk distributions on iWildCam and OGB-MolPCBA. We supplement Figure 4 by
providing comparisons to two baseline algorithms: IRM and GroupDRO. In each case, EQRMα tends to display
superior tail performance relative to ERM, IRM, and GroupDRO.

Other performance metrics. In the main text, we studied the tails of the risk distributions of
predictors trained on iWildCam and OGB. However, in the broader DG literature, there are a number of
other metrics that are used to assess performance or OOD-generalization. In particular, for iWildCam,
past work has used the macro F1 score as well as the average accuracy across domains to assess OOD
generalization; for OGB, the standard metric is a predictor’s average precision over test domains [12].
In Tables 6 and 7, we report these metrics and compare the performance of our algorithms to ERM,
IRM, and GroupDRO. Below, we discuss the results in each of these tables.

To begin, consider Table 6. Observe that ERM achieves the best in-distribution (ID) scores relative
to any of the other algorithms. However, when we consider the out-of-distribution columns, we
see that EQRM offers better performance with respect to both the macro F1 score and the mean
accuracy. Thus, although our algorithms are not explicitly trained to optimize these metrics, their
strong performance on the tails of the risk distribution appears to be correlated with strong OOD
performance with these alternative metrics. We also observe that relative to ERM, EQRM suffers
smaller accuracy drops between ID and OOD mean accuracy. Specifically, ERM dropped 5.50 points,
whereas EQRM dropped by an average of 2.38 points.

Next, consider Table 7. Observe again that ERM is the strongest-performing baseline (first band of
the table). Also observe that EQRM performs similarly to ERM, with validation and test precision
tending to cluster around 28 and 27 respectively. However, we stress that these metrics are averaged
over their respective domains, whereas in Tables 2 and 3, we showed that EQRM performed well on
the more difficult domains, i.e. when using tail metrics.

Table 6: WILDS metrics on iWildCam.

Algorithm Macro F1 (↑) Mean accuracy (↑)
ID OOD ID OOD

ERM 49.8 30.6 77.0 71.5
IRM 23.4 15.2 59.6 64.1

GroupDRO 34.3 22.1 66.7 67.7

QRM0.25 18.3 11.4 54.3 58.3
QRM0.50 48.1 33.8 76.2 73.5
QRM0.75 49.5 31.8 76.1 72.0
QRM0.90 48.6 32.9 77.1 73.3
QRM0.99 45.9 30.8 76.6 71.3

Table 7: WILDS metrics on OGB-MolPCBA.

Algorithm Mean precision (↑)
Validation Test

ERM 28.1 27.3
IRM 15.4 15.5

GroupDRO 23.5 22.3

QRM0.25 28.1 27.3
QRM0.50 28.3 27.4
QRM0.75 28.1 27.1
QRM0.90 27.9 27.2
QRM0.99 28.1 27.4

10We display results for fewer values of α in Figure 7 to keep the plots uncluttered.
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H Limitations of our work

As discussed in the first paragraph of § 7, the main limitation of our work is that, for α to precisely
approximate the probability of generalizing with risk below the associated α-quantile value, we
must have a large number of i.i.d.-sampled domains. Currently, this is rarely satisfied in practice,
although § 7 describes how new data-collection procedures could help to better-satisfy this assumption.
We believe that our work, and its promise of machine learning systems that generalize with high
probability, provides sufficient motivation for collecting real-world datasets with a large number
of i.i.d.-sampled domains. In addition, we hope that future work can explore ways to relax this
assumption, e.g., by leveraging knowledge of domain dependencies like time.
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