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Appendix

A Decomposition of the State Space

A.1 The E, @ E;-decomposition

It is evident that the following two subspaces of R are invariant with respect to A, namely

E, = EBE E. := @Ei
i<k i>k
which we refer to as the unstable subspace and the stable subspace of A, respectively. Since the
eigenspaces F; sum to the whole R™ space, one natural decomposition is R® = E, & Ej; accord-
ingly, each state can be uniquely decomposed as * = x,, + x5, where x, € F,, is called the unstable
component, and xs € Fj is called the stable component.

We also decompose A based on the F,, & Es-decomposition. Suppose F,, and Fy are represented
by their orthonormal bases Q1 € R™* and Q, € Rx(n—Fk) respectively, namely

E, = col(Q1), Es = col(Q2).
Let Q = [Q; Q2] (which is invertible as long as A is diagonalizable), and let R = [R] Ry ]" :=
Q~!. Further, let IT, := Q1R and II; = Q3 R, be the oblique projectors onto E, and E (along
the other subspace), respectively. Since E, and Ej are both invariant with regard to A, we know
there exists N, € R¥** N, € R(»=F)x(n=k) 'guch that

AQ:Q[M NJ o Ni= [Nl NQ]:RAQ.

Let z = [z] 2, ]T be the coordinate representation of x in the basis Q (i.e., z = Qz). The system
dynamics in z-coordinates can be expressed as

241| — pao |29t 4 RBu, — Ny 21t kB

[227t+1} Q [ZQJ + RBuy No| |zae| T |RoB| M

The major advantage of this decomposition is that the dynamical matrix in z-coordinate is block
diagonal, so it would be simpler to study the behavior of the open-loop system.

A.2 Geometric Interpretation: Principle Angles

Before going any further, we emphasize that Definition
is well-defined by itself, since singular values are preserved
under orthonormal transformations.

It might seem unintuitive to interpret amin(PQT Q2) in Defini-
tion[3.T]as a measure of “closeness”. However, this is closely
related to the principle angles between subspaces that gener-
alize the standard angle measures in lower dimensional cases.
More specifically, we can recursively define the i principle
angle §; G =1,--- ,n—k)as

E+t z 15 e e 1)

0; = min{arccos ( (. y) > v € By, o Lspan(, .-+, i 1)’} = L(xi,yi), (D)
lzllllyl) | v € Es, y Lspan(ys, -~ ,yi-1).

where z; and y; (i = 1, - -, n—k)are referred to as the i principle vectors accordingly. Meanwhile,

let P, Q2 = UXV' T be the singular value decomposition (SVD), where X = diag(ay,- -+ ,0n_4)
and 01 > --- > o,—k. Then by an equivalent recursive characterization of singular values, we have
z' Py Qay =: & Py Qa7

= max
llzll=llyll=1

Vi<i:xzlxj, yly;
Since P, and ()5 are orthonormal, Z; and ¥; can be regarded as coordinate representations of x; =
Pyz; and y; = Q9%;, and it can be easily verified that x; and y; defined in this way are exactly
the minimizers in H Hence we conclude that o; = cos ;. Therefore, Elf and Fj are ¢-close if
and only if the all principle angles between E;- and Ej lie in the interval [0, arccos(1 — &)]; the
above argument also shows that we can find orthonormal bases for £ and Ej so that corresponding
vectors form exactly the principle angles.
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A.3 Characterization of £-close Subspaces

It is naturally expected that the geometric interpretation should inspire more relationships among
P = Q1, P2, Q2, R1, Ry and Ny. We would like to emphasize that P;, P, and Q1 are not confined
to bases consisting of eigenvectors (since they are even not necessarily orthonormal). Meanwhile,
since they are only used in the stability guarantee proof, we are granted the freedom to select any
orthonormal bases. For simplicity, we will stick to the convention that P; = )1 (and thus M; =
N1). Further, in Lemmal|A. 1] such freedom is utilized to establish fundamental relationships between
the bases in the above two decompositions. The results are concluded as follows.

Lemma A.1. Suppose E- and E are £-close. Then we shall select Py and Q2 such that

(1) amm<PJQ2) >1—& | Pl Q2 < V28 | P2 — Qo < V2E.
(2) |Ra] < ¢, NaH < el Al

(3) IPT = Rl < ¥ R < 22 +1.
(4) [|A] < 3=£v2E| A

|
Proof. (1) Following the above interpretation, take arbitrary orthonormal bases P, and @, of E-
and Ej, respectively, and let P, Q2 = UXV T be the SVD, which translates to

(PU)(@2V) = ¥ =: diag(01,+ ,0n—t)-
Since U and V are orthonormal matrices, the columns of P,U and Q5 V also form orthonormal bases
of E- and E, respectively. Then &-closeness basically says that there exist a basis {1, - -+ , a1}
for Ej, and a basis {81, - , Bn_x } for Es (both are assumed to be orthonormal), such that

0, >1—¢ foranyi=j
i Bj) = 0ijoi =4 ' )
{ai, B5) 37 {0 for any i # j

and we also have 1153, = o;«; and Il oy = 0;f3; (recall that 1, I15 are orthogonal projectors
onto subspaces E,, E-, respectively). Therefore, without loss of generality, we shall always select
Py=la; -+ ap_p]and Qo = [B1 -+ Bn_gl, such that P, Q, = diag(oy, - ,0,_1), and

Omin(Py Q2) = min|o;| > 1 — €.
Equivalently speaking, for any 3 = Q21 € E, we have (note that ||| = [|8]])

12 Bl = (1P Qanll > omin(P2 Q2)[Inll > (1 = €)IIB]),
and consequently,

1P Qanll = 12T Bl = /118112 — 1B BI12 < V2E18] = /2] Inll,

which further shows || P Q2|| < +/2€. To bound || P, — Q2 ||, by definition we have
172 = Q2| = max [|(P — Q2)nl| = max

lInll= Hnlzmz B
= ”I;rIIHaZXl \/Z ninj (e — Bi) T (o — Bj)
%)

= max [ 2(1— p;)n?
T ;( ,Uz)nz

< max 2527712 =

[Inll=1

Here n = 1, ,Mn_k] is an arbitrary vector in R" %,

(2) By definition, I = QR = Q1 R; + Q2 Rs. Also recall that P, = )1, so we have PlTQl = T and
P, Q1 = 0. Then by left-multiplying P, to the equality, we have

PQT = P;QlRl +P2TQ2R2 = PQTQQR%
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636 which further shows

_ _ 1 1
IRl = (P Q)7 P | < [I(Py Q2) 7 =

Umin(PQTQQ) S 1_6

637 Therefore, since No = Ry AQ-, we have
[N2|l = | R2AQ2]| < [|Rall[| All[| Q2] < HAH
e38  (3) Similarly, by left-multiplying ;" to the equality, we have

P =P QR + P QoRy = Ry + P' Q2Ro,

639 which further shows

[P — Ryl = |P QaRz|| < ||P) Qall|| R <

ﬁ
m""r

s and therefore || Ry || < [P — Ryl + || PT|| = 1 + ¥2%.
641 (4) A combination of the above results gives
1Al = |[P" APy || = [|P| AP, — RiAQs |
< 1P AP = Qo) + |(PY = R1)AQq||
< ”PITHHAH”P? - QzH + ”PlT — Ri[[[[Alll| Q2]

<AV + ||A||f 5f €Al

e42 This completes the proof. O

ss B Solution to the Least Squares Problem in Stage 2

644 Lemma[B.T|gives the explicit form for the solution to the least squares problem (see Algorithm [T).
645 Lemma B.1. Given D := [xy, 11 -~ x4, 11) and PP, = IT) = D(DTD)~'DT, the solution

to+k
M, = argmin Z | P zey1 — M P 2|2
Mgt

646 1S uniquely given by M, = PlTA]ADl.

647 Proof. Here we assume by default that the summation over ¢ sums from ¢y + 1 to g + k. Since M;
48 is a stationary point of L, for any A in the neighbourhood of O, we have

0 < L(My +A) = L(My) =Y [|§1,141 — Mg — = 101 — Mage|)?
t t

= Z Af e, G101 — Magne) + O([|A]1%)
= th 9 AT (G101 — Agre)) + O(I1A]1P)

= Ztr y1 t+1 — Mlgl,t)g;—,t) +0(]|A]1?)

=tr (AT > (@i — Ml@Lt)QIt) +0(A[%).
t
e49 Since it always holds for any A, we must have

> @i — Magna)in, & My nadn, = > Grendl,.
t t t
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es0 Plugging in 1, = P &, and §j 41 = P, Az, we further have

Mlpl—rXpl:Mlzpixtl‘;pl:ZPJAJ,‘tl'IPl:PlTAXPl,
t t

651 where X := Zt xtxtT = DDT. Since the columns of ]51 form an orthonormal basis of E‘u, for any
652 T € Eu, ]51—'— x is the coordinate of = under that basis. The columns of D are linearly independent,
653 s0 the columns of P;" D are also linearly independent, which further yields

rank(P, X P) = rank ((PITD)(PITD)T) = rank(P,' D) = k.
es4 Therefore, P, X P is invertible, and M is explicitly given by
My = (PTAXP)(P| X P~
es5  Note that IT; = ]51151T is the projector onto subspace col(D), we must have
P P'X =(IILD)D" =DD" = X,
656 which yields
My = (PTA(PLP X)P)(PTX P~ = (P AP (P X PP X Py~ = PTAP
657 This completes the proof of Lemma [B.T] O

es¢ It might help understanding to note that, when }51 = Py, for any x4, 241 € E, we have
P Az = yi41 = Myy, = My Py,
659 which requires P," A = M, P,", or equivalently M, = P,’ AP (recall P' P, = I).

ss0 C Transformation of B with Arbitrary Columns

661 In the remaining sections of this paper, we have always regarded B as an n-by-k matrix (i.e., m =
662 k). In this section, we will show that other cases can be handled in a similar way under proper
663 transformations. This is trivial for the case where m > k, since we can simply select & linearly
664 independent columns from B, and pad 0’s in u, for all unselected entries.

665 For the case where m < k, let d = [k/m]. Intuitively, we can “pack” every d consecutive steps to
es6 obtain a system with sufficient number of control inputs. More specifically, let

Ttd Utd—1
~ Ttd+1 ~ Utd
Ty = . , Ut = . ’
L(t4+1)d—1 U(t4+1)d—2
0 A B
- . 5 AB B
A= : , B = ,
0 Ad! : : "
Al A4"'B A?2?B ... B

e67 and consider the transformed system with dynamics
Fi41 = AZy + Bl

e6s The instability index of A is still &, with |A;| = [\;|? (i = 1,--- ,n). Norms of A and B satisfy

d d
o4z = (Al o), Bl < IBIly| D (d - )42 = | A BIO@).

i=1 =1

14] <

es9 Since d < k < n, the above transformation only multiplies the bounds by a small constant.
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D Proof of Lemmal[5.3

Lemma [5.3]is actually a direct corollary of the following lemma, for which we first need to define
gap, (A), the (bipartite) spectral gap around \; with respect to A, namely
. min)\.@\(fb) |)\i - )\j| A € )\(Al)
gap,(A) := { L )
( ) I eX(A;) |)\7 — )\J| A € /\(AQ)
where A(A) denotes the spectrum of A.
Lemma D.1. For 2-by-2 block matrices A and E in the form

(A4 0] L [0 Ep
S G A 3

we have
Iid(A)lid(A + E)
gap,(A)

Here kq(A) is the condition number of the matrix consisting of A’s eigenvectors as columns.

INi(A+ E) = Xi(A)] < | Bzl || B |-

Proof. The proof of the lemma can be found in existing literature like [53]]. O

Proof of Lemma[5.3] Lemma basically guarantees that every eigenvalue of A + E is within
a distance of O(||E12]|||E21]|) from some eigenvalue of A. Hence, by defining x(A + E) as the
maximum coefficient, namely

ka(A)ka(A+ E)
A+ F) = . ,
A= i faan, ()
we shall guarantee |p(A + E) — p(A)| < x(A+ E)||Er2|||| E21]|- O

E Proof of Theorem [5.1 and its Corollary

The main idea of this proof is to diagonalize A and write the open-loop system dynamics using the
basis formed by the eigenvectors of A. Then, we provide an explicit expression for I7; and IT;,

based on which we can bound the error. To further derive a bound for | P, — P ||, one only needs
to notice that norms are preserved under orthonormal coordinate transformations, so it only suffices
to find a specific pair of bases of Ei- and Ej that are close to each other — and the pair of bases
formed by principle vectors (see Appendix [A) is exactly what we want. This leads to Corollary
that is repeatedly used in subsequent proofs.

Without loss of generality, we shall write all matrices in the basis formed by unit eigenvectors
{wy, -+ ,wy} of A. Otherwise, let W = [w; - - w,,], and perform change-of-coordinate by setting

D := W~'DW, II, := W~II, W, which further gives
I, = D(DTD)"'DT = (W-DW)(W DT DW) " Y (W-DTW) = WL, W.

Note that ||[W ' IL,W — W= IL,W| < ||WHHW_1J|HZA71 — II;||, where the upper bound is only
magnified by a constant factor of kq(A) = [|[W{|[[W =" | that is completely determined by A. There-

fore, it is largely equivalent to consider (D, IT;, IT) instead of (D, IIy, IIy).

Note that the matrix D = [x4,41 - - Z4,1%] can be written as
di Mdy - Ml
dy Dody -+ MNTld,
D= . : ;
dn )\ndn e Af;,ildn
where x4, 1 =: [dy1,--- ,d,]". We first present a lemma characterizing some well-known properties

of Vandermonde matrices that we need in the proof.
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Lemma E.1. Given a Vandermonde matrix in variables x1,- - - , x,, of order n

T T2 Tn
VZZVn(Z’l,"',I’n): : : .. : )
n—1 n—1 n—1
| Ty Tn

its determinant is given by

det(V) = Z(—l)sg“(”)x?r(il)x}r(m st
T Jj<t

and its (u, v)-cofactor is given by

1 1 1 1
u—2 u—2 u—2 u—2

x X x e X

— 1 —1 1 —
COfum(vq‘* 2 A Z+ . T = Oy II (xf

1 mv—l xv+1 xn
. . : ) AN
n—1 n—1 n—1 n—1

xl ‘rv—l xv+1 U xn

Here coefficients o, ,, are given by o, , 1= Sp—u(T1, "
is deﬁned by Sm(yla T ayn) = Zil<"'<im Yiv Y-

sy Ly—1, Loy+41y° "

®)

, L), Where function s,

Proof of Lemma[E1} The proof of (8) can be found in any standard linear algebra textbook, and that

of (©) can be found in [54].

O

It is evident that the entries in D display a similar pattern as those of a Vandermonde matrix. Based
on this observation, we shall further derive the explicit form of I; as in the next lemma.

Lemma E.2. The projector II, = D(DTD)"'DT has explicit form

E Qpyig,eo i Qu,ig,oe ig

i< <ig
~ Vjiij#u,v
( l)uv =

2 )
§ : Qi g

i1 <o <ldg

where the summand o, ... ;, (with ordered subscript) is defined as

Qg eee igy v = Hd“ H(/\ie - Aij)'
J

j<t

Proof of Lemma[E2] We start by deriving the explicit form of (DT D). Note that the determinant

(which is also the denominator in the lemma) is given by

N NE A
A2 A2 g2 kg2
T Sl
EE lc—:l 2 k: 2 2k—:2 2
A dy AL dE A; T Tds,
= > A AL N W )
B1 0 0k i<l
_ 2 2 n(m)y0 1
= D didl [T0w = 20) D (DA )
i1 < < j<t =
2 2 2
= Z dil o dlk H()‘ié - /\1J)
i< <ip Jj<£
= Z 051217...71',6,
iy <<

20
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712 and the (u, v)-cofactor cof, ,(D T D) is given by

0 j2 2 52 2 k—1 ;2
)\hdzl )\Zju 1d1u 1 )\;}vdiv )\'Lk 1d1k 1
u—2 2 u+v 4 2 u+v.—2 2 ' u+k— 3 2
cofy (D' D) = (1)t Z M Czi )\ZU+1 2dZQU ' Aiv+ gi“ A Wik 1dzzk '
m u+v— u+v u
i1, k1 )\l1d21 /\ dlu 1 )\iv diu )\lk 1 dlk 1
krfl 2 k+v 3 2 k+v;1 2 . 2k72. 2
)\' d )\7'u+1) 2d1u 1 )\iu diu A"k 1 dlk 1
2 k—1
= "+” Z d Zk 1/\?1 )‘U 1/\;:1' /\zk 1 Sk—u H()‘ie - /\lJ)
i1, i1 <t
_ + 2 2
= (=" > spuedy edl T N
1 <o <fp—1 <L
_1\sgn(m) 0 v—2 v Lo\ k—1
Z( ]') )‘71'(2'1) )\7T(Z ,1))\71'(1'1,) >\7T(ik_1)
™
= (—1)u+v Z Sk—uSk—v 'dz? d?k 1 H()‘ie - )‘ij)z’
i< <ip—1 j<e
713 where Si_y(Niy, -+, A, ) 1s abbreviated to sj_,.

714 Note that symmetry of DT D guarantees cof, ,,(D ' D) = cof, ,(D T D), so we have

T T
(DTD)uU _ cofy, (D' D) _ cofy (D' D)
det(DTD) det(DTD)

715 And eventually we shall derive that

ZDM (D'D),:D],

P,q
1
= T PT Du D’U fuv DTD
det(DrD)pZ; pDv.q cofu( )
1 1 1 + 2 2 2
— mzv AT (DR ST s s dd - d2 T — Ay
P,q 1< <tp—1 ]<€
k
1 2 2 2 1 1y
:m Z dydyd; - df, 1H — Z 1)PAR sy PZ 1IN sy,
1< <ig—1 j<t p=1
1
= D7D Z, I P H i) [T
11 < <tp—1 j<e ¢
dody, - dj,_, H _ H
Jj<t 14
_ 1
o m Z Qg i Xv,in, ik
G < - <ip
Vjiij#u,v
716 which is in exact the same form as stated in the lemma. O

717 Now we shall go back to the proof of the main result of this section.

718 Proof of TheoremB.1] Recall that d; = \.°" 'z ;. For the clarity of notations, let

0 g i, i

11,02, 0kt )
a19... k
12,0,
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and it is evident that |0;, 4, ... ;.| = 1 only if (¢1,42,- - - ,ix) is a permutation of (1,2,--- , k). For
any other (71,149, - ,ix), by the definition in Lemmawe have

Lkt ¢
|9i1,i2,"',ik| < Ciyig,oe iy T‘ZJ B < e,
A . .
where r = ||’;\:‘1| and ¢ := max {¢;, y,.. iy, }. Therefore, since there are (}) different k-tuples
11,5k
(i1, -+ ,ix) such that iy < --- < i, we have
2 2 n\,.2to
D O — O < ()
i1 <<,

£
n2°

Now we can bound the entries in ﬁl. For any £ > 0, we shall select ¢y such that c(Z)erO <
where the denominator is always bounded by

9 €
D VN IR
i< <ig,
For the nominator, note that for each J there are fewer entries with exponent ¢ in the nominator than
in the denominator, so we can bound the denominator as

ny, .2t _
Z buis i Ouss 5| < {c(k)r "+1 u=v<k

_ _ = Le(F)r2t otherwise
1< <1l
Vjiij#u,v
Therefore, when ©v = v < k, we have Z 9371‘2,--- i 2 1, which shows
i< <1
VjiijFu
. e\ L €
(Hl)uv2<1+72) 21_72 N e
nA Tlg = ‘(Hl)uv_(ﬂl)uv S ﬁ;
(Hl)uv S 1 + ﬁ
for all other cases, the nominator cannot sum over a permutation of (1,--- , k), which gives
. N €
’(Hl)uv - (Hl)uv = ‘(Hl)uv S ﬁ
Therefore, the overall estimation error is bounded by
| = I < 37 | () = ()| < e

u,v
Recall that the bound is subject to a change-of-basis transformation, and in the general scenario
where the eigenvectors of A are not mutually orthogonal, the original prediction error bound should
be multiplied by xq(A). Therefore, to achieve error threshold e for predictions on I7;, it is required
that C(Z) r2to < W, or equivalently, by Stirling’s Formula,

log kq(A) + log % +log () _o klogn —loge + log ka(A)

QIOg% 2log [k

[Art1l

to >

(10)

This completes the proof. O

Proof of Corollary[5.2] We first construct a specific pair of orthonormal bases (P, 151*) that satisfy
the corollary. To start with, take an arbitrary initial pair of orthonormal basis ( Py, ]51"), and consider
the SVD (P?)T PP = UXVT, which is equivalent to (PYU) T (PPV) = X. Note that the columns
of PPU = [wy ---wy] and PPV = [iby - - -1y] form orthonormal bases of col(IT;) and col(IT;),
respectively; furthermore, these bases project onto each other accordingly by subscripts, namely

H1’UA)i = o;W;, ﬁlwi = ini.
Now we set P := PPU and P} := PPV Note that
11— oy = ||([Iy — I )s]| <e,
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which shows, by properties of projection matrix I7;,

l[wi — @il = V/lwi = s |2 + [ Md; — 5|2 = \/|1 — a2 + | (11 = )% < v2e,
and thus

S\/E-\/is.

1Py — Pl = max [[(P; — Py)z| = max
Jzli=1 J=li=1

To further generalize the proposition to any arbitrary Py, we only have to note that there exists an
orthonormal matrix 7" that maps the basis P to P, = P;'T. Now take P, = P;'T, and we have

1Py = Pr|| = [(Pf = POT| = || Pf = Pyl < V2ke.
As for the estimation error bound for M7, we can directly write
|PTAP — P'APy|| < |PT AP, — P APy|| + | P, APy — P AP ||
< [IAI Py = Pull + AP = Pyl
< 2||Alls,
This completes the proof of the corollary. O
Recall that we are allowed to take any orthonormal basis P, for E,,. Hence we shall always assume

by default that P; in the proofs are selected as shown in the proof above.

We finish this section with simple but frequently-used bounds on |[P;” Pi|| and || P’ P;||. These
factors represent an additional error introduced by using the inaccurate projector P;.

Proposition E.1. Under the premises 0fC0r01[ary I — P Py|| <0, | P Py < 6.
Proof. Note that P P, = I} and P, P, = O, it is evident that
1k =PI 21| = [[(P = P)T Py < 6,
1P Pa|| = [[(Py = P1) T Pyl = || Py = Pi|| < 6.
This finishes the proof. O

F Proof of Theorem 4.2

We first consider a warm-up case where A is symmetric, which provides some intuition for the
general case. In this case, the eigenvectors of A are mutually orthogonal, which guarantees E- = E
(i.e., they are O-close to each other) and thus A = 0. This allows us to select 7 = 1, w = 0 and
«a = 1, and the closed-loop dynamical matrix simplifies to

i = [M1 + P/ BK,\ P P, P BK, P[P,
P BK PP, My + P BK,\ P Py~

The norm of the top-left block is in the order of O(§) based on the estimation error bound (see
Theorem | By — Bi|| = O(Vk6), which characterizes how well the controller can eliminate the
unstable component. The spectrum of the bottom-right block can be viewed as a perturbation (note
that || P, Py|| = O(6) is small by Proposition to a stable matrix M> (recall p(Ma) = |Ag+1])s
which should also be stable as long as § is small enough. Meanwhile, the top-right block is also
approximately zero, since only projection error contributes to the top-right block (again ||1’—:’1T P =
0(9)). The above observations together show that Ly is in the order of
0(9) 0(9)
O1) A1l +0(9)]”
which is almost lower-triangular. Therefore, we can apply the block perturbation bound to bound
the spectrum of L.

(1)

L= (12)

We start by showing the estimation error bound for By, which is straight-forward since A = 0. Note
that the upper bound of the norm of our controller K; appears as a natural corollary of it.
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Proposition F.1. Under the premises of Theorem |B1 — Bi|| < 4]|A||VES.

Proof. Note that the column vector b; has estimation error bound

. 1 . o
[[bi — bil| = 7‘ H(Pl—rxtﬁl — M P 2y,) — (P ay 41 — Mo ay,)

<

(NPT — P Awe, )+ (P — NP )

< ||P1 = P A+ |My P = My P ||+ (| My P = ML P
<[l Al + M P = P+ 1My — My
< [[All6 + [[All6 + 2[|All6 = 4[| A]|,

where we repeatedly apply Corollary |5.2|and the fact that || M7 || < ||A||. Then, to bound the error
of the whole matrix, we simply apply the definition

|By — By = max (B — By)u| < max Z|u,|||b bi|| < 4]|A|[VES.

This completes the proof. O
2 2] Al
I <GB

when

Proof. By Proposition[F1] it is evident that
. . c
Owin(B1) > Owin(B1) = | By = Bu|| > (¢ — 4| A|VES) | B > || Bl

where the last inequality requires
c

<. (13)
SHAHW
Recall that K, = By ' M, and note that || B! | < - (B s S0 we have
: A1 HPTAPIH 2||Afl
1= 1By M| < === < —
Umin(Bl) C” H
This completes the proof. O

Recall that to apply Lemma we need a bound on the spectral radii of diagonal blocks. The

top-left block has already been eliminated to approximately O by the design of K1, but the bottom-
right block needs some extra work — although M5 is known to be stable, the inaccurate projection
introduces an extra error that perturbs the spectrum. To bound the perturbed spectral radius, we will
apply the following perturbation bound known as Bauer-Fike Theorem.

Lemma F.2 (Bauer-Fike). Suppose A € R"*" is diagonalizable, then for any E € R"*", we have

|p(A) = p(A+ E)] < max min |\ — /\‘<Hd( )E],
AEN(A+E) AEX(A)

where kq(A) is the condition number of the matrix consisting of A’s eigenvectors as columns (i.e.,
if A = SAS™! with diagonal A, then r4(A) = cond(S)), and \(A) denotes the spectrum of A.
Proof. The proof is well-known and can be found in, e.g., [55]. O

Now we are ready to prove the main theorem for any symmetric dynamical matrix A.

Proof of Theorem With 7 = 1, the controlled dynamics under estimated controller K, becomes

M, + P BK, P P, PBK,P] P,

j; = A A~ A~ A~
! PJBEK\P'P,  M,+ P]BK\PP,
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791 We first guarantee that the diagonal blocks are stable. For the top-left block,
| M, + P BK,|| = | My — BBy ' M, P P1||
<||My = My + ||My = BuBT M| + | BuBy My (I — PP
< ||My = M| + ||B) — BIHHK1H +IBIIK L Ie — P Pu
8l|A|*VE ¢ L 24l

< 2||Al|d + (14)
[[All B y
_ 2(4VE[ A + (e + DIBI Al
c| Bl ’

792 where in (T4) we apply Corollary [5.2} Corollary [FI] and Proposition [EI] Meanwhile, for the
793 bottom-right block, note that the norm of the error term is bounded by

||A||
1P, BK, Py Poll < || BBy [V P Pe| <

794 Hence, by Lemma|[F.2] the spectral radius of the bottom-right block is bounded by
p(Mz + Py BK\ P P2) < p(Ms) + 2ka(Ma) || All6 < 1,
7e5  where we require (recall that p(Ms) = |Ag+1])

e(1 — | Agy1])
1) _ 15
2 (V)| A] (1)

796 To apply the lemma, it only suffices to bound the spectral norms of off-diagonal blocks. Note that
797 the top-right block is bounded by

QHAH
IPT B Po|| < ||B| Kl B Pal| <
798 and the bottom-left block is bounded by
2||A||
1P BE P Py < (B[ K ]| <
799 Now, by Lemma[5.3] we can guarantee that

. {%MHAH +2(c+1)|B]) 4] HAH x<L1>

6 <1,

L)< 5 I\ Bl||| K1 |8
p(L1) < max B s Mgt + I B ] }

goo where we require

1 1—|A
§ < min , | ’“*jl . (16)
2(aVEIAI+2(c+DIBI) 1AL | ajafex(iy  2LAL 4 AIAL (L)
T3] Tt c ©
so1  So far, it is still left to recollect all the constraints we need on ¢ (see (13)), (T3) and (T6)), i.e.,
S ommd € 0P 1Pl |
8| A|VE 26a(M2)[| A" 20AL ALAIPX (L) 2(4VElAl+2(c+1)|B) Al + AlAlEx(E)
c ¢ cllBl| c?
go2  which can be simplified (but weakened) to
2(1— |\
< C ( | k+1|) _ — O(kil/z). (17)
16V kra (M) [|A[[ (I A]| + | BI)x(L1)
g0s  We shall rewrite the bound equivalently in terms of ¢ (recall (I0) in Appendix [E)) as
A=Akl
log(en® (;)) — o8 53 hm IAIL AL TBDXED _ klogn
to > ] =0 I , (18)
2log Akl log Akt1]
so4 since kq(A) = 1. This completes the proof of Theorem[4.2] O
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G Proof of the Main Theorem

For the general case, the analysis becomes more challenging for two reasons: on the one hand, we
have to apply 7-hop control with 7 possibly larger than 1, which potentially increases the norm of
B, and K1; on the other hand, the top-right corner will no longer be O(d) with a non-zero A (in
fact, A, is in the order of |\;|” that grows exponentially with respect to 7). To settle these issues,
we first introduce two key observations on bounds of major factors:

(1) For an arbitrary matrix X, although || X || might be significantly larger than p(X), we always
have || X*|| = O(p(X)") when ¢ is large enough. This is formally proven as Gelfand’s Formula
(see Lemma|G.1)), and helps to establish bounds like || M1 || = O(|A1|7), [|Mz]|| = O(|Ak+1]7),
1A= O(MI7)., 1P AT = O(|Ak41]7), and [ MT — M || = O(|\1[76).

(2) When the system runs with O control inputs for a long period (specifically, for w time steps),

eventually we will see the unstable component expanding and the stable component shrinking,

PTAw
and consequently w =0

and helps to establish the estimation bound || B, — B, | = O(|A\1|74).

(|Ak|™%). This cancels out the exponentially exploding || A ||,

With these in hand, we are ready to upper bound the norms of the blocks in L,:

(1) The top-left and bottom-right blocks: similar to the warm-up case, only to note that dynamical
matrices are lifted to their 7" power, and thus || B, — B, || carries an additional factor of |A;|7.
(2) The bottom-left block: P,’ A™~1 contributes an O(|\41|7) factor that decays exponentially,

while K| contributes an O(|\;|7) factor that explodes exponentially. The overall bound is in
the order of O(JA1Ai+1/Ak|™), and decays with respect to 7 if [A; Agy1]| < 1.

(3) The top-right block: the first term is in the order of O(]A1|”), and the second term is in the
order of O(|A1 A\g41/Ak|79). This block is in the order of O(]A1]|™) when 4 is small enough.
Therefore, the closed-loop dynamical matrix is actually in the order of

[ O(|\1]?79) Oo(IM|™ + |)\1)\k+1/)\k75)]
O(IMAkt1/Ml™) O Mgl + Mg [79) |
Finally, by Lemma asymptotic stability is guaranteed when |\1|%|Ax11| < |\x| (i.€., the norm

of the bottom-left block decays faster than the norm of the top-right block grows), in which case we
can set 7 to be some constant determined by A and B, and ¢ in the order of O(|A|~27).

L; = 19)

Technically, we would like to bound the spectral radius of the matrix
i [MT+ PTAT™'BK\P'P,  A.+ P/ AT 'BK,P P,
T Pl AT 'BK, P P, M3 + P AT 1BK, P P,.
using Lemma 5.3] The proof is split into two major building blocks: on the one hand, we introduce

the well-known Gelfand’s Formula to bound matrices appearing with exponents; on the other hand,

we establish the estimation error bound for B, (parallel to Lemma and proceed to bound Hk 1l
for which we rely on the instability results shown in Section Finally, a combination of these
building blocks naturally establishes the main theorem.

G.1 Gelfand’s Formula

In this section, we will show norm bounds for factors that contain matrix exponents. It is natural to
apply the well-known Gelfand’s formula as stated below.

Lemma G.1 (Gelfand’s formula). For any square matrix X, we have

_ 1 L1/t
p(X) = lim [[X*]'V" (20)
In other words, for any € > 0, there exists a constant ((X) such that
UmaX(Xt) = HXtH < CE(X)(p(X)—l—a)t. 21
Further, if X is invertible, let Apin (X)) denote the eigenvalue of X with minimum modulus, then
1 | Amin (X)| )t
Crin(X1) > ( . (22)
0 (X1 N1+ e[ Amin (X)|
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Proof. The proof of (Z0) can be easily found in existing literature (e.g., [56]], Corollary 5.6.14), and
(1) follows by the definition of limits. For (22), note that

o 1 _ 1 Puin (O]
Omin(X") = Umax((X_l)t) = CE(X—l)(p<X—1) +5>t o CE(X_I) (1+5|)\min(X)> 7
where we apply oumin(X*) = omax (X 71)")7Hand p(X 1) = [Amin(X)[ 71 =

It is evident that p(A) = p(Ml) = p(Nl) = |)\1 s Amin(Ml) = )\min(Nl) = |>\k| and ,O(MQ) =
p(N3) = |Agy1| (recall that M, and Mo inherits the unstable and stable eigenvalues, respectively).
Therefore, we can use Gelfand’s formula to bound the relevant factors appearing in L.

Proposition G.1. Under the premises of Theorem[.1} the following results hold for any t € N:
(1) 1Bl < G, (A) (M| + 1) I B
(2) 1P AM| < oy (Ma)([Aira| +£2)"

(3) 1144]] < CallM] + 1)t where Ca = Gy (My)Ge, (My) C=E/ZEIAL 2

[Ar[+er—[Apy1]—e2”

Here (and below) €1 and €2 are selected to be sufficiently small constants (see (@) ).

Proof. (1) This is a direct corollary of Gelfand’s Formula, since

1Bl = 1" A Bl < [ATHIBI < Gy (A)(IMa] + 1) B

(2) It only suffices to recall p(Ms) = |Ak+1], and note that

Py A' =P PM'P™' =[01, x)M'P" = MP, .
Hence by Gelfand’s formula we have || Py A?|| = || M4]| < (., (Ma)(|Agr1] + €2)t
(3) This is a direct corollary of Lemma[A:T(4) and Gelfand’s formula, since

1A = || D MiAME | < ALY M1y
i i
2 — 2¢||A ; 1
< G )6 () E WAL S ey s g+ 2
= Ca(|M]|+e1)
This finishes the proof of the proposition. O

Proposition G.2. Under the premises of Theorem|4. 1|
M7 = MT|| < 27| Al[¢e, (AP (IM| + 1)1,

Proof. Recall that Corollarygives | My — M| < 2||A||6. Meanwhile, by Gelfand’s Formula,
1ML = |[PTATPI| < [|A*]| < ¢ (A)(JAa] + 1),
1ML = | PTAPI| < JAT]| < Gy (A) (M| + 1)

Then we have the following bound by telescoping

3 (M;’M{*i - M{'*lM{*i“)
=1

17 — M7 || =

< D IMTHIIMT T My~ M|
i=1
<7 Gy (AP (M +en)7 - 2]l All0
= 27| All¢e, (A)*(|M] + 1) 0.
This finishes the proof. O
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Corollary G.2. Under the premises of Theorem when 6 < %,
IV < (Ger (ML) (] + 1) + 2] Al (A)) (] + 1)

Proof. A combination of Gelfand’s Formula and Proposition[G.2] yields
IMT | < IMT |+ [[M4] = MT |
< G (M) (M| +21)" + 27| AllGe, (A)* (M| +21)7 710
< (Cer (M) (M| + 1) + 27| All¢e, (A)8) ([Aa] + 1),

where the last inequality requires § < % This completes the proof. O

G.2 Instability of the Unstable Component

We have been referring to E (and approximately, £-) as “stable”, and E,, as “unstable”. This leads
us to think that the unstable component will constitute an increasing proportion of the state as the
system evolves with zero control input. However, in some cases it might happen that the proportion
of unstable component does not increase within the first few time steps, although eventually it will
explode. This motivates us to formally characterize such instability of the unstable component.

In this section, we aim to establish a fundamental property of A“ (for large enough w, of course)
that it “almost surely” increases the norm of the state. By “almost surely” we mean that the initial
state should have non-negligible unstable component, which happens with probability 1 — & when
we uniformly sample the initial state from the surface of unit hyper-sphere in R™.
Throughout this section, we use 7 to denote the ratio of the unstable component over the stable
component within some state z (i.e., Hg;i“ ). Note that

x = I+ = Q1 Rz + Q2Rax,
where )1, Q2 are orthonormal. Hence

[Razl| = [[Roz]| < ]| < [[Rz]| + [| Roxl].

As a consequence, when Hg;i“ > v > 1, we also know that
[ [ Riz|| v [ R ([ Roz|| 1
lzll  — [[Raz]| + [[Rez|| = v+1 2zl = [[Raz]| — [[Rozl| ~v—1

The following results are presented to fit in the framework of an inductive proof. We first establish
the inductive step, where Proposition [G.3] shows that the unstable component eventually becomes
dominant with a non-negligible initial -, and Proposition|G.4]shows that the unstable component will
still constitute a non-negligible part after a control input of mild magnitude is injected. Meanwhile,
Proposition[G.5] shows that the initial unstable component is non-negligible with large probability.

Proposition G.3. Given a dynamical matrix A and some constant v > 0, for any state x such that

Hﬁ;i}} >, for any w € N, we have
R{AY A w
|1x||>%:07< Al ) |
R A« || (1+ 23] M) (Mot | + €2)
where C, = 1 is a constant related to . Specifically, for any v+ > 0,

(14+2)Ceg (N] H)Cey (N2)[| R |
there exists a constant wo(,v+) = O(log 77*), such that for any w > wo(y,v+), Hg:i“ > Vg

Proof. Recall that Rj A¥ = N{’R; and Ry A = N5’ Rs. By Gelfand’s Formula we have
1B A%zl _ [INF Rzl omin(NP)|Bazll Owin(IVF)
[ReAvz|| NS Roxl| = [INS[l[|R2Mlllzll ~ (1 + )N Rzl
(IXkl/(1 +es]Ae])”
T (14 D) (N7 e, (N2) (k1] + £2) ]| Rl

28



890

891

893
894

896

897
898
899

900

901

902

903

_ 1 A )w
(14 2)Ces (N7 1) Cey (N2) || Re | ((1 +es DMl +e2) )
Therefore, we shall take

logv4/C T+
wo(7,74+) = v =0 (log— ),
T log (D) / (U + sl (et | +22)) gl
and the proof is completed. O
Corollary G.3. Under the premises of Proposition Sor any w > wo (v, v+ ),
P A 2 P A 1
1Py Avaf| By AV .
[A%a] 7 |
Proof. Note that we have decomposition x = IT,x + IT1 [Izx + I3 Iz, where || IIyz|| = || Rix]|
and || IIsz|| = || Raz||. Hence, for any w > wo(7y, v+ ), we can show that
| P A%z| |11 A%x + LI A x|
[ A« ]| [ A“]|
| 1, A%a]| — | 1T, A
- [A°a]
[R1A“z| — || Ro A% x|
- [ A“]|
w 1 2
To >1- ,
Yw +1 Yw — 1 Yw — 1

and similarly,
1Py A%zl _ |MIlA%| _ | A“z| 1
[[A“]| [Avzl| = Azl oy -1
The proof is completed. O

Proposition G.4. Given dynamical matrices A, B and constants v > 0,74 > 1, for any state x

such that Hg;f“ > 74, suppose we feed a control input ||u|| < «||z|| and observe the next state

2’ = Ax + Bu, where « satisfies

71+10m1n(M1) ’Y+ yr—11-¢ ”A”
a< f (23)
1+ =%+ Z)IBll
Then we can guarantee that HR”C,” > .

Proof. The proposition can be shown by direct calculation. Let z = Rz = [2] , 25 | |. Recall that

i o _ |Niz1+ RiBu
Ry’ =7 = [N222+RQBU:| ’

[lz4]l Y+ lz2|l 1
and note that {7t > ", A < 5oy

[Zra| _ [Niz1+ BaBul| _ [[Nizi || — [|[Bi By
[Roa’|| || Nozz + ReBul| — |[Nazz|| + || B2 Bul|
Omin (N1)||21]| — || Ra Bl|[|ul]

[ Na|l[|z2| + (| B2 BI[[|ull
Tmin(N1) ++1||$|| — o Rl Bl

= INellsz= el + el Rl Bl

under the assumptions, so we have

+71
Omin(M1) 525 l2l| — (1 + 25) | B«
T Al el + ez | Bl

>
where we apply Lemma[A-T]and the convention of taking Ny = M;. O
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Proposition G.5. Suppose a state x is sampled uniformly randomly from the unit hyper-sphere

surface B,, C R", then for any constant v < min { L m }, we have
Prou.,) [' ~ H } >1-=0(v),
(| Ro|
where 6(y) = 8‘f = O(v) is a constant bounded linearly by .

B(4,25% \/amm(m)

Proof. Note that

[Baz|
[ Roz|

1
[ Rzl > 117Hfﬂll = Reall <llzll + [ Rawl| < ==l =

so we only have to show that Pr, s, |[|Riz| < 1 } < 0(7). Now let R Ry = ST DS be the

eigen-decomposition of R] Ry, where S is selected to be orthonormal such that
D= dlag(dly adk707"' 70)

Note that the vector y = Sz =: [y1,- - - , ¥, also obeys a uniform distribution over B,,, so we have
Pr (10l < 5] = Pr[aTRT Rua < (25°] = Pr [y Dy < (25)°
<Pr [diy? < i) Vi= 114
k

It suffices to bound the probability Prywu( B) [yl < 77] Note that i can be obtained by first sampling
a Gaussian random vector z ~ N(0, I,,), and then normalize it to get y = Tl ” Hence

&1\3
I/\

()]

4 U
Pry ) [ <0 =Proonior,) [ < nll2]?] = Prano.n) [Z 751 5|
i#i % J

where w = = o = is known to obey an F-distribution w ~ F(1,n — 1). The c.d.f. of w is known

J#i J
tobe Ly /(wtn— 1)( —) where I denotes the regularized incomplete Beta function. Note that
1 n-1 2u1/? nw3/?
Iw w+n—1 <a ) - n— - n— + O(n5/2)7
/( )\ 27 2 (n—1)1/2B(3,251)  3(n—1)3/2B(L, %51)
: 1 n—1 4w
it can be shown that I, /(w4 n—1) (5, T) NS ek Hence

n
2’2 4 1-n

n
Pryum,) [v; <n] = Pr.unvo.r, ! < < —
y~U( )[ ] (0,In) Z]# J2 1—1 \/mB(%’ 121)

which further gives

ax(15)?
1—v 8\/5
[HRNJH < } E Ty < — v =0()
i=1 B(l 5 1) B(%v 21) Umin(Rl)
where we require y < min{%,m}. O
Omin 1

Combining the previous three propositions, we have shown in an inductive way that the algorithm

Pla, || . . . C e
guarantees I ”";ft‘r I constantly upper bounded at each time step ¢; (¢ = 1, - - - , k), which is critical

to the estimation error bound of B.. This is concluded as the following lemma.
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Lemma G.4. Under the premises of Theorem for any constants w, vy such that w < to and

”y<m1n{1 L

—} the algorithm guarantees
2/(0min(R1)k)+1

|Pfe) _ 1
thi” Yw -1

 Vi=1,- .k

with probability 1 — 0(~y) over the initialization of x on the unit hyper-sphere surface B,,, where

Yo i=C ( el >w-
@ TN+ a3 e (| As1] + €2)

| Razs, ||
[ Rozy, |

Proof. We proceed by showing that >, for¢=1,.--  kin an inductive way.

For the base case, it is guaranteed by Proposition that x satisfies Hg;iﬁ“ > ~y with probability

1 — 6(v), and Proposition further guarantees

x .
JIEZE Here we require tg > w.
HR o, 7 e 0

. . Ry .
For the inductive step, suppose we have shown ” let ” > 7y,. Since

I1R1@e; 41l " . | Riwe, ||
TRaze il =Y by Proposition |G.4} and again Proposition (G.3| guarantees TRaze o 1 > Y-

Now it only suffices to apply Corollary [G.3]to complete the proof. O

G.3 Estimation Error of B.-

Proposition G.6. Under the premises of Theorem[d.1|and Lemma when (29) holds,
|B, — B-|| < Ce(|M| +€1)7719,
_ 2VRGe, ()% (@r+2)1Al+1B1)

[e3

where Cpg

Proof. This is parallel to Lemma[FI} Note that we have to subtract an additional term (induced by
non-zero A, in M7) to calculate the actual b;, so we have

(H( Py)T (A7, + Bruy, )| + | M] Py, — M Py || + | APy

. 1 . .
llb; — bil| = 7| H(Pl—rxtriﬂ' — M{P{'wy, — APy wy,) — (P g e — M7 P y,)

< E (Csl (A2(IM] +e)™H(@T +2) Al + 11B])d +6) -
Here the first term is bounded by
1(Pr = P)T(ATay, + Bruy,)|| < [Py = P (JAT] + | AT Bl [, |
< e 16, (A (M| + )™ H(IA] + 1BIDS,
where in the last inequality we apply Corollary [5.2} the second term is bounded by
1M Py, — MY Pl || < (|MT(P = PO+ [(MT = MT)P )
< (G (Al +e)™ M1 AllS
+ 27| Al (A2 (Al + 1))l | 24)
< HCsl( (M| +e1)7 2T + 1) A6, (25)

where in (24) we apply Proposition [G.2} and in we apply a simple fact that (., (A) > 1; the
third term is bounded by

APy el Ca(Ml+e1)”

& (wamtthmrs) -
ZCA(|)\1| +61)T

(26)

27)

C [ Al v
T\ A+es[AeD Ak +e2)
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<4, (28)
where in (26) we apply Lemma|[G.4] while in and (28) we require

w > max log 2/Cy log(204)/(C40) + Tlog(|M] +e1)
log (|A&l/ (1 + e A (Mis1] +2)) "Tog (|Ael/ (1 + s Ael) (1 Mkya] +22)) [

(29)
Finally, to bound the error of the whole matrix, we simply apply the definition
B — B,|| = max B—Bu<max ulb
1B, = Bl = max | | < mao 12\ [
Vk .
< L2 (G (AP (N + 0 (2 + AT+ 1B +1) 6
2VkC, (A)?((2r + 2)|| Al + | B
< 2R MALB e
This completes the proof. O

Corollary G.5. Under the premises of Theoremd.I|and Lemma|G.4} when (29), (30) and (31) hold,

sy > AL (el Y
min T 4(&3(N1_1) 1+53|)\k‘

Proof. We apply the E,, @ Es-decomposition. Note that
B, =P'AT'B=P'(QiN] 'Ry + Q2N; 'Ry)B= N/ 'R B+ P,/ Q:N; 'R,B
so by Gelfand’s Formula and Lemma[AT we have
Omin(Br) = Omin(N] 'Ri1B + P, Q2N; 'Ry B)
> Ouin(N] 1 )omin(R1B) — | Py QallIN3 /| R:2| B

> Bl ( Al )TlngQ(N2)||B|
T G (N N+ sl 1-¢

AL (bl Y
2<53(N1_1) 1+€3|>\k|

where the last inequality requires

V/2€Ce, (N2)Gey (N1 1) ((|>\k+1| +e2)(1 +€3|)\k)>71 <1
c(1=9) | Ak | 2’

(IAkg1| +e2)™

or equivalently,
c(1-¢)
log 3 aec, (Nt (N
log UAe+1l+ez)(Ites|Ax])
08 [k

Therefore, using Proposition amin(BT) is lower bounded by
Umin(B‘r) 2 Umin(BT) - ||B‘r - BTH

c|| Bl ( IAx] )T—l -
_C A T (5
26, (N1 \ 1+ &3]\ B(|A1] +¢€1)

> Bl (I )
4C, (N7 Y \ 1+ &3] A ’
where the last inequality requires
Bl ( Akl >T_1
¢, (N7 1O \(1+ €3 Ae)(|Aa] +€1) '
This completes the proof. O

T > + 1. (30)

§ < 31
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950 Finally, using the above bounds, we can easily upper bound the norm of our controller K.
951  Proposition G.7. Under the premises of Theorem when @), @), and § < % hold,

(JA1] +e1)(1 +53|/\k|)>7_1
| Akl ’

1&Ll < O (

4y (N7 (Cey (ML) (A1 [421) 20| AlIC., (4))
<3 :

952 where Ci =

953 Proof. Recall that the controller is constructed as K, = B; M T PlT , S0 we have
1975 |
Omin (B T )
954 and the bound is merely a combination of Corollary and Corollary whenever § < % O

1B < (1B 127 ]| =

)

955 G.4 Proof of Theorem 4.1]

956 Now we are ready to combine the above building blocks and present the complete proof of Theorem
957 Note that, with all the bounds established above, the proof structure parallels that of Theorem
958 the special case with a symmetric dynamical matrix A.

959 Proof of Theorem The proof is again based on Lemma[5.3] We first guarantee that the diagonal
960 blocks are stable. For the top-left block,

|M] + P’ A" 'BK,| = |M{ — B,B;'M{ P, P
< ||MT = MT ||+ |[(B; — B)BZ "M || + | B, B ' M (I - P Py))|
< ||\ M] = M| + 1By — Brlll| K1l + || Bl K1 |[1T — P, Pyl
< 27| AllGe, (A)2 (M| + 1) 10

2 1 T—1
P (S ERTESEN -
M| +e)2(1 + e\
Ak
Ml +e)2(T4es )\
< (CoCx + G Bl + 1) (R EEsl)
(33)
1
< > (34)
o6t where in (32) we apply Propositions|G.2} [G.6] and[E-T} in (33) we require
1 /(1A 2(1+egh)\
L (‘ 1|+61) ( +€3‘ kl) >2||AH<51(A)2§ (35)
T | Akl
962 and in (34) we require
5< 1 (()\1|+51)2(1+53)\k|))_(7—_1) (36)
2(CpCk + ¢, (A)|B|Ck + 1) | Ak |

963 For the bottom-right block, it is straight-forward to see that
1M5 + Py AT BEL P Po|| < || M3 ||+ (1P AT || BII B Py Pl
< oo (M) ([ Ap41] + £2)7

(M| +en) (M| +e2)(1 + €3|>\1c|)>T_1

+ GBI -

<1
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where the last inequality requires

log 1/(4C.., (Ms))
log(hera| +23) G7)
1 <|A1+el><|m1|+az><1+ss|xk|>>“”
§ < . 38
16, (M) Bl Cr ( el 8

Now it only suffices to bound the spectral norms of off-diagonal blocks. Note that, by applying
Proposition and Proposition the top-right block is bounded as

1A, + PP AT BE P Py < || AL + || B- ||| K ||| P P2
< OA(|>\1| +€1)T

. (A)BlCk (
< (Ca+1)(|M|+e1)

(Aa] +e0)(1 +53Ak|>>f‘15
| Akl

where the last inequality requires
(Ml +e1)? <(I/\1 +e1)?’(1 +€3|/\k|)>_7_
¢, (A)]IBl|Ck | Akl ’
and the bottom-left block is bounded as
IR AT BK P Py| < ([P AT || B || K |

(1] +e) (A ] +e2) X+ 3l xe) 7
| Akl

0 <

(39)

< ¢, (M) BIICxk (

Now, by Lemma|[5.3] we can guarantee that

(Ca + 1), (M) |B|ICxe <<|A1| +e1)*(Aera| +e2)(1 +53|Ak|>>7‘1 -
Al Ak ’

p(Er) < 5 hx(Er)

which requires
2(| M1 ]+e1)
X(L-)(Ca+1)¢e, (M)||B||Cx
lo (|>\1|+€1)2(|)\k|+1\7‘52)(1+83\>\k|)
k

log

T > 40)

Note that the above constraint makes sense only if [A;|?|Ary1| < [ Ak

So far, it is still left to recollect all the constraints we need on the parameters 7, o, 6,y and w. To
start with, all constraints on 7 (see (30), (33), (37) and {@0)) can be summarized as

log c(1-¢§) log 2(| A1 ]+e1)
> max 2V/2€(., (N2)Cey (N, 1) log 1/(4¢=, (M2)) "8 X(E)(Cat1)éc, M) BICx

lo (l)\k+l‘+5‘2)(1+53‘>\k|) ’ log(|Ak+1| +€2) " 1o (|)\1|+€1)2(|)\kr>3\T€2)(1+53Mk|) ’

k k
log (IA1l+e1)? (14es] X))
1 w_, | — [ Akl
A |+e1)2(1+es|A A |+e1)2(1+es X )
 Jog (ul 2} Oobesliu] 20 4], (A)? BT

where W_4 denotes the non- principle branch of the Lambert-W function. Here we utilize the fact
that, for x > 10 Y= is monotone 1ncreas1ng with inverse function x = loéaW 1( 105“),

which can be upper bounded by Theorem 1 in [57]] as
1 W loga < logy — logloga + /2(logy — loglog a) < 3(logy — loglog a)
loga Y loga loga

By gathering different constants, we have

N logﬁJrlog%+10gx(ﬁf)+5logf+log%JrC’T

1-¢
[Ak]

log ]

=0(1), (41)
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where we define ¢ := max{(., (A), (., (M2), (., (Na), (e, (N7 1)}, and O is a numerical constant.
Note that we have to guarantee the denominator to be positive, which gives rise to the additional
assumption | A1 |?|A\x11| < |[Ax|. Meanwhile, for any ¢ € N, we shall select «y such that

_ —¢ min L -
'Y_O(k )’ s {27 2/(O'min(R1)k)+1} 7 -

and select « such that (see (23)), and we have already guaranteed ., > 2 in (29))
%Urnin(Ml) - nTg‘|A“ _ O

(142 + )18l

Now constraints on § (see (1)), (36), (38) and (39)) can be summarized as

5 < min{ — Bl ( el )
46, (NTHCp \ (1 + &3 (M| + 1) ’

1 (um +el>2<1+ss|Ak>>‘“‘”
2(CsCk + (., (A)||B|[Ck + 1) |\&| ’

1 <<|A1| +e) (M| +e2)(1 +es|Ak|>><”>
4¢.,(M,)|[B|[Cx el ’

([A1] +e1)? (<|A1+sl>2<1+63|Ak|>>T}

a < (43)

¢ (A)IBlCk Ak

which can be simplified to (Cj is a constant collecting minor factors)
5 < _ Csac
VEC(IAN -+ [1BI)

or we can rewrite the bound equivalently in terms of ¢, (recall (I0) in Appendix [E}) as

AL 727 = Ok~ 2N 727), (44)

y log(n?(})) + log k + log £a(A) + 27 log | A1 | + 3log  + log(|| A + || B)) + log &2

0

a
2log |)\ki‘1|
2
o Tlog|/\1|+k10§n+10g"fd(14) 7 (45)
log A
[Akt1]

Finally, we select w such that (see , and note that C, = O(v) = O(k~*))

logc% log%—i—Tlog(\)\ﬂ—Fal)

lo A " 1o B ’
€ THes D (Prgil+es) & Tresa D (IArsalTe2)

w > max

which can be reorganized as

log A + log £ + 2log ¢ + log — 4L +1ogd + C,
w>— = e d —O(llogh).  (46)
log [ Akl
Note that here €1, €9, £3 are taken to be small enough, so that
Ak
Moot o2 <L Il +e) (et +en) < — o< @
14 e3] Akl

Also, the probability of sampling an admissible z¢ is 1 — 6(y) = 1 — O(k~*) by the union bound.

Finally, by @1)), @3) and #6), we conclude that Algorithm [I]terminates within
to+k(l+w+71)> 1og(n2(2))+2kloga+logk) +k
——

O(klogn) O(klogk)

1
2log [kl

[Akt1]
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log a(A) + 27 log | 1| + 3log ¢ + log(||A|| + [|B])) + log &2

k (log£ +21og§+log% + log § +C’w)

[ Akl
[Akt1l

k (log £ +log L +logx(L,) + 5log( + log il — + CT)

+

log

A
l0g [xeThrm]
= O(klogn),

990 time steps, which completes the proof. O

991 For the convenience of readers, we provide a table summarizing all constants appearing in the bound.

Table 1: Lists of parameters and constants appearing in the bound.

(a) Algorithmic parameters (introduced in Algorithm algorithm .

Constant Appearance Explanation
to Stage 1 to initialization steps to separate unstable components
w Stage 3 w heat-up steps in each iteration of learning B,
a Stage 3 llut, || = aflat, ]| to keep non-negligible unstable component
T Stage 4 T steps between consecutive control inputs are injected
(b) System parameters (as functions of dynamical matrices).
Constant Definition Explanation
A Assumptionm (complex) eigenvalue of A with i™ largest modulus
AT, 1Bl [Notation| 2-norm of dynamical matrices A and B
. c effective controllability over the unstable subspace FE\,, i.e.
c Assumption 4.3 w
P Tmin(R1B) > ¢| B||
3 Definition[3.1] | E and E; are £-close subspaces, i.e., Opmin(Py Q2) > 1 — &
x(+) Lemma|D.1 perturbation constant for 2-by-2 block diagonal matrices
¢(") Lemma|G.1 Gelfand constant for the norm of matrix exponents
- the diagonalization condition number, i.e., condition number of
Ka (") the matrix formed by eigenvectors as columns
(c) Shorthand notations (introduced in proofs).
Constant Definition Explanation
iti — 2—&)V2¢[[A 2[Npt1]
Ca Proposmon Ch =G, (M), (IMQ)( )1—5 ATl \M+61—T;kl+1\—sz
c, Proposition[G.3] | C, := e ST RS TN ATT (7 is taken according to [@#2)))

o Proposition[G§] | ,, . 2V (A’ (Cre2)]+15])

— «

Ck proposition O = 4453(1\/51)(@1(Ml)(|:,\1\+51)+2HAHC51(A))
) c||B

_ I
C below @ C = maX{Ca (A)aCEz (MQ)a 62(N2)7§63(N1_1)}
C;,Cs,C,| @I), @4), @6) | collection of numerical constants in @1), (@4), (406)

o2 H An Illustrative Example with Additive Noise

993 Finally, we include an illustrative experiment that shows the performance of our LTS, algorithm.

994 Settings. We evaluate the algorithm in LTI systems with additive noise

Zyr1 = Axy + Buy +wy, where wy i'fi\'fj'J\/(O, o2 I).

Here o, characterizes the variance (and thus the magnitude) of the noise. The dynamical matrices

995
are randomly generated: A is generated based on its eigen-decomposition A = VAV ~1, where the

996
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eigenvalues A = diag(Aq,---,\,) are randomly generated by selecting A1, ~ U(1, Apnax) and

Atlm ~ K‘%L -U(—1,1) (to ensure [A1]*|Ax11] < |Ak|), and the eigenvectors V' = [v1, -+ ,vp]

are generated by random perturbation to a random orthogonal matrix (to avoid tiny £); meanwhile, B
is generated by random sampling i.i.d. entries from ¢/(0, 1). For comparability and reproducibility,
throughout the experiment we set £ = 3 and use 0 as the initial random seed.

To compare the performance in different settings, 30 data points are collected for each pair of o,
and n. It is observed that our algorithm might cause numerical instability issues (e.g., cond(D T D)
could be large), so we simply ignore such cases and repeat until 30 data points are collected. The
parameters of the algorithm are determined in an adaptive way that minimizes the number of running
steps: we search for the minimum ¢, that yields estimation error smaller than §, search for the
minimum 7 such that K = BZ-!M7 P" stabilizes the system, and the w heat-up steps in Stage 3

could be ended earlier if we already observe || P, || /|||| larger than a certain threshold.

Our experimental results are presented in Figure|I{below.

—— LTS
101444 —— naive

35

10125 4
30

10106 |
25 '/0—0\'/.\0/‘

1087 4

1088 -

# steps (T)
~
S
state norm (|[x¢]|)

10%

1030 4
~8— LTSy, 0, = 0.000
51 LTSo, 0, = 0.100 10 4
~— LTS, 0, = 1.000

4 8 16 32 64 128 256 0 25 50 75 100 125 150 175 200

state dimension (n) time step (t)
(a) Running steps of LTSy (b) State norms along one trajectory

Figure 1: Experimental results. In (a) the line shows the median of running steps, and the shadow
marks the range between upper and lower quartiles (the horizontal axis is in log scale) In (b) the
trajectories of our algorithm and the naive approach are compared in a randomly-generated system
with n = 128 and o, = 0 (the vertical axis is in log scale)

Performance under different n and o,. Figure [Ta] shows the number of running steps of LTS,
that is needed to learn a stabilizing controller. It is evident that the number of running steps grow
almost linearly with regard to log n, which is in accordance with Theorem 4.1

As for the effect of noise, it is observed that the algorithm needs more steps in systems with noise
than in those without noise; nevertheless, the magnitude of noise does not have much influence on
the number of running steps. This is also reasonable since the increase is mainly attributed to t; —
it takes more initial steps to push the state close enough to E,, such that the estimation error of P;
drops to acceptable level; however, as the E\,-component grows exponentially fast over time while
w; 1s 1.1.d., the magnitude of noise only plays a minor role in the increase. Noise becomes negligible
in later stages due to the disproportionate magnitudes of states and noise.

Analysis of comparison of trajectories. In Figure[Tb|we study an exemplary trajectory of our LTS,
algorithm, and compare it against that of the naive approach, which first identifies the system and
then designs a controller to nullify the unstable eigenvalues by standard pole-placement method.
It is evident that our algorithm needs significantly fewer steps, and thus induces far smaller state
norms, to learn a controller that effectively stabilizes the system. It is also observed that our con-
troller decreases state norm in a zig-zag manner, which is due to the 7-hop design our algorithm
adopts. Nevertheless, a potential drawback of our controller design is that the spectral radius of the
controlled system is larger (since we cannot precisely nullify all unstable eigenvalues), resulting in
a slower stabilizing rate than the naive approach (compare the decreasing parts of the curves).
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