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Due to the page limit of the paper, we provide a more detailed description and experimental results
in this appendix. The main content includes the following four folds: 1) The detailed instructions
of constructing Figure-Ground Cues (in Section A). 2) We describe the definition of evaluation
metrics used in the paper (in Section B). 3) The implementation details of IEM (in Section C). 4)
The detailed description of the Figure-Ground Segregation Test (in Section D). 5) The details of the
model implementation in the ablation experiment (in Section E). 6) We present more comparison
results with other methods on three applications (in Section F). 7) We discuss the limitation of our
proposed method (in Section G).
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Algorithm 1 Figure-Ground Cues Generation: Python-like Pseudocode

1 # "label" is the original label
2
3 label_o = label[:, :, 0]
4 # Generate Convexity Cue
5 # set kernel size
6 kernel = skimage.morphology.disk(10)
7 # opening
8 label_op = skimage.morphology.opening(label_o, kernel)
9 label_op = label_o - label_op

10 # closing
11 label_cl = skimage.morphology.closing(label_o, kernel)
12 label_cl = label_cl - label_o
13
14 label_opcl = np.zeros((2, label.shape[0], label.shape[1]), dtype=np.float32)
15 # Convexity label combine
16 label_opcl[0] = label_cl
17 label_opcl[1] = label_op
18
19 # Generate Lower Region Cue
20 # set kernel size
21 kernel = skimage.morphology.disk(5)
22 # erosion
23 label_er = skimage.morphology.erosion(label_o, kernel)
24 label_er = label_o - label_er
25 # dilation
26 label_di = skimage.morphology.dilation(label_o, kernel)
27 label_di = label_di - label_o
28
29 label_erdi = np.zeros((2, label.shape[0], label.shape[1]), dtype=np.float32)
30 # Lower Region label combine
31 label_erdi[0] = label_er
32 label_erdi[1] = label_di

A. Figure-Ground Assignment Cues

The figure-Ground assignment is the foundation of the visual perception process and contributes
almost all perception-based tasks [1, 2]. The human visual mechanism points out that when humans
observe images, they will use some configural cues to distinguish between foreground and background,
including Convexity [3–6] and Lower Region [7, 8]. Accordingly, we propose to leverage the
convexity and lower region labels, as shown in Figure S1. We use morphological opening/closing
and morphological erosion/expansion operations to generate convexity and lower region labels. The
key generation code for the Figure-Ground Cues is shown in the Algorithm 1.

Figure S1: Some examples of Convexity and LR labels. “Convexity” represents the convexity label.
“LR” represents the lower region label. Best viewed in color.
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B. Evaluation Criteria

I S-measure (Sα) [9] focuses on evaluating the structural information of saliency maps, which is
closer to the human visual system.

Sα = αSo + (1− α)Sr, (1)

where So and Sr denotes the region-aware and object-aware structural similarity and α is set as 0.5
by default.

I E-measure (Eφ) [10] is designed for evaluating the difference between the predicted map X and
ground-truth Y from the local and global perspectives.

Eφ =
1

N

N∑
n=1

φ(X(n)− Y (n)), (2)

where φ denotes the enhanced alignment matrix and n is the index of each pixel.

I Weighted F-measure (Fωβ ) [10] is an overall performance measurement and computed by the
weighted harmonic mean of the precision and recall.

Fωβ =
(1 + β2)Precisionω ×Recallω

β2 × Precisionω +Recallω
, (3)

where β2 is set to 0.3 as in previous works.

I Mean Absolute Error (MAE) [11] measures the average absolute distance between the normalized
predicted map and the ground-truth.

MAE =
1

N

N∑
n=1

|X(n)− Y (n)| . (4)

I Dice [12] coefficient is a similarity measure function, typically used to calculate the similarity of
two samples, with values in the range [0, 1].

Dice =
2 |X ∩ Y |
|X|+ |Y |

. (5)

where X is the predicted map and Y is the ground-truth.

C. Implementation details of IEM

As shown in Figure S2, we provide the python source code about the IEM.

D. Figure-Ground Segregation Test

D.1. Dataset Generation

In this paper, to investigate the validity of our proposed method, we design and establish a set of tasks
to evaluate the Figure-Ground assignment ability of deep convolutional neural networks, inspired
by the Figure-Ground Segregation test in cognitive science experiments [13–16]. Furthermore, for
a more comprehensive evaluation, three datasets of different difficulty levels (Easy, Normal, and
Hard) are established by varying the transformations (as shown in Table S1), the division of texture
image set, and the size of figure regions. The whole process of sample generation can be divided
into the following steps: 1) Select a random image in the Pascal [17] dataset and use one object
instance as a figure and the remaining regions as the ground. As shown in Table S1, we used the
area of the object region as a controllable factor for the generation of dataset. 2) Given a collection
of texture images (like DTD [18]), randomly select a texture image from it. The division of texture
sets in different datasets is shown in Table S2. 3) Two random transformations (such as rotation
and scaling) are performed on the texture image independently. 4) Fill the figure region and the
ground region with the two transformed textures, respectively, resulting in a synthetic sample. The
synthesis process is shown in Figure S3. The link to download the above datasets are: Pascal
(http://host.robots.ox.ac.uk/pascal/VOC/) and DTD (https://www.robots.ox.ac.uk/ vgg/data/dtd/).
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Figure S2: The python source code about the IEM.

Table S1: Details of transformation parameters used in Figure-Ground Segregation Test.“Texture split”
means the number of texture classes used in the training and testing sets. In this paper, we use the
DTD [18] dataset as a candidate texture set, which includes 47 classes of textures (the detail is shown
in Table S2). “Rotation control” indicates the rotation angle applied to the foreground and background
textures. “Area control” represents the size of foreground area when selecting foregrounds from the
pascal dataset. Using > 5000 as an example, we only select the area of the object with a foreground
area greater than 5000 pixels.

(train : test) Easy Normal Hard
Texture split 40 : 7 10 : 37 3 : 44

Rotation control [1°∼90° ]:[1°∼90°] [30°∼90°]:[1°∼60°] [60°∼90°]:[1°∼30°]
Area control > 5000 > 2500 > 500

D.2. Detail Description of Strong Baseline

In this paper, we compare our model with two representative architectures: U-Net [19] and Deeplabv3
[20]. U-Net is one of the most popular architectures in the field of segmentation, which has a typical
encoder-decoder architecture, and the shallow features are directly fed into the decoder through skip
connections. Deeplabv3 is a highly competitive network for semantic segmentation. Through atrous
spatial pyramid pooling, it can expand the receptive field while modeling fine details. Furthermore,
we also compare the results of the two models after adding edge supervision. Their detailed structures
are shown in Figure S4.

D.3. Detailed Results

Due to the page limit of the paper, we give the numerical results in this section (as shown in Table S3
and Table S4). In addition, we show more visual results. We compare the performance of our method

4



Table S2: Different texture classes are used in the training and testing sets at different difficulty levels.

Train Test

Easy

bumpy, meshed, porous, perforated,
stained, grid, braided, blotchy,

lacelike, pitted, bubbly, wrinkled,
fibrous, chequered, marbled, paisley,

flecked, waffled, pleated, striped,
cobwebbed, stratified, honeycombed, studded,

polka-dotted, smeared, dotted, zigzagged,
matted, spiralled, banded, cracked,
swirly, lined, crystalline, freckled,

frilly, gauzy, interlaced, scaly

sprinkled, potholed, knitted, veined,
woven, grooved, crosshatched

Normal
bumpy, meshed, porous, perforated,

stained, grid, braided, blotchy,
lacelike, pitted

bubbly, wrinkled, fibrous, chequered,
marbled, paisley, flecked, waffled,

pleated, striped, cobwebbed, stratified,
honeycombed, studded, polka-dotted, smeared,

dotted, zigzagged, matted, spiralled,
banded, cracked, swirly, lined,

crystalline, freckled, frilly, gauzy,
interlaced, scaly, sprinkled, potholed,

knitted, veined, woven,
grooved, crosshatched

Hard bumpy, meshed, porous

perforated, stained, grid, braided,
blotchy, lacelike, pitted, bubbly,

wrinkled, fibrous, chequered, marbled,
paisley, flecked, waffled, pleated,

striped, cobwebbed, stratified, honeycombed,
studded, polka-dotted, smeared, dotted,
zigzagged, matted, spiralled, banded,

cracked, swirly, lined, crystalline,
freckled, frilly, gauzy, interlaced,

scaly, sprinkled, potholed, knitted,
veined, woven, grooved, crosshatched

1-M

M

Rotation & Resize

Rotation & Resize

Figure S3: The generation process of the sample in Figure-Ground Segregation Test.

with several representative segmentation methods for the Figure-Ground Segregation Test, as shown
in Figure S5.

D.4. More analysis

We explore the relevant hyperparameters of IEM on the normal dataset of figure-ground segregation
test. We explore the relative positional embedding range of the CLI part of the IEM, a parameter that
controls the scale of the IEM for modeling local contexts. As shown in the Table S5, the performance
improves further as the relative position embedding range increases, but the magnitude of the improve-
ment becomes diminished. Moreover, to further reduce the number of parameters and computation in
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GT
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GT
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ASPP

GT
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(a) UNet+Edge

(b) DeepLabv3+Edge

(c) UNet+FGA

(d) DeepLabv3+FGA
Figure S4: Detailed structures of UNet+Edge/UNet+FGA and Deeplabv3+Edge/Deeplabv3+FGA.
The different colors represent different weights.

Table S3: FGA-Net outperforms representative models for Figure-Ground Segregation. This table
corresponds to Figure 6 (a) in the body text.

UNet UNet+Edge UNet+FGA DeepLabv3 DeepLabv3+Edge DeepLab+FGA
Metrics Sm IoU Sm IoU Sm IoU Sm IoU Sm IoU Sm IoU

Easy 0.866 0.793 0.878 0.801 0.883 0.811 0.875 0.796 0.878 0.805 0.899 0.82
Normal 0.741 0.573 0.755 0.602 0.816 0.659 0.774 0.608 0.782 0.64 0.825 0.671
Hard 0.648 0.371 0.662 0.396 0.733 0.472 0.664 0.412 0.679 0.433 0.758 0.501

IEM, we incorporate a bottleneck strategy similar to that in ResBlock, where we explore the impact
of the scaling ratio of bottlenecks in IEM on performance (Table S6). Experimental results show
that the smaller the scaling ratio (indicating a larger number of parameters), the performance can be
improved, but the improvement is limited.

We perform an experiment on the normal dataset of the figure-ground segregation test, and the
experimental result (Table S7) shows that directly using an edge-aware loss like HED [21] instead
of LLR does not achieve better result than the FGA model itself. The reason is that the supervision
using edge-aware only provides the perception of the foreground boundary, while the Lower Region
cue provides a more contextual perception of the boundary region beyond the foreground boundary.
In brief, it allows the model to focus on the associations within the inner and outer regions of the
boundary and the differences between the inner and outer regions.

E. Details of the model implementation in the ablation experiment

The detailed structure of model (a)(b) and (c) in the ablation experiment is shown in Figure S6.

F. More Results on Three Challenging Applications

F.1. More Sample Images from Three Challenging Applications

In this paper, we verify the effectiveness and superiority of our proposed framework on three
challenging segmentation tasks: Camouflaged Object Detection (COD) [22], Polyp Segmentation
(PS) [23], and Lung Infection Segmentation (LIS) [24]. These three tasks all show high similarity
between the foreground object and the background region. In addition, they have some unique
characteristics. COD task mainly manifests in complex background/edges, small targets/structure,
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Table S4: FGA-Net is more data-efficient than representative models. The table corresponds to Figure
6 (b) in the body text.

IoU 1 % 10 % 30 % 100 %
Baseline 0.202 0.375 0.543 0.602

+Edge 0.245 0.415 0.572 0.64
+FGA 0.375 0.508 0.601 0.659

GT+Edge +FGABaselineImage
Figure S5: Visual comparisons on the Normal dataset.

slender trunks/limbs, and partially occluded objects. The main challenge of the PS task is the
diversity of size and texture. The main difficulty in the LIS task is the complex distribution of
foregrounds and backgrounds. To show the characteristics of different tasks, we give some sample
images from these three challenging tasks (Figure S7). The link to download the above datasets
are: COD (http://dpfan.net/Camouflage/), PS (https://github.com/DengPingFan/PraNet), and LIS
(https://medicalsegmentation.com/covid19/).

F.2. Results on Camouflaged Object Detection Task

Visual Comparisons. We show qualitative results in this section. We compare the performance
of our method with several state-of-the-art (SOTA) methods on CHAMELEON [25], CAMO [26],
and COD10K [22] datasets. All the methods are listed as follows: UNet++ [27], PiCANet [28],
BASNet [29], PFANet [30], CPD [31], EGNet [32], and SINet [22]. As shown in Figure S8, our
FGA-Net is robust in dealing with various challenging scenarios, including small object, multiple
objects, low contrast and complex background.

Ablation. We add the relevant ablation experiments on the realistic dataset (COD), as shown
in Table S8 and Table S9, the performance is generally consistent with that in the Figure-Ground
Segregation Test.

Analysis. To verify the effectiveness of our method, we visualize the output of FGA-Net in
Figure S9. It can be seen that in addition to the prediction map output by the main branch, the
prediction map output by the other two branches is also close to GT. We further visualize the feature
maps to verify the effectiveness of our proposed FGA framework. By comparing the left part (w/o
FGA) with the right part (w/ FGA), feature maps after the aggregation module are more complete in
object regions than those without the FGA framework.

F.3. Results on Polyp Segmentation Task

We show qualitative results in this section. We compare the performance of our method with several
SOTA methods on Kvasir (Kvasir) [34], CVC-ClinicDB/CVC-612 (CVC-612) [35], CVC-ColonDB
(ColonDB) [36], ETIS (ETIS) [37], and EndoScene (Endo) [38] datasets, as shown in Figure S10.
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Table S5: The relative positional embedding range (r) w.r.t performance.

r 3 5 7 9
S 0.813 0.816 0.818 0.818

IoU 0.690 0.695 0.696 0.698

Table S6: The scaling ratio (rate) of bottlenecks in IEM w.r.t performance.

rate 32 16 8
S 0.816 0.819 0.819

IoU 0.695 0.700 0.703

F.4. Results on Lung Infection Segmentation Task

We show qualitative results in this section. We compare the performance of our method with several
SOTA methods on COVID-19 datasets. As shown in Figure S11.

G. Limitation

Figure S12 shows a sample failure about our approach. Our method produces inaccurate result in the
case of excessively complex foreground content. This is probably due to the fact that our FGA model
learns configural statistics that do not contain these local trivial details. To cope with this situation,
we can add specific network [29] or post-processing measures [41] used to refine the details behind
the existing model.

Our proposed method shows promising results when only a single or few object instances are in
the scene. Still, the problem of segmentation errors occurs when there are many multiple separated
objects in the scene, which limits its application to some extent. To extend the application of FGA,
we later want to introduce it into the segmentation part of the Mask-RCNN-based method [42, 43].

Societal Impact. Perceptual organization is one of the most challenging computer vision tasks. Albeit
being challenging, Perceptual organization is beneficial to a wide range of applications. However,
there also exists the risk that the technology is utilized in the scenario of the illegal shoot, malicious
edit, and incorrect use.
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Table S7: Directly using an edge-aware loss like HED [21] instead of LLR.

FGA FGA (HED)
S 0.816 0.807

IoU 0.695 0.642
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Figure S6: The detailed structure of model (a)(b) and (c) in the ablation experiment.

C
O

D
L
IS

P
S

Figure S7: Sample images from three challenging applications.

Table S8: Ablation study of the proposed FGA-Net on COD dataset.

LR Covx IEM S E F M
Baseline .795 .878 .649 .063

(a) X .808 .871 .669 .040
(b) X .803 .866 .654 .039
(c) X X .813 .880 .683 .035

FGA X X X .821 .895 .687 .031

Table S9: Ablation study of IEM on COD dataset.

Local Collaborative Global Lambda Sα IoU Sα IoU
X .815 .884 .680 .037
X X .816 .889 .690 .036

X .813 .880 .681 .037
X X X .818 .890 .686 .033
X X X X .821 .895 .687 .031
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Image GT Ours [33] [22] Image GT Ours [33] [22]
Figure S8: Visual comparisons of our FGA-Net and SOTA methods on COD task. Compared with
other methods, our method can detect the overall camouflaged object and refine the details of the
detected camouflaged object.

Image GT Pred. Con. GT Con. Pred. LR GT LR Pred. w/o FGA w FGA
Figure S9: Visualization of our FGA-Net. “Con.” represents convexity cue. “LR” represents lower
region cue. “Pred.” represents prediction map. “w/o FG” means the result of the baseline model.
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Figure S10: Visual comparisons of our FGA-Net and SOTA methods on PS task.
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Figure S11: Visual comparisons of our FGA-Net and SOTA methods on LIS task.

11



Image GT Ours
Figure S12: Failure case.
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