
Supplementary Materials for
Variational Model Perturbation for Source-Free

Domain Adaptation

Mengmeng Jing1,2∗, Xiantong Zhen2 †, Jingjing Li1, Cees G. M. Snoek2

1University of Electronic Science and Technology of China
2University of Amsterdam

1 Analysis of Sample Numbers

In Fig. 1, we analyse the impact of different sample numbers on performance during the training
phase. From Fig. 1, we observe that the performance of the model does not change much as the
sample number increases. Thus, our variational model perturbation is robust to different sampling
numbers. In practical applications, we only sample once in the training phase for running efficiency.

2 Detailed Expression of the Objective Function

The objective function of our method consists of two terms, the KL divergence term and the expected
likelihood term:

L = LKL + Lexp = KL[q(∆w|0, σ)||p(∆w)]− Eq(∆w|0,σ)[p(Dt|∆w)].

For the KL divergence term, it is defined as:

LKL = KL[q(∆w|0, σ)||p(∆w)] =

∫
q(∆w|0, σ)log

q(∆w|0, σ)

p(∆w)
d∆w,

where q(∆w|0, σ) and p(∆w) are the variational posterior and prior distributions, respectively.
Assume q(∆w|0, σ) ∼ N (µ0, σ

2
0 I), p(∆w) ∼ N (µ1, σ

2
1 I), then the KL divergence term can be

calculated as:

KL[q(∆w|0, σ)||p(∆w)] =
1

2
[tr(σ−1

1 σ0)− k + (µ1 − µ0)Tσ−1
1 (µ1 − µ0) + log(

detσ1

detσ0
)],

where k is the dimension of the random variable, tr and det represent trace and determinant operation,
respectively.

For the second term, the specific form of it depends on the model being perturbed. For SHOT [1],
maximizing this term is implemented as minimizing the information loss and self-supervised loss:

Lexp = Lim + βLsup,

where Lim is the information maximization loss which can be calculated as:

Lim =
1

nt

nt∑
i=1

H(pit)−H(
1

nt

nt∑
i=1

(pit)),

whereH is the entropy, pit = softmax(Gt(x
i
t)) is the classification probability for sample xit.

∗This work was done when Mengmeng Jing was a visiting student at University of Amsterdam.
†Currently with United Imaging Healthcare, Co., Ltd., China.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

1 2 3 4 5 6 7 8 9 10
Sample Number

65

70

75

80

85

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

Cifar10-C Cifar100-C Office-Home

Figure 1: Impact of different sample numbers for the performance.

Lsup is the self-supervision loss which can be calculated as:

Lsup =
1

nt

nt∑
i=1

LC(Gt(x
i
t), ŷ

i
t)

where LC is the cross-entropy loss, ŷit is the pseudo-labels of the target image xit.

For Tent [2], maximizing this term is implemented as minimizing the entropy loss:

Lexp =
1

nt

nt∑
i=1

H(pit),

3 Local Reparameterization Trick

The local reparameterization trick [3] allows us to sample pre-activations instead of weights. Specifi-
cally, for the perturbed weightwt sampled from a factorized GaussianN (ws, σ

2I), the pre-activations
a = wth are distributed according to N (wsh, σ

2h2I), where σ is the learnable perturbation parame-
ters, ws is the weight before perturbations, h is the output from the preceding layer.

4 Discussion

Application to other architectures. The perturbation operation is architecture-agnostic, and could
be applied to various architectures though we implement convolutional and fully-connected layers
in this work. Therefore, our method is not limited to computer vision settings. The exploration of
applying variational model perturbations to other architectures will be a promising direction.

Application to source-needed DA. Variational model perturbation is specifically designed for
SFDA. That is, we have a source-trained model and perturb the model parameter using a handful
of target data. In source-needed DA, we could directly use source and target data to retrain the
model if source data are already available. Therefore, it is not necessary to apply variational model
perturbation to source-needed DA.

Why variational model perturbation is effective? Variational model perturbation is effective
mainly because of the probabilistic modeling. In this way, we perturb a deterministic model into
a Bayesian model. As a result, the perturbed model can be generalized to more domains while
maintaining the performance on the source domain, i.e., we expand the effective coverage of the
source model. Moreover, by adopting the parameter sharing strategy, our method is effective even
though learnable parameters are very few.

Limitations. Our method is closely related to learning a Bayesian neural network. While enjoying
the better generalization ability, our method could also suffer from the limitation of high training
cost [4]. This would make it computationally expensive when the model size is very large.

2

Algorithm1: Variational Model Perturbation
Input: Unlabeled target dataset Dt={xtj |xtj ∈ Xt}

nt
j=1, pre-trained source model Gs parameterized

by ws, the max iteration number T.
Initialization:

1: Initialize the target model Gt with Gs.
2: Calculate the variance Var(wlis) in Eq. 9 for each convolution kernel of the source model layer

by layer to determine the prior distribution of the convolution kernel.
3: Initialize the perturbation parameters ρ and add ρ to the optimizer.
4: Modify the forward function of every layer so that we can compute the perturbed weights and

the corresponding output layer by layer according to Eq. 8.
While t ≤ T

1: Sample a batch of target sample xt and feed them to the network Gt.
2: Compute the perturbed weights wt and the corresponding output zt layer by layer according to

Eq. 8.
3: Compute the loss in Eq. 3 using the final output of Gt.
4: Update the perturbation parameter ρ through backpropagation.

end while
Output: the perturbed model Gt parameterized by wt.
Prediction: Classify xt by ỹt = Gt(xt)

Table 1: Detailed accuracy (%) on Office-Home under Generalized SFDA, where all the methods
use ResNet-50 backbone. Accuracy on source and target domain is denoted by S and T, respectively.
Model perturbation achieves the best performance across all the compared methods.

Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg. HS/T S/T S/T S/T S/T S/T S/T S/T S/T S/T S/T S/T S/T
Source-only 77.5/44.6 77.5/67.1 77.5/73.5 79.3/48.9 79.3/59.5 79.3/61.9 92.4/52.2 92.4/40.8 92.4/73.5 85.2/64.8 85.2/45.3 85.2/76.9 83.6/59.1 69.2
SHOT [1] 60.7/55.0 64.9/76.7 71.5/80.0 65.5/67.6 63.6/76.6 67.0/75.6 79.0/65.1 73.7/53.7 84.8/80.2 79.4/71.3 72.0/59.1 78.3/84.0 71.7/70.4 71.0

Ours 63.9/55.7 68.2/78.0 76.0/81.5 71.0/69.7 69.4/77.2 71.5/77.4 82.3/66.7 80.7/54.7 90.9/81.5 83.6/71.9 78.6/59.9 82.8/84.6 76.6/71.6 74.0

5 Pseudo Code

For a clear understanding, we summarize the detailed description of model training in Algorithm 1.

6 Elaboration of the Experimental Details

For a clearer elaboration of the experimental details, we clarify SFDA consists of three phases,
namely, source domain pre-training, target domain adaptation and testing. Our paper considers three
different settings, each with a different experimental procedure:

Offline SFDA: in the source domain pre-training phase, we use all labeled source domain data to
train the source model by minimizing cross entropy loss. In the target domain adaptation phase, we
use all unlabeled target data to adapt the model to the target domain. In the testing phase, we make
predictions for all target data.

Generalized SFDA: we first split the source domain data into 80% and 20% parts. In the source
domain pre-training phase, the data of the 80% part are labeled and we use them to pre-train the
source model. In the target domain adaptation phase, we use all the unlabeled target data to adapt the
model to the target domain. In the testing phase, we predict the remaining 20% source data and all
target data.

Continual Online SFDA: the source domain consists of the clean images from CIFAR10, CI-
FAR100 and ImageNet, while the target domain consists of the corrupted images from CIFAR10-C,
CIFAR100-C and ImageNet-C. In the source domain pre-training phase, we directly adopt the pub-
licly available model pre-trained on the clean training set as the source model for SFDA. Specifically,
CIFAR10-C uses WideResNet-28 from RobustBench [7]. CIFAR100-C uses ResNeXt-29 from
[8]. ImageNet-C uses ResNet-50 from RobustBench [7]. Different from the previous settings, the
target domain adaptation phase and the testing phase of Continual Online SFDA are carried out

3

Table 2: Detailed test errors (%) on CIFAR10-C, where all the results use the WideResNet-28
backbone. Model perturbation achieves the best performance across all the compared methods.

Gaussian shot impulse defocus glass motion zoom snow frost fog bright. contra. elast. pixel. jpeg Avg.
Source-only 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3 43.5
AdaBN [5] 28.1 26.1 36.3 12.8 35.3 14.2 12.1 17.3 17.4 15.3 8.4 12.6 23.8 19.7 27.3 20.4

Tent [2] 24.8 20.6 28.6 14.4 31.1 16.5 14.1 19.1 18.6 18.6 12.2 20.3 25.7 20.8 24.9 20.7
Tent-FT [2] 27.8 25.5 35.4 12.6 34.3 13.8 11.8 17.0 16.9 14.7 8.1 12.7 22.5 18.6 25.6 19.8

BACS (MAP) [6] 26.5 24.8 31.5 12.9 33.5 14.2 12.1 17.4 17.5 15.1 8.6 13.3 22.9 19.5 25.0 19.6
Ours 25.9±0.1 21.4±0.1 29.8±0.2 12.2±0.1 30.3±0.1 13.4±0.1 11.5±0.1 15.9±0.1 15.4±0.1 14.4±0.1 8.6±0.1 12.2±0.2 21.1±0.2 15.5±0.3 21.2±0.3 17.9

Table 3: Detailed test errors (%) on CIFAR100-C, where all the results use the ResNeXt-29 backbone.
Model perturbation achieves the best performance across all the compared methods.

Gaussian shot impulse defocus glass motion zoom snow frost fog bright. contra. elast. pixel. jpeg Avg.
Source-only 73.0 68.0 39.4 29.3 54.1 30.8 28.8 39.5 45.8 50.3 29.5 55.1 37.2 74.7 41.2 46.4
AdaBN [5] 42.1 40.7 42.7 27.6 41.9 29.7 27.9 34.9 35.0 41.5 26.5 30.3 35.7 32.9 41.2 35.4

BACS (MAP) [6] 38.1 33.7 37.2 28.5 39.1 31.5 29.3 35.8 35.7 40.2 31.6 38.7 40.6 37.7 47.3 36.3
Tent [2] 37.2 35.8 41.7 37.9 51.2 48.3 48.5 58.4 63.7 71.1 70.4 82.3 88.0 88.5 90.4 60.9

Tent-FT [2] 42.1 40.6 42.7 27.6 41.8 29.7 27.8 34.8 34.9 41.5 26.5 30.2 35.5 32.8 40.9 35.3
Ours 40.8±0.4 36.7±0.3 38.0±0.3 26.0±0.2 37.7±0.3 27.9±0.1 25.7±0.2 32.4±0.3 31.2±0.3 36.8±0.2 25.1±0.4 28.9±0.2 32.8±0.2 29.2±0.1 38.1±0.3 32.5

simultaneously. Specifically, the corrupted images are fed into the network in an online fashion. At
each iteration, we first predict the corrupted images and then update the model for one step. We
minimize the entropy loss just as Tent [2]. Since there are 15 different corruption types, we adapt the
source pre-trained model to each corruption type sequentially.

7 Detailed Experimental Results

In Table 1-Table 4, we report the detailed accuracies of variational model perturbation. From the
results, variational model perturbation outperforms the compared methods in all the SFDA tasks.

8 Other Implementations

Apart from SHOT and Tent, we have also applied our variational model perturbation to other methods.
In Table 5-Table 8, we report results of variational model perturbation based on NRC [9], GSFDA [10]
and CoTTA [11], respectively.

It is worth noting that in Table 8, CoTTA [11] adopts stochastic restoration for the weights to avoid
catastrophic forgetting. To verify the effectiveness of variational model perturbation in avoiding
knowledge forgetting, we implement model perturbation based on CoTTA without stochastic restora-
tion. In Table 8, we observe that variational model perturbation can achieve better performance
compared with stochastic restoration.

9 Learnable Parameters

In Table 9, we report the number of learnable parameters for the case where the model perturbation
uses a shared strategy and a non-shared strategy. We observe that model perturbation can achieve
excellent performance with only a few learnable parameters.

4

Table 4: Detailed test errors (%) on ImageNet-C, where all the results use the ResNet-50 backbone.
Model perturbation achieves the best average accuracies across all the compared methods.

Gaussian shot impulse defocus glass motion zoom snow frost fog bright. contra. elast. pixel. jpeg Avg.
Source-only 95.3 94.6 95.3 84.9 91.1 86.9 77.2 84.4 79.7 77.3 44.4 95.6 85.2 76.9 66.7 82.4
AdaBN [5] 87.8 87.4 87.6 88.6 88.0 78.5 64.6 68.0 70.3 55.1 37.2 89.6 58.5 57.0 67.8 72.4

Tent [2] 83.1 75.9 75.0 81.5 80.2 76.0 66.4 72.8 75.0 67.9 53.1 89.0 72.8 70.4 74.3 74.2
Tent-FT [2] 86.7 83.1 82.0 85.3 83.6 74.0 61.2 64.8 66.6 54.7 39.8 84.8 58.6 57.0 63.6 69.7

BACS (MAP) [6] 84.3 77.7 76.1 81.4 79.6 73.4 62.7 68.9 70.6 61.4 45.9 83.0 61.6 58.0 64.6 69.9
Ours 86.6±0.2 83.0±0.1 81.7±0.2 83.8±0.3 81.5±0.1 71.6±0.2 59.1±0.2 63.9±0.1 65.1±0.1 54.0±0.2 38.4±0.1 79.9±0.2 54.3±0.3 52.2±0.1 59.8±0.3 67.7

Table 5: Detailed accuracy (%) of other implementations on Office, where all methods use a ResNet-
50 backbone. VMP represents variational model perturbation.

A→W A→D W→A W→D D→A D→W Avg.

NRC [9] 90.8 96.0 75.0 100.0 75.3 99.0 89.4
NRC+VMP 94.3±0.2 95.6±0.3 76.2±0.1 100.0±0.0 75.8±0.2 99.0±0.3 90.2

Table 6: Detailed accuracy (%) of other implementations on Office-Home, where all methods use a
ResNet-50 backbone. VMP represents variational model perturbation.

Ar→ Cl Ar→ Pr Ar→ Rw Cl→ Ar Cl→ Pr Cl→ Rw Pr→ Ar Pr→ Cl Pr→ Rw Rw→ Ar Rw→ Cl Rw→ Pr Avg.
NRC [9] 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2
NRC+VMP 57.9±0.1 78.3±0.2 83.2±0.2 69.7±0.3 79.9±0.1 81.7±0.1 68.4±0.2 54.5±0.2 83.6±0.1 75.3±0.1 60.1±0.2 84.7±0.3 73.1

Table 7: Detailed accuracy (%) of other implementation on Office-Home under Generalized SFDA,
where all the methods use ResNet-50 backbone. Accuracy on source and target domain is denoted by
S and T, respectively. VMP represents variational model perturbation.

Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg. HS/T S/T S/T S/T S/T S/T S/T S/T S/T S/T S/T S/T S/T
Source-only 77.5/44.6 77.5/67.1 77.5/73.5 79.3/48.9 79.3/59.5 79.3/61.9 92.4/52.2 92.4/40.8 92.4/73.5 85.2/64.8 85.2/45.3 85.2/76.9 83.6/59.1 69.2
GSFDA [10] 68.2/53.8 71.1/75.0 74.1/77.6 76.4/66.1 78.6/73.4 78.0/77.3 87.2/64.0 85.1/52.5 89.9/80.9 82.6/70.9 77.8/59.3 82.6/82.3 79.3/69.4 74.0

GSFDA + VMP 69.5/54.7 73.0/77.4 73.8/79.7 77.6/67.0 79.7/76.4 79.9/78.8 89.3/65.5 88.0/54.0 90.9/82.1 84.7/71.3 80.7/60.5 83.5/83.8 80.9/70.9 75.6

Table 8: Detailed test errors (%) of other implementation in the continual online setting, where the
backbone network for CIFAR10-C, CIFAR100-C and ImageNet-C are WideResNet-28, ResNeXt-29
and ResNet-50, respectively. CoTTA∗ means CoTTA method without stochastic restore. RST and
VMP represent weight restore and variational model perturbation, respectively.

dataset Variant Gaussian shot impulse defocus glass motion zoom snow frost fog bright. contra. elast. pixel. jpeg Avg.

CIFAR10-C
CoTTA∗ [11] 24.0 22.2 27.2 12.7 28.9 13.2 11.8 17.0 15.8 13.6 8.5 12.0 20.4 15.3 19.6 17.5

CoTTA∗+RST [11] 24.0 21.4 26.6 12.6 29.1 13.0 12.5 17.1 15.4 13.2 8.1 11.3 20.5 15.5 19.5 17.3
CoTTA∗+VMP 23.9 21.7 25.7 11.9 28.4 13.2 10.9 15.8 15.3 12.9 8.1 11.0 19.2 14.7 18.4 16.7

CIFAR100-C
CoTTA∗ [11] 40.4 37.8 39.8 27.7 37.9 28.7 27.5 34.2 32.6 41.0 26.7 28.2 33.0 29.2 33.5 33.2

CoTTA∗+RST [11] 40.4 37.9 39.9 27.3 37.7 28.4 26.5 33.1 32.2 39.9 25.3 26.8 32.5 28.4 33.2 32.6
CoTTA∗+VMP 38.4 36.2 37.2 25.3 36.8 26.7 25.2 32.3 31.2 37.9 24.2 27.2 31.5 28.0 33.7 31.4

ImageNet-C
CoTTA∗ [11] 86.9 82.3 78.1 81.8 78.5 73.1 66.8 69.5 69.1 65.5 58.6 72.7 63.0 60.9 62.6 71.3

CoTTA∗+RST [11] 86.9 82.3 77.8 81.1 77.2 69.8 62.8 65.3 64.6 59.1 50.4 68.3 58.3 55.6 56.7 67.7
CoTTA∗+VMP 86.6 83.1 79.8 83.2 79.9 70.3 59.4 62.6 62.7 52.8 42.2 69.2 54.7 50.9 55.5 66.2

Table 9: Comparison of learnable parameters (million) between using non-sharing strategy and
parameter sharing strategy.

Architecture ResNet-50 WideResNet-28 ResNeXt-29 ResNet-50
Task Office/Office-Home CIFAR10-C CIFAR100-C ImageNet-C

non-sharing 24.03 36.50 7.02 27.63
sharing 0.06 0.03 0.14 2.13

ratio 0.25% 0.08% 1.99% 7.71%

5

References
[1] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data?

source hypothesis transfer for unsupervised domain adaptation. In International Conference on
Machine Learning, pages 6028–6039. PMLR, 2020.

[2] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent:
Fully test-time adaptation by entropy minimization. In International Conference on Learning
Representations, 2020.

[3] Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparame-
terization trick. Advances in neural information processing systems, 28, 2015.

[4] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural network. In International conference on machine learning, pages 1613–1622. PMLR,
2015.

[5] Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisiting batch
normalization for practical domain adaptation. In International Conference on Learning
Representations Workshop, 2017.

[6] Aurick Zhou and Sergey Levine. Bayesian adaptation for covariate shift. In Advances in Neural
Information Processing Systems, 2021.

[7] Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas
Flammarion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized
adversarial robustness benchmark. In NeurIPS Datasets and Benchmarks Track, 2021, 2021.

[8] Dan Hendrycks*, Norman Mu*, Ekin Dogus Cubuk, Barret Zoph, Justin Gilmer, and Balaji
Lakshminarayanan. Augmix: A simple method to improve robustness and uncertainty under
data shift. In International Conference on Learning Representations, 2020.

[9] Shiqi Yang, Yaxing Wang, Joost van de Weijer, Luis Herranz, and Shangling Jui. Exploiting
the intrinsic neighborhood structure for source-free domain adaptation. In Advances in Neural
Information Processing Systems, volume 34, 2021.

[10] Shiqi Yang, Yaxing Wang, Joost van de Weijer, Luis Herranz, and Shangling Jui. Generalized
source-free domain adaptation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 8978–8987, 2021.

[11] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation.
In Proceedings of Conference on Computer Vision and Pattern Recognition, 2022.

6

	Analysis of Sample Numbers
	Detailed Expression of the Objective Function
	Local Reparameterization Trick
	Discussion
	Pseudo Code
	Elaboration of the Experimental Details
	Detailed Experimental Results
	Other Implementations
	Learnable Parameters

