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Abstract

Recurrent Neural Networks (RNNs) are commonly used models to study neural
computation. However, a comprehensive understanding of how dynamics in RNNs
emerge from the underlying connectivity is largely lacking. Previous work de-
rived such an understanding for RNNs fulfilling very specific constraints on their
connectivity, but it is unclear whether the resulting insights apply more generally.
Here we study how network dynamics are related to network connectivity in RNNs
trained without any specific constraints on several tasks previously employed in
neuroscience. Despite the apparent high-dimensional connectivity of these RNNs,
we show that a low-dimensional, functionally relevant subspace of the weight
matrix can be found through the identification of operative dimensions, which we
define as components of the connectivity whose removal has a large influence on
local RNN dynamics. We find that a weight matrix built from only a few operative
dimensions is sufficient for the RNNs to operate with the original performance,
implying that much of the high-dimensional structure of the trained connectivity is
functionally irrelevant. The existence of a low-dimensional, operative subspace
in the weight matrix simplifies the challenge of linking connectivity to network
dynamics and suggests that independent network functions may be placed in spe-
cific, separate subspaces of the weight matrix to avoid catastrophic forgetting in
continual learning.

1 Introduction

A central goal in neuroscience is to understand how groups of tightly interconnected neurons generate
the complex network dynamics that underlies behavior. To this end, ever larger experimental datasets
on neural anatomy, neural activity and the corresponding behavior are collected and analyzed and
new experimental tools to extend the amount and quality of such data are continuously developed.
However, in most settings it remains an open question how the underlying neural connectivity is
able to generate the observed neural dynamics. Progress in how to inspect and interpret these
complex datasets, and in particular on the relation between neural structure and function, may come
in particular from new theoretical frameworks [1, 2].

Artificial Recurrent Neural Networks (RNNs) are a promising tool to develop such theoretical frame-
works in a well-controlled and flexible setting [3, 4, 5]. Previous work on RNNs explained how
a specifically designed connectivity can give rise to desired network dynamics [6, 7, 8]. Further
theoretical work on RNNs with random, recurrent weights provided detailed insights into the proper-
ties of neural dynamics emerging from largely unstructured connectivity [9, 10, 11, 12, 13]. More
recent work related structure to function in feedforward networks [14, 15] or RNNs with specific
connectivity constraints. For example, network motifs in threshold-linear networks are used to predict
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the existence of fixed points of the dynamics [16]. Similarly, a principled understanding of dynamics
and the role of different cell classes in computations can be achieved for RNNs with low-dimensional
weight matrices (low-rank RNN [17, 18]). At present, it remains unclear if and how the resulting
findings can be generalized to RNNs which are not subject to such constraints.

In this work, we study how the network dynamics are related to the network connectivity in vanilla
RNNs that are trained using a gradient-based approach without imposing any specific constraints on
the network weight matrix. We find that the weight matrix of the trained RNN is consistently high-
dimensional, even when trained on tasks resulting in dynamics that are low-dimensional. Notably,
we are nonetheless able to identify a low-dimensional subspace within the high-dimensional weight
matrix that is sufficient to perform the trained task. We identify this functionally relevant subspace
of the connectivity through the definition of a set of operative dimensions, which we define as
components of the network connectivity that have a large impact on computationally relevant local
dynamics produced by the network.

This ability to identify functionally relevant subspaces in weight matrices improves our understanding
of how the network connectivity generates the observed network dynamics and thereby makes RNNs
into a more interpretable model for neuroscience and machine learning applications.

2 Results

We perform our analyses on vanilla RNNs trained without regularization terms, using the standard
RNN equation:

τ ẋt = −xt + Wrt + But + σt (1)
where xt ∈ RN are the linear activities of the N hidden units over time t with rt = tanh(xt),
W ∈ RN×N is the recurrent weight matrix of the hidden units and τ ∈ R is the time constant
(τ = 10ms, dt = 1ms). We consider RNNs of N = 100 noisy units, where each element of σt

is drawn from a Gaussian distribution N (µ = 0, σ = 3.1623
√
dt ≈ 0.1). The network output is

defined as:
zt = Yrt (2)

with output readout weights Y ∈ RZ×N . The task-dependent, time-varying inputs ut ∈ RU are
projected onto the hidden units with input weights B ∈ RN×U . Note that only the inputs vary across
different conditions within a task. For any given condition, the cost is defined as:

cost =
1

ZT
ΣZ

i=1Σ
T
t=1(z

∗
t (i)− zt(i))

2 (3)

where z∗t (i) is the desired output. All network weights (B, W, Y) are randomly initialized, and
networks are trained to minimize the summed costs across all conditions.

The RNNs are trained separately on two previously proposed tasks: context-dependent integration
[19] and sine wave generation [20] (see appendix section A.3.8 for additional results on sequential
MNIST). The dynamics of RNNs trained on these tasks is well understood, and was shown to be
largely independent of the type of employed RNN [21]. In context-dependent integration, the RNN
receives two noisy, sensory inputs (between -1 and 1) and two static, context inputs (0 or 1). The
network is trained to select one of the two sensory inputs (depending on the currently active context
input; i.e. select input sensoryi in contexti) and integrate it over time (Fig. 1a, b). The network
should reach choice1 or choice2 if the average of the contextually relevant sensory input is positive
or negative, respectively. In the sine wave generation task, the RNN receives one static input and is
trained to output a sine wave whose target frequency is given by the level of this static input (Fig. 1f,
g; for details on task structures see section A.1.1). For both tasks we trained 20 RNNs (different
random initial connectivity) with gradient-based optimization to minimize the cost (Eq. 3; for details
see section A.1.2).

2.1 High-variance dimensions

To characterize the relation between network connectivity and dynamics, we first consider the
functional relevance of high-variance dimensions (as in analyses of low-rank RNN [17]) defined as
the left singular vectors of the RNN weight matrix W:

W = ΣN
i=1wisivT

i (4)
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Figure 1: High-variance dimensions of the connectivity. (a) Task schematic of the context-dependent
integrator. (b) Low-dimensional projection of condition average trajectories for an example context-
dependent integrator. (c) Variance explained (in activity space) by individual PCs of the network
activity X over all input conditions, shown at different stages of training. (d) Variance explained (in
weight space) by individual PCs of the weight matrix W at different stages of training. (e) Network
output cost (Eq. 3) of networks with reduced-rank weight matrices WPC

k for k = 1 : N (Eq. 5),
averaged over input conditions (shaded area: median absolute deviation (mad) over trials). (f-j)
Analogous to (a-e), but for a sine wave generator. (b-e) and (g-j) 1 representative network per task.

where wi and vi are the left and right singular vectors respectively, and si the associated singular
values. In general, we refer to the i-th left singular vectors of a matrix M ∈ RN×C (C ∈ R) as the
principal components of the matrix, PC(M)i.

We first ask whether the weight matrices of the trained networks are low or high-dimensional, by
assessing the amount of variance in the connectivity (s2i ) explained by principal components PC(W)i.
In the trained networks, variance explained falls off slowly over PC(W)i, implying that the weight
matrices W are high-dimensional. The variance explained by individual PCs changes little during
training (Fig. 1d, i shown for column dimensions; colors: training iteration) but is strongly influenced
by the rank of the untrained network (Fig. S6). Despite having a high-dimensional connectivity,
the network activities (X = [x1, . . . xT ] and R = [r1, . . . rT ]; both further concatenated over all
input conditions) are consistently low-dimensional. Activity is low-dimensional even before training,
as W is initialized with a spectral radius of 1 (Fig. 1c, h; colors: training iteration). Throughout
training, more than 95% of the variance in the network activities X can be described by less than ten
dimensions. Thus, even though the underlying weight matrix (being high-dimensional) could support
activity in any region of state space, the network activity generally only occupies a low-dimensional
subspace. This finding raises the question of whether all dimensions in W are truly necessary to
perform the task.

To assess the functional importance of single dimensions of W, we construct reduced-rank approxi-
mations of W from only a subset of all PC(W)i and then assess the performance of the resulting
RNN (as in [22]). Each low-rank approximation is constructed by including only the first k PC(W)i:

WPC
k = Σk

i=1wisivTi (5)

RNN performance based on WPC
k is evaluated as above to obtain the network output cost (Eq. 3).

We find that a large number of PC(W)i are consistently required to reach a similar performance
as the original network. For the two example networks, 88 PCs are required to achieve original
performance for context-dependent integration, and 86 PCs for sine wave generation (Fig. 1e, j; we
define original performance as 4 times the cost of the corresponding full-rank RNN, Fig. S7 shows
more example networks). Furthermore, performance does not improve monotonically with increasing
rank, but rather displays sudden jumps at specific ranks (Fig. 1e, j). These jumps suggest that
some high-variance dimensions are more relevant than others in driving the network output. These
putative differences in functional relevance are not obviously mirrored in the amount of variance in
W explained by each high-variance dimension (Fig. 1d, i). In other words, the amount of variance in
connectivity space explained by a given dimension in W does not appear to directly correspond to its
functional relevance.
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Figure 2: Local and global dynamics. (a) Network output cost for reduced-rank weight matrices
WPC

k in an example network for context-dependent integration. Analogous to Fig. 1e, but shown
separately for choice1 and choice2 trials in context1. (b) Average trajectories for the conditions in (a)
in the full-rank and a reduced-rank (k = 60) network (grayish and reddish curves, see legend). Blue
lines show recurrent dynamics in the reduced-rank network initialized at locations corresponding
to slow points of the dynamics in the full-rank network (blue crosses). (c) Same as (b) but for a
reduced-rank network with k = 61.

Overall, it appears that the inferred high-variance dimensions may be ill-suited to shed light on the
relation between RNN connectivity and dynamics. These findings point to two possible scenarios: the
functionally relevant subspace of the weight matrix in these unconstrained RNNs is genuinely high-
dimensional, precluding simpler descriptions of the most relevant components of the connectivity; or
high-variance dimensions PC(W)i may in general not be well-aligned with functionally relevant
dimensions of the connectivity.

2.2 Operative dimensions

2.2.1 Definition of operative dimensions

To distinguish between these two scenarios, we devised an approach to directly identify functionally
relevant dimensions of the weight matrix. We refer to this new type of dimensions as the operative
dimensions of the connectivity.

The definition of operative dimensions is based on the key insight that sudden jumps in performance
(cost, Eq. 3) can be caused by small changes in the local dynamics. Here we illustrate this for
one example network trained on context-dependent integration (Fig. 2). We focus on 2 out of 8
input conditions, for which the cost shows prominent jumps at specific ranks k, specifically when
transitioning from k = 60 to k = 61 (Fig. 2a; red circles).

To understand this sharp increase, we examine the activity trajectories produced by the original
full-rank and the reduced-rank RNN for the two considered input conditions (k = 60 in Fig. 2b;
k = 61 in Fig. 2c). The well-performing, full-rank RNN produces trajectories that start in the center
and move out to endpoints on the right (choice1; solid black) or left (choice2; dashed gray). The RNN
with k = 60 closely matches these dynamics (Fig. 2b; red curves, solid and dashed). On the other
hand, the RNN with k = 61 erroneously produces trajectories that move to the left endpoint for both
conditions (Fig. 2c; overlapping red curves). This discrepancy between choice1 trajectories in the
original full-rank and k = 61 RNN underlies the large jump in cost (Fig. 2a).

Critically, we found that the large difference in cost between the two reduced-rank networks is due to
only a small change in the underlying local, recurrent dynamics. To visualize the local dynamics in
the two reduced-rank RNNs, we generate brief activity trajectories (Fig. 2b,c; blue curves) initialized
at the location of identified slow-points of the dynamics in the original full-rank RNN (blue crosses;
identified as in [19]). Here, we isolate the recurrent contribution to the dynamics by running the
RNN without any external inputs (Eq. 1 with ut = 0, σt = 0). The resulting trajectories suggest
that the local recurrent dynamics is substantially different across networks only in the region of state
space that activity travels through at the onset of the trial (Fig. 2b,c; dashed square). This small local
difference is sufficient to redirect the choice1 trajectories for k = 61 towards the wrong endpoint.
This mistake cannot be corrected by recurrent dynamics at other locations in state space, resulting in
the large cost. In summary, the functional relevance of individual dimensions of W is hard to assess
based on changes in the cost, but rather may be better judged based on its effect on local network
dynamics.
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Based on this insight, we define operative dimensions as dimensions in W that have a large impact on
the local dynamics if removed from W (Fig. 3a). Given an arbitrary unit vector a ∈ RN , we define
Ŵ as the matrix of rank N − 1 obtained by removing the dimension a from the column space of W
(orthogonal projection):

Ŵ = W − a(aT W) (6)

In the absence of noise, the dynamics of the resulting reduced-rank RNN are then given by
τ ˆ̇xt = −xt + Ŵrt + But. At location xt the activity evolves to x̂t+1 = xt + ˆ̇xtdt over one time-step.
Likewise, the state of the full-rank network evolves to xt+1 = xt + ẋtdt, where we have set σt = 0
in Eq. 1. We quantify the change in local dynamics brought about by removing a as:

∆f = ∥xt+1 − x̂t+1∥2 (7)

as illustrated graphically in Fig. 3a. We then define the operative dimensions of W based on ∆f
in two steps. In the first step, we infer a set of local operative dimensions at each of P sampling
locations yj ∈ RN in state space. The sampling locations are chosen as an evenly distributed subset
of the states xt explored by the condition average trajectories of the full-rank network (Fig. 1b, g; only
a subset of P > 100 locations shown). This choice of sampling locations ensures that we consider
only local dynamics that is likely to contribute to solving the task at hand. The first local operative
dimension d1,j at location yj is defined as the dimension a that maximizes ∆f :

d1,j = argmax
a

(∆f){xt=yj} (8)

Up to N − 1 further local operative dimensions di,j at the same location yj are defined in the same
way, but under the additional constraint that they need to be orthogonal to all previously identified
local operative dimensions at that location:

di,j = argmax
a

(∆f){xt=yj}, constrained by: dT
i,jdi∗,j = 0,∀i∗ < i (9)

In the second step, we define the global operative dimensions by combining the local operative
dimensions di,j from all sampling locations yj (i = 1 : N, j = 1 : P ). Specifically, the local
operative dimensions are scaled by their local ∆f and concatenated into one matrix L.

L = [d1,1∆f1,1,d1,2∆f1,2, . . . ,dN,P−1∆fN,P−1,dN,P∆fN,P ] (10)

where ∆fi,j = ∆f{xt=yj ,a=di,j}. The i-th global operative dimensions qi is then defined as the i-th
left singular vector of L:

L = ΣN
i=1qigip

T
i (11)

where gi are the singular values, and pi the right singular vectors of L. The subspace spanned by the
global operative dimensions qi consists of all left singular vectors with gi > 0. Note that these steps
result in operative dimensions of the column space of W, which are referred to as column dimensions
in the figures. We employ an analogous approach to define operative dimensions of the row space of
W which yields global operative row dimensions qi (row dimensions in figures; see section A.2.2).

2.2.2 Operative dimensions identify a low-d functional subspace of the connectivity

To quantify the functional relevance of the global operative dimensions, we proceed as for the high-
variance dimensions above (Eq. 5) by constructing reduced-rank approximations of W from only a
subset of the operative dimensions. For the column dimensions, the reduced-rank approximations
WOP

k are given by:
WOP

k = Σk
i=1qi(q

T
i W) (12)

Network activity xOP
t,k based on WOP

k is then computed as above (Eq. 1).

Unlike the high-variance dimensions, the global operative dimensions identify a low-dimensional
subspace that is sufficient for the RNN to achieve the original performance in both tasks (Fig. 3b-c,
e-f; solid lines, qualitatively similar results on sequential MNIST are shown in section A.3.8). We
find that 15 column and 27 row dimensions are sufficient to achieve original performance for context-
dependent integration; and 29 column and 41 row dimensions for sine wave generation. Thus, the
RNNs are functionally low-rank even though the underlying weight matrix is high-dimensional.
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Figure 3: Operative dimensions. (a) Definition of operative dimensions based on local recurrent
dynamics along a condition average trajectory. Arrows show the recurrent contribution to the
dynamics for the full-rank and several reduced-rank networks (colors, see legend). Local operative
dimensions maximize ∆f . Here inputs ut and noise σt are set to zero. (b) Rank of global operative
column dimensions, estimated with PC analysis on concatenated local operative dimensions (Eq. 10
and 11). (c) Network output cost of networks with reduced-rank weight matrix WOP

k for k = 1 : N
(Eq. 12). (d) State distance between trajectories in the full-rank network and in networks with
reduced-rank weight matrix WOP

k . (b-d) Based on global operative column dimensions and averaged
over 20 networks per task; shaded area: mad. Network output cost obtained with internal and input
noise, state distance without any noise. (e-g) Same as (b-d) for global operative row dimensions.

This clear difference between the global operative dimensions and the high-variance dimensions is
also reflected in their weak alignment to each other (Fig. S8). This finding implies that much of the
network connectivity in these trained networks is not required to perform the task.

Notably, the identified functionally relevant subspace of the connectivity is sufficient to generate the
original network trajectory, not just the network activities along the output direction. The average
distance between the network trajectories of the reduced-rank and the full-rank networks decreases
rapidly as the global operative dimensions are sequentially added to the weight matrix (Fig. 3d, g;
state distance = 1

T

∑T
t=1 ∥xt − xOP

t,k ∥2). This observation follows from the definition of operative
dimensions, which focuses not on changes in network output, but rather on the recurrent dynamics at
sampling locations lying along the entirety of the condition average trajectories. We obtained similar
results for networks at different stages of training (Fig. S14) and with different types of connectivity
and architecture (Fig. S15). Similarly, even though operative dimensions are defined based on how
much they alter the local dynamics when removed from W, the first few operative dimensions are
sufficient to preserve the dominant local, linear dynamics (Fig. S17).

Unlike for high-variance dimensions (Fig. 1e, j), RNN performance and state distance change
smoothly with increasing rank of the global operative dimensions (Fig. 3c-d, f-g). However, adding
the first few dimensions to the weight matrix often hurts performance. This effect can happen because
the global operative dimensions are not sorted based on when they are required during individual
trials, but rather by their impact on local network dynamics. Indeed, the first few operative dimensions
are mostly required at state-space locations explored late in the trial, but are insufficient to sustain the
dynamics required early in the trial (Fig. S21c, f, i, l).

Identifying the operative dimensions critically relies on the correct choice of sampling locations.
First, we illustrate the importance of the choice of sampling locations by defining global operative
dimensions based on random sampling locations in state space (Fig. 3c, f; dotted lines). For the same
choice of rank, the resulting dimensions yield much poorer performance compared to the operative
dimensions defined as above, emphasizing the importance of capturing the local network dynamics
within the functionally relevant part of state space. Second, even when sampling locations are defined
along the condition average trajectories, they need to be sampled at high enough density. When too
few sampling locations are chosen along the trajectories, the identified global operative dimensions
are less effective at reproducing network output and trajectories (Fig. S18).
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Figure 4: Operative dimensions and network complexity. (a) Task schematic for high-dimensional
sine wave generator networks trained to output 1-5 sine waves simultaneously. (b) Variance explained
(in activity space) by individual PCs of the network activity X over all input conditions. (c) Rank
of global operative column dimensions, estimated with PC analysis on concatenated local operative
dimensions L (Eq. 10 and 11). (d) Network output cost of networks with reduced-rank weight matrix
WOP

k for k = 1 : N (Eq. 12). (e) State distance between trajectories in the full-rank network and in
networks with reduced-rank weight matrix WOP

k . (c-e) Based on global operative column dimensions;
averaged over 5 networks per number of inputs/outputs; shaded area: mad. Network output cost
obtained with internal and input noise, state distance without any noise. (f-h) Same as (c-e) for global
operative row dimensions.

One consequence of the tight link between local network dynamics and operative dimensions is that
the number of operative dimensions required to approximate a particular network may increase with
the complexity of the network activity, and of its inputs and outputs [23]. To illustrate this relation,
we systematically varied the complexity of RNN computations by training sine wave generators with
varying numbers of input and output signals (between 1 − 5 inputs U and outputs Z; Fig. 4). As
expected, the network activity xt becomes increasingly high-dimensional for increasing values of U
and Z (Fig. 4b), and correspondingly the number of global operative dimensions required to achieve
the original performance increases as well (Fig. 4c-e and f-h). We obtained a similar effect when
increasing the dimensionality of the inputs into the RNNs, while keeping the dimensionality of the
output fixed. (Fig. 13). Analytical considerations also imply that, in vanilla RNNs described by Eq. 1,
the number of global operative dimensions is tightly linked to the dimensionality of the network
activity R (section A.2.4 and A.2.5).

2.2.3 Operative dimensions relate functional modules to weight subspaces

Past studies have shown that RNNs can implement complex, context-dependent computations by
"tiling" activity state space into separate functional modules [21, 19, 24]. Dynamics within individual
modules is often approximately linear, but different approximately linear dynamics, corresponding to
different input-output relations, are implemented across modules [20].

Our definition of operative dimensions is well-suited to ask whether the existence of functional
modules in activity space has a correspondence at the level of the structure of the connectivity. To
obtain a more fine-grained mapping from function to structure, the global operative dimensions can be
generated based on different subsets of local operative dimensions. Specifically, sampling locations
can be grouped based on their functional meaning, i.e. based on which condition average they belong
to. The resulting sets of function-specific global operative dimensions can then link different network
functions to particular subspaces in the weight matrix.

We demonstrate this approach for the context-dependent integrator network. We inferred global
operative dimensions from local operative dimensions that were collected either separately by context,
but pooled over choice, or separately by choice, but pooled over context (details section A.2.6).
We refer to the resulting context-dependent global operative column dimensions as qi(contextj),
and the choice-dependent dimensions as qi(choicej) (i = 1 : N , j = 1 : 2; row dimensions: qi).
We compared these dimensions directly by measuring their pairwise alignment (subspace angle,
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Figure 5: Function-specific global operative dimensions. (a) Subspace angle between global operative
column dimensions qi defined separately for context1 and context2. (b) Subspace angle between
global operative column dimensions qi defined separately for choice1 and choice2. (c-d) Same as
(a-b) for global operative row dimensions qi. (e) Network output cost averaged separately over trials
of context1 or context2 for networks with reduced-rank weight matrix consisting of the first k function-
specific global operative column dimensions from context1 (WOPCtx

k,j , context j = 1). (f) Network
output cost averaged separately over trials of choice1 or choice2 for networks with reduced-rank
weight matrix consisting of the first k function-specific global operative column dimensions from
choice1 (WOPCho

k,j , choice j = 1). (g) Same as (e), but based on global operative column dimensions
from context 2. (h) Same as (f), but based on global operative column dimensions from choice 2.

Fig. 5a-d). We find that the function-specific global operative dimensions are only weakly aligned
across the two contexts, but more strongly aligned across choices, suggesting that the RNN uses
different weight subspaces to implement the sensory integration in each context, but reuses weight
structures to implement the sensory integration across choices.

To further support this conclusion, we checked if the global operative dimensions inferred from one
functional module can support accurate computations in another module. We first constructed module
specific, reduced-rank approximations of W as above (Eq. 12), which we refer to as WOPCtx

k,j (context-
specific) and WOPCho

k,j (choice-specific). We then measured network performance across conditions
when using these different reduced-rank approximations (Fig. 5e-h). In agreement with the subspace-
angles above, we find that networks based on operative dimensions defined in context1 perform
poorly in context2, and vice versa (Fig. 5e, g) whereas operative dimensions from a given choice
yield comparatively good performance also in the other choice (Fig. 5f, h). These observations are in
line with previous findings [19] that the context-dependent integrator implements an approximate
line attractor in each context, with mostly preserved dynamics along a given line attractor (i.e. across
choices), but rather different dynamics between attractors (i.e. across context). Interestingly, the
identified structure in the underlying connectivity, while clearly revealed by the operative dimensions
(Fig. 5), does not become apparent when studying the weight matrix or contributions of individual
network units directly (Fig. S19).

3 Discussion

In this work, we present an approach for inferring the operative dimensions of an arbitrary weight
matrix in an RNN. The operative dimensions of the connectivity are defined based on their impact on
the computationally relevant, local recurrent dynamics of the network. We find that for the examined
tasks, the operative dimensions span a low-dimensional subspace of the connectivity space that is
sufficient to produce accurate outputs in a reduced-rank network.

Relation to state of the art. Our framework of operative dimensions extends recent work based
on RNNs that by construction are explicitly low-rank, which already showed that many tasks of
relevance to neuroscience can be solved with RNNs that rely entirely on low-rank connectivity [17].

8



Unlike in this previous work, the networks we analyzed have a connectivity that is not constrained–the
dimensionality of the underlying weight matrix is high at initialization, and remains high throughout
training (Fig. 1d, i). This high dimensionality persists even though the weight updates brought about
by training are low-rank [22]. However, our analyses showed that only a low-dimensional subspace of
the effectively high-dimensional connectivity is used to solve the task, whereby the remainder of the
structure in the weight matrix plays essentially no role in solving the task at hand. This finding opens
the possibility to apply the conceptual framework of low-rank networks [17], which has provided
valuable and direct insights into the relation of connectivity and dynamics, also to other types of
RNNs.

Operative dimensions amount to a form of model reduction [25, 26] that emphasizes the preservation
of attractor dynamics [27, 28] for the special case of a model parameterized as a neural network.
Critically, our approach to relating the model structure to its function relies on characterizing the
dynamics locally, along explored activity trajectories, similarly to methods to quantify non-linear
dynamics based on Lyapunov or bred vectors [29, 30, 31].

More generally, our work makes a contribution towards increasing the interpretability of artificial
neural networks. Past work had shown that unconstrained, trained RNNs need not be considered
as a "black box", but rather that the computations implemented by many RNNs can be understood
at the level of population dynamics, through the interaction of inputs and dynamical primitives
like attractors and saddle points [20, 32, 24]. Recent work related the implemented dynamical
primitives to the underlying connectivity [17] in constrained RNNs. We have shown that establishing
such relations is in principle also possible through the definition of condition-dependent operative
dimensions (Fig. 5) without any specific constraints on the connectivity. Current opinions assume
that such increased understanding and interpretability of artificial networks is desirable both to
increase acceptance of the resulting machine learning applications throughout society, but also
potentially to design better artificial system that overcome biases and limitations resulting from
current approaches (see [33, 34, 35] for reviews). Nonetheless, potentially negative societal impacts
of increased interpretability cannot be ruled out. For instance, if used on RNNs trained on personal
data, operative dimensions may potentially facilitate the extraction of private information that was
otherwise hidden in high-dimensional weight matrices.

Limitations. One limitation of our approach to identifying operative dimensions is that it relies on
studying local recurrent dynamics based on a somewhat arbitrary definition of sampling locations
in activity state space. By design, the inferred operative dimensions will be sufficient to reproduce
the full-rank dynamics only at these specific locations in state space. Note that there is no explicit
requirement for the operative dimensions to reproduce the desired network output. We picked
sampling locations along the condition average trajectories, based on the assumption that these
average trajectories provide a good coverage of all the relevant local dynamics. In practice, this
assumption may not hold in all RNNs. For one, average trajectories may travel through state-space
regions that are not visited by any single trials, leading one to under-sample functionally relevant
regions. For another, single-trial and average trajectories may also reflect dynamics that is not
functionally relevant, and thus lead to over-sampling of regions that are not directly involved in
generating the output. Further work may address alternative approaches for choosing sampling
locations to optimize their functional relevance. To some extent, the adequacy of sampling locations
can be tested empirically by systematically varying the number and location of sampling locations to
optimize the performance of the inferred reduced-rank networks (Fig. S18).

Another potential limitation of our approach is that it may not be equally effective in identifying a
functional subspace of the connectivity across all types of RNNs and in more complex tasks. While
here we have focused on vanilla RNNs, we found that a low-dimensional functional subspace can
be identified in such RNNs for a variety of network architectures, including with non-overlapping
populations of excitatory and inhibitory neurons, or the use of different non-linear activation functions
(Fig. S15). The properties of learned dynamics in the kind of tasks we employed is largely conserved
across different types of networks (GRU, LSTM; [21, 24]), in particular the role of "tiling" activity
space into distinct computational modules. This observation implies that our approach to relating
connectivity and function at the level of local dynamics is at least meaningfully applicable even in
these different kinds of networks. While we find that operative dimensions can retrieve a functionally
relevant subspace also for a richer task like sequential MNIST (Fig. S16), it remains an open question
whether these approaches will extend to harder AI problems.
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Conclusion Operative dimensions can infer a functionally relevant subspace within high-
dimensional RNN connectivity that is sufficient to perform the task at hand. On one hand, this
observation might benefit practical applications of RNNs as a computational tool, e.g. for continual
learning in RNNs, by specifically protecting functionally relevant subspaces of the weight matrix
to avoid catastrophic forgetting [36], or for weight compression, by storing the weight matrix as a
linear combination of the global operative dimensions [37, 22]. On the other hand, the ability to
identify functionally specific subspaces in the network connectivity may improve the applicability of
RNNs as a model in neuroscience, as it simplifies the critical challenge of linking the properties of
the connectivity to the network dynamics and may thus provide guidance on how to relate structure
to function in complex biological datasets.

Code Availability

We used Matlab to perform the data analysis. All the code and models required to reproduce the main
analyses supporting our conclusions are available in matlab and python at: https://gitlab.com/
neuroinf/operativeDimensions
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