
A Data and Code Availability

Data for experiments on ABC and FTDC datasets may be requested through https://www.
pennbindlab.com/data-sharing and upon review by the University of Pennsylvania Neurodegen-
erative Data Sharing Committee, access will be granted upon reasonable request. Data and code for
synthetic experiments in Appendix D are available at https://github.com/pennbindlab/VNN.
The implementations of the experiments on ABC and FTDC datasets are similar.

B Overview of PCA

The advantages of using PCA, its role in dimension reduction, and limitations are well docu-
mented [10]. PCA is an orthogonal, linear transformation of the observed dataset x̂n via a change of
basis, such that, the transformed data has minimal redundancy while the hidden structure or patterns
of interest in the raw data are preserved for further statistical analyses. In practice, the implementation
of PCA is given by

ŷn = Px̂n , (21)

where the rows of P ∈ Rm×m represent the new basis on which the data x̂n is projected and
therefore, form the designed principal components in PCA. We next briefly discuss the construction
of the transformation P and the intuition behind it. Note that in the diagonal elements of the
sample covariance matrix Ĉn represent the individual variances of the constituent m features and
its off-diagonal elements characterize the redundancy in the data. A desired objective of PCA is to
de-correlate the dataset x̂n by removing any second order dependencies. To achieve this, a linear
transformation P is designed, such that, the covariance of the transformed data yn, given by Ĉy is a
diagonal matrix. It can readily be verified that the eigenvectors of the sample covariance matrix Ĉn

satisfy this property. The eigendecomposition of Ĉn is formalized as

Ĉn = UWUT , (22)

where ·T refers to the Hermitian operator, U is the matrix constituted by orthonormal eigenvectors
of Ĉn and W = diag(w1, . . . , wm) is the diagonal matrix of eigenvalues of Ĉn, such that, w1 ≥
w2 · · · ≥ wm. Therefore, for transformation P = UT, such that, ŷn = UTx̂n we have

Ĉy =
1

n
UTxnx

T
nU = UT(UWUT)U = W . (23)

Hence, in practical implementation of PCA, the eigenvectors of the sample covariance matrix form
the principal components that characterize the linear, orthogonal transformation of data x̂n. A
common application of PCA is to extract the principal components that explain the most variance
in x̂n (thus, resulting in dimension reduction while preserving the most relevant information under
certain assumptions), followed by designing statistical models for inference tasks such as prediction,
classification etc [7].

C Stability of coVariance Filters

We start by characterizing the perturbation of sample covariance matrix Ĉn with respect to C in
Lemma 1. For convenience, we use the notation Ĉ for Ĉn. To this end, we define

E
△
= Ĉ−C , (24)

and Im as an m×m identity matrix.
Lemma 1. Consider an ensemble covariance matrix C with the eigendecomposition in (15) and a
sample covariance matrix Ĉ with the eigendecomposition in (1). For any eigenvalue λi > 0 of C,
the perturbation E satisfies

Evi = βiδvi + δλivi + (δλiIm −E)δvi (25)

where

βi
△
= (λiIm −C), δvi

△
= ui − vi, δλi

△
= wi − λi . (26)
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Proof. Note that from the definition of eigenvectors and eigenvalues, we have

Ĉui = wiui . (27)
We can rewrite (27) in terms of perturbations with respect to the ensemble covariance matrix C and
the outputs of its eigendecomposition as follows:

(Ĉ−C)(vi + δvi) +C(vi + δvi) = (λi + δλi)(vi + δvi) , (28)
where we have used wi = λi + δλi and ui = vi + δvi. Using the fact that Cvi = λivi and
rearranging the terms in (28), we have

(Ĉ−C)vi = (λiIm −C)δvi + δλi(vi + δvi)− (Ĉ−C)δvi . (29)

By setting E = Ĉ−C and βi = λiIm −C, we can rewrite (29) as
Evi = βiδvi + δλivi + (δλiIm −E)δvi . (30)

Next, we leverage Lemma 1 to complete the proof of Theorem 2.

Proof of Theorem 2

Proof. To start with, we note that the coVariance filters with respect to Ĉ and C are given by

H(Ĉ) =

m∑
k=0

hkĈ
k and H(C) =

m∑
k=0

hkC
k . (31)

We aim to study the stability of the coVariance filters by analyzing the difference between H(Ĉ) and
H(C). For this purpose, we next establish the first order approximation for Ĉk in terms of C and E.
Using Ĉ = C+E, the first order approximation of Ĉk is given by

(C+E)k = Ck +

m∑
r=0

CrECk−r−1 + Ẽ , (32)

where Ẽ satisfies ∥Ẽ∥ ≤
k∑

r=2

(
k
r

)
∥E∥r∥C∥k−r. Using (32), we have

H(Ĉ)−H(C) =

m∑
k=0

hk[(C+E)k −Ck] , (33)

=

m∑
k=0

hk

k−1∑
r=0

CrECk−r−1 + D̃ , (34)

where D̃ satisfies ∥D̃∥2 = O(∥E∥2) [19]. The focus of our subsequent analysis will be the first
term in (34). For a random data sample x = [x1, . . . , xm]T, such that, ∥x∥ < R, for some R > 0
and x ∈ Rm×1, its VFT with respect to C is given by x̃ = VTx, where x̃ = [x̃1, . . . , x̃m]T. The
relationship x̃ and x can be expressed as

x =

m∑
i=1

x̃ivi . (35)

Multiplying both sides in (34) by x and by leveraging (35), we get

[H(Ĉ)−H(C)]x =

m∑
k=0

hk

k−1∑
r=0

CrECk−r−1x+ D̃x , (36)

=

m∑
i=1

x̃i

m∑
k=0

hk

k=1∑
r=0

CrECk−r−1vi + D̃x , (37)

=

m∑
i=1

x̃i

m∑
k=0

hk

k−1∑
r=0

Crλk−r−1
i Evi + D̃x , (38)
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where we have used Cvi = λivi in the transition from (37) to (38). We focus only on the first term
in (38) and leverage the result from Lemma 1 that expands Evi to get

m∑
i=1

x̃i

m∑
k=0

hk

k−1∑
r=0

Crλk−r−1
i Evi =

m∑
i=1

x̃i

m∑
k=0

hk

k−1∑
r=0

Crλk−r−1
i βiδvi︸ ︷︷ ︸

Term 1

+

m∑
i=1

x̃i

m∑
k=0

hk

k−1∑
r=0

Crλk−r−1
i δλivi︸ ︷︷ ︸

Term 2

+

m∑
i=1

x̃i

m∑
k=0

hk

k−1∑
r=0

Crλk−r−1
i (δλiIm −E)δvi︸ ︷︷ ︸

Term 3

. (39)

Next, we analyze term 1, term 2, and term 3 in (39) separately.

Analysis of Term 1 in (39): In the analysis of term 1, we start by noting that

βi = λiIm −C , (40)

=

m∑
j=1

(λi − λj)vjv
T
j , (41)

= V(λiIm − Λ)VT . (42)

Using (42) and δvi = ui − vi in term 1 in (39), we have
m∑
i=1

x̃i

m∑
k=0

hk

k−1∑
r=0

Crλk−r−1
i V(λiIm − Λ)VT(ui − vi) . (43)

Using Cr = VΛrVT in (43), term 1 in (39) is equivalent to
m∑
i=1

x̃i

m∑
k=0

hk

k−1∑
r=0

λk−r−1
i VΛr(λiIm − Λ)VT(ui − vi) , (44)

=

m∑
i=1

x̃iVLiV
T(ui − vi) , (45)

where Li is a diagonal matrix whose j-th element is given by

[Li]j =

m∑
k=0

hk

k−1∑
r=0

(λi − λj)λ
k−r−1
i λr

j , (46)

=

m∑
k=0

hk(λi − λj)
λk
i − λk

j

λi − λj
, (47)

=

m∑
k=0

hkλ
k
i −

m∑
k=0

hkλ
k
j , (48)

= h(λi)− h(λj) , (49)

where h(λi) is the frequency response of the coVariance filter and is defined in (8). Therefore, we
have Li = diag([h(λi)− h(λj)]j). Next, in (45), we note that

VT(ui − vi) = [vT
1 (ui − vi), · · · ,vT

m(ui − vi)]
T . (50)

Using (50) and (49) in (45) and vT
j vi = 0,∀j ̸= i, we deduce that the term 1 in (39) is equivalent to

m∑
i=1

x̃iVLiV
T(ui − vi) =

m∑
i=1

x̃iVJi , (51)
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where the j-th element of Ji is given by

[Ji]j =

{
0 , if j = i ,

(h(λi)− h(λj))v
T
j ui , otherwise

. (52)

For the stability analysis, we are interested in the norm of term 1. Therefore, by noting the equivalence
between the term 1 in (39) and (51), after taking the uniform norm, we have∥∥∥∥∥

m∑
i=1

x̃i

m∑
k=0

hk

k−1∑
r=0

Crλk−r−1
i βiδvi

∥∥∥∥∥ =

∥∥∥∥∥
m∑
i=1

x̃iVJi

∥∥∥∥∥ , (53)

≤
m∑
i=1

|x̃i|max
j,i ̸=j

∥h(λi)− h(λj)∥∥vT
j ui∥ . (54)

Note that vT
j ui is the inner product between the eigenvector vj of ensemble covariance matrix C

and the eigenvector ui of the sample covariance matrix Ĉ. The bounds on vT
j ui in terms of the

number of data samples n have been studied in the existing literature. Here, we leverage the result
from [30, Theorem 4.1] to conclude that if sgn(λj − λi)2wj > sgn(λj − λi)(λj − λi) for λi ̸= λj ,
the condition∥∥∥∥∥

m∑
i=1

x̃i

m∑
k=0

hk

k−1∑
r=0

Crλk−r−1
i βiδvi

∥∥∥∥∥ ≤
m∑
i=1

|x̃i|max
j,i ̸=j

|h(λi)− h(λj)|
2ki

n1/2−ε|λi − λj |
, (55)

is true with probability at least
(
1− 1

n2ε

)
for some ε ∈ (0, 1/2], where ki =

(
E[∥XXTvi∥22]−λ2

i

) 1
2

.
Furthermore, we note that the condition sgn(λj − λi)2wj > sgn(λj − λi)(λj − λi) is satisfied

with probability at least 1 − 2k2
i

|λi−λj | [30, Corollary 4.2], which via a union bound and first order
approximation from Taylor series implies that (55) is true with probability at least 1− 1

n2ε − 2κm
n for

κ defined in (17). Therefore, for a coVariance filter with the property

max
i,j∈{1,...,m},i̸=j

|h(λi)− h(λj)|
|λi − λj |

≤ M

ki
, (56)

for some real constant M > 0, the condition in (55) is equivalent to∥∥∥∥∥
m∑
i=1

x̃i

m∑
k=0

hk

k−1∑
r=0

Crλk−r−1
i βiδvi

∥∥∥∥∥ ≤ 2M

n
1
2−ε

m∑
i=1

|x̃i| , (57)

which holds with probability at least 1− 1
n2ε − 2κm

n . Furthermore, note that
m∑
i=1

|x̃i| ≤
√
m∥x∥2. If

the random sample x satisfies ∥x∥2 ≤ R, then we have

P

(∥∥∥∥∥
m∑
i=1

x̃i

m∑
k=0

hk

k−1∑
r=0

Crλk−r−1
i βiδvi

∥∥∥∥∥ ≤ 2

n
1
2−ε

√
mMR

)
≥ 1− 1

n2ε
− 2κm

n
, (58)

for any ε ∈ (0, 1/2].

Analysis of Term 2 in (39): Using Cvi = λivi, we note that term 2 in (39) is equivalent to

m∑
i=1

x̃i

m∑
k=0

hk

k−1∑
r=0

Crλk−r−1
i δλivi =

m∑
i=1

x̃i

m∑
k=0

hk

k−1∑
r=0

λk−1
i δλivi , (59)

=

m∑
i=1

x̃i

m∑
k=0

khkλ
k−1
i δλivi , (60)

=

m∑
i=1

x̃ih
′(λi)δλivi . (61)

18



Next, using Weyl’s theorem [38, Theorem 8.1.6], we note that ∥E∥ ≤ α implies that |δλi| ≤ α for
any α > 0. For a random instance x of random vector X whose probability distribution is supported
within a bounded region w.l.o.g, such that, ∥x∥ ≤ 1, we have

P

(
E ≤ B

(
∥C∥

√
logm+ u√
n

+
(1 + ∥C∥)(logm+ u)

n

))
≥ 1− 2−u , (62)

for some constant B > 0 and u > 0. The result in (62) follows directly from [39, Theorem 5.6.1].
Therefore, using (61), we have∥∥∥∥∥

m∑
i=1

x̃i

m∑
k=0

hk

k−1∑
r=0

Crλk−r−1
i δλivi

∥∥∥∥∥ ≤
m∑
i=1

|x̃i||h′(λi)||δλi|∥vi∥ . (63)

Using (62), |h′(λi)| ≤ M/kmin (where kmin = mini∈{1,...,m},λi>0 ki) from (56), and ∥vi∥ = 1, we
have

P

(∥∥∥∥∥
m∑
i=1

x̃i

m∑
k=0

hk

k−1∑
r=0

Crλk−r−1
i δλivi

∥∥∥∥∥
≤ A

kmin

√
mM

(
∥C∥

√
logm+ u√
n

+
(1 + ∥C∥)(logm+ u)

n

))
≥ 1− 2−u , (64)

for some constant A > 0 and u > 0.

Analysis of Term 3 in (39): We remark that the term 3 in (39) consists of second order error terms
that diminish faster with the number of samples n as compared to term 1 and term 2. To illustrate
this, we note two facts. First, from (62) and Weyl’s theorem, we note that ∥δλiIm −E∥ ≤ 2∥E∥ and
∥E∥ ≃ O(1/

√
n) with high probability. Secondly, from the existing literature [40, 41], we note that

if Ĉ follows the Wishart distribution, we have

E[∥δvi∥] = 0 (65)

and

E[n∥δvi∥2] =
∑
j ̸=i

λiλj

(λi − λj)2
. (66)

Let σ2
vi

≜
∑
j ̸=i

λiλj

(λi−λj)2
. Using Chebyshev’s inequality, we note that

P
(√

n∥δvi∥ ≥ γσvi

)
≤ 1

γ2
, (67)

for any constant γ > 1. Furthermore, (67) is equivalent to

P

(
∥δvi∥ ≤ γ√

n
σvi

)
≥ 1− 1

γ2
, (68)

which implies that ∥δvi∥ = O(1/
√
n) with high probability. Therefore, the second order error term

(δλiIm − E)δvi scales as O(1/n), which diminishes faster with n as compared to terms 1 and 2,
that individually scale as O(1/n1/2−ε) for ε ∈ (0, 1/2] and O(1/

√
n), respectively.

The proof of Theorem 2 is completed by noting that the condition on ∥[H(Ĉ)−H(C)]x∥ reduces
to the condition on operator norm ∥[H(Ĉ)−H(C)]∥ for any ∥x∥ ≤ 1 and that the terms scaling at
1/

√
n or slower in (58) and (64) dominate the scaling behavior of the upper bound on ∥[H(Ĉ) −

H(C)]∥.
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D VNN architecture

Figure 3: Filter response for different coVariance filters sufficient to implement PCA transformation
that includes c largest eigenvalues of the covariance matrix Ĉn according to Theorem 1.

Figure 4: A 3-layer VNN architecture.

E Additional Experiments and Discussions

In this section, we provide additional discussions on the age prediction task using cortical thickness
and related experiments on the synthetic data. In Section E.1, we briefly discuss the motivation
behind studying age prediction and PCA-based statistical analysis in this context. In Section E.2,
we provide additional details on cortical thickness data acquisition. In Section E.3, we report the
results for stability analysis of VNNs and PCA-regression models for FTDC100 (m = 100) and
FTDC300 (m = 300) datasets. In Section E.4, we study the stability of VNNs on two simulated
settings that include non-linear and linear data models. In Section E.5, we include additional figures
that supplement the VNN transferability results in Fig. 2.
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(a) Eigenvalue distribution for ABC dataset. (b) Eigenvalue distribution for FTDC300 dataset.

Figure 5: Eigenvalue distributions.

E.1 Predicting Brain Age with Cortical Thickness Data

Brain age estimation using various modalities of magnetic resonance imaging (MRI) is an active
area of research [42, 43, 44]. A promising application of brain age prediction is early detection
of neurodegenerative diseases (such as Alzheimer’s, Huntingson’s disease) which may manifest
themselves as error in age prediction in pathological contexts by machine learning models trained
on healthy subjects. Cortex anatomical measures extracted from structural MRI scans have shown
promising results in age prediction in existing studies [43, 44]. Cortical measures across the brain
usually have high collinearity and therefore, the age prediction pipeline consisting of dimension
reduction on cortical features and regression models is commonly employed. The utility of dimension
reduction is apparent in ABC and FTDC datasets used in this paper as well from Fig. 5a and Fig. 5b,
where we observe that the eigenvalue distribution for ABC and FTDC300 datasets is skewed and
therefore, PCA based dimensionality reduction is well-motivated.

The studies in [43] and [44] report age prediction results on different datasets using various approaches,
such as PCA-based regression (similar to the PCA-regression models evaluated in this paper), ridge
regression, lasso based regression, and fully connected neural networks. All these approaches show
comparable performances in predicting age using cortical anatomical measures [43]. The objective
of our experiments is to demonstrate the properties of VNNs, such as stability and transferability,
against other covariance matrix driven statistical analyses. In this context, PCA-based regression
models are the natural baselines for comparison against VNNs.

E.2 Cortical Thickness Data Acquisition

Cortical thickness measures in regions of interest (ROIs) were derived using 0.8− 1 mm isotropic
T1-weighted MRI. The complete pipeline for cortical thickness extraction for ABC data is similar to
that in [45].

E.3 Stability of VNNs on FTDC100 and FTDC300 datasets

In this subsection, we study the stability of VNNs for FTDC100 and FTDC300 datasets in a similar
fashion as for ABC dataset in Section 3. We split each dataset into a 90/10 train/test split, such
that, we have 153 samples in the training set and 17 samples in the test set. The nominal VNN
and PCA-regression models for FTDC100 and FTDC300 are trained on their respective sample
covariance matrices Ĉ153 derived from cortical thickness data. The architecture and hyperparamaters
for VNN training for FTDC100 and FTDC300 are same as that reported in Section 5.2. Figure 6 a)
and b) show the variance in MAE over training and test sets for nominal models based on VNN and
PCA-regression with respect to Ĉ153 for FTDC100 dataset. Figure 6 c) and d) show the variance in
MAE over training and test sets for nominal models based on VNN and PCA-regression with respect
to Ĉ153 for FTDC300 dataset. For both datasets, we observe that VNNs are stable with respect to the
perturbations in the sample covariance matrix. Also, note that our theoretical results in Theorem 5.1
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Figure 6: Stability on FTDC100 ((a) for training set and (b) for test set) and FTDC300 ((c) for
training set and (d) for test set).

and Theorem 3 suggest stability of coVariance filters and VNNs for n > m. Our observations
from the experiments on FTDC300 dataset show evidence that VNNs retain stability even when this
condition is violated. Significant randomness is induced into the performance of PCA− LR when
the principal components are perturbed due to perturbations in Ĉ153 for both datasets. However, in
Fig. 6, we also observe that PCA-rbf retains stability in performance when Ĉ153 is replaced by Ĉn′

for n′ ∈ [65, 152].

E.4 Stability of VNNs on Synthetic Data

We consider two settings for synthetic data.

Friedman regression problem: This setting is described as ‘Friedman1’ in [46] and is generated
using the routine sklearn.datasets.make_friedman1 in python. In the simulated dataset, we
have m independent features or predictors, each sampled uniformly from the range [0, 1]. Out of m
predictors, any 5 are used to generate the response variable and others are independent of the response.
If the 5 relevant predictors are given by x1, x2, x3, x4, and x5, they are related to the response y as

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ϑ , (69)

where ϑ represents noise. We generate a dataset of n = 1000 samples using m = 100 features
and noise distributed according to N (0, 1). Figure 7 a) shows the distribution of eigenvalues in
the covariance matrix for the dataset used. The dataset is split into a 90/10 train/test split and a
sample covariance matrix Ĉ900 is evaluated from the features in the training set. Next, we perform
regression against the response using VNN, PCA-LR, and PCA-rbf models. For VNNs, we use the
same architecture and hyperparameters as described in Section 5.1. Using different permutations of
the training set, we train 100 nominal models for VNN, PCA-LR, and PCA-rbf.

Figure 7 b) plots the variation in mean performance of the nominal models with respect to perturba-
tions in the sample covariance matrix. The last data point in Fig. 7 b) corresponds to the performance
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Figure 7: Friedman regression problem.

of nominal models trained on Ĉ900. When Ĉ900 is replaced with Ĉn′ for n′ ∈ [5, 899], we observe
that the VNN performance retains stability for sample covariance matrices generated with n′ > 300
samples. However, considerable randomness is introduced in the performance of PCA-regression
models when the principal components are evaluated from Ĉn′ for n′ ̸= 900. Similar phenomenon is
observed for the performance on the test set in Fig. 7 c).

Linear regression problem: In this setting, we generate random linear regression problems using the
routine sklearn.datasets.make_regression in python, which allows us to specify the number
of informative features; effective rank of the input dataset, i.e., the approximate number of singular
vectors required to explain most of the input data by linear combinations; tail parameter which is the
relative importance of the fat noisy tail of the singular values profile; and noise. In our experiments,
we set the input dimension m = 100, the dimension of the response to be 1, number of samples
n = 1000, number of informative features to be 20, effective rank of the input dataset to be 25 and
noise to be distributed as N (0, 3). Since the stability of VNNs depends on the eigengap and kurtosis
of underlying distribution of the data in direction of eigenvectors according to Theorem 3, we also
aim to study the effects on VNN distribution with respect to variation in the strength of the tail of
the eigenvalue distribution. To this end, we generate two datasets for linear regression with tail
parameters set to 0.7 and 0.2. The eigenvalues of the covariance matrix for tail set to 0.7 are more
spread out as compared to that for tail set to 0.2 (see Fig. 8 a) and Fig. 9 a)).

To evaluate the stability of VNNs, we split each dataset into a 90/10 train/test split and generate
sample covariance matrices Ĉ900 for both. Next, we perform regression using VNN and PCA-LR
models. For VNNs, we use the same architecture and hyperparameters as described in Section 5.1.
Using different permutations of the training set, we obtain 100 nominal models for VNN and
PCA− lR. Figure 8 b) plots the variations in mean MAE performances of the nominal models with
respect to perturbations in the sample covariance matrix, with the last data point corresponding
to n = 900, i.e., Ĉ900. When Ĉ900 is replaces with Ĉn′ for any n′ ∈ [5, 899], our experiments
show that VNN performance is stable but significant randomness is induced into the performance
of PCA-LR model. Similar phenomenon is observed for the performance on the test set in Fig. 8
c). Same discussion also follows for the results in Fig. 9 b)-c), where we have set the tail parameter
for eigenvalue distribution to be 0.2. Comparison of MAE performances in Fig. 8 c) and Fig. 9 c)
reveals that both VNN and PCA− LR perform significantly better for dataset with tail set to 0.2 than
that for 0.7. This observation is along the expected lines as the first 25 eigenvalues and eigenvectors
that contain the most information are more separated (and hence, more accurately estimated by the
sample covariance matrix) for the dataset with tail parameter 0.2 as compared to the dataset with tail
parameter 0.7. Moreover, VNNs retain the stability property for both datasets.

Finally, we also note that the observations above also extend to data with higher dimensions. Figure 10
illustrates the results on a setting for linear regression with m = 1000, number of informative features
to be 20, effective rank of the input dataset to be 25 and noise to be distributed as N (0, 3). The
tail is set to 0.7. The number of samples is 5000 of which 4500 are used to form the covariance
matrix Ĉ4500 for training PCA-regression and VNN models. Figure 10 a) illustrates the eigenvalue
distribution for this setting. Figure 10 b) and c) show the results of stability analysis by perturbing
Ĉ4500 for training set and test set, respectively.
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Figure 8: Stability of VNNs on linear regression problem (tail = 0.7).

Figure 9: Stability of VNNs on linear regression problem (tail = 0.2).

Figure 10: Stability of VNNs on linear regression problem with m = 1000 (tail = 0.7).

Figure 11: Transferability of VNN trained on FTDC100 to FTDC300 and FTDC500 datasets.

E.5 Transferability of VNNs

In Fig. 11, we show the predicted age vs true age plots corresponding to the first rows of the matrices
in Fig. 2, i.e., when the VNN is trained on FTDC100 dataset and its transferability is evaluated on
FTDC300 and FTDC500 datasets. Similar plots are observed for transferability in other reported
settings as well.
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