
When to Ask for Help: Proactive Interventions in
Autonomous Reinforcement Learning

Annie Xie⇤, Fahim Tajwar⇤, Archit Sharma⇤, Chelsea Finn
Department of Computer Science

Stanford University
{anniexie,tajwar93,architsh,cbfinn}@stanford.edu

Abstract

A long-term goal of reinforcement learning is to design agents that can au-
tonomously interact and learn in the world. A critical challenge to such au-
tonomy is the presence of irreversible states which require external assistance
to recover from, such as when a robot arm has pushed an object off of a table.
While standard agents require constant monitoring to decide when to intervene,
we aim to design proactive agents that can request human intervention only when
needed. To this end, we propose an algorithm that efficiently learns to detect
and avoid states that are irreversible, and proactively asks for help in case the
agent does enter them. On a suite of continuous control environments with un-
known irreversible states, we find that our algorithm exhibits better sample- and
intervention-efficiency compared to existing methods. Our code is publicly avail-
able at https://sites.google.com/view/proactive-interventions.

Figure 1: Autonomous agents struggle to make progress without external interventions when they are stuck
in an irreversible state. Reinforcement learning agents therefore need active monitoring throughout training to
detect and intervene when the agent reaches an irreversible state. Enabling the agents to detect irreversible states
and proactively request for help can substantially reduce the human monitoring required for training agents.

1 Introduction

A reinforcement learning (RL) agent should be able to autonomously learn behavior by exploring
in and interacting with its environment. However, in most realistic learning environments, there are
irreversible states from which the agent cannot recover on its own. For example, a robot arm can
inadvertently push an object off the table, such that an external supervisor must return it back to the
robot’s workspace to continue the learning process. Current agents demand constant monitoring to
decide when the agent enters an irreversible state and therefore when to intervene. In this work, we
aim to build greater autonomy into RL agents by addressing this problem. In particular, we envision

⇤equal contribution

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://sites.google.com/view/proactive-interventions

proactive agents that can instead detect irreversible states, proactively request interventions when
needed, and otherwise learn autonomously.

Prior works have studied autonomy in RL, aiming to minimize the number of human-provided resets
at the end of each episode, but generally assume the environment is fully reversible [19, 53, 35, 34, 17].
Our work focuses on settings with potential irreversible states and algorithms to avoid such states. A
related desiderata, however, arises in the safe RL setting; safe RL methods aim to learn policies that
minimize visits to unsafe states, and the developed approaches are designed to avoid those particular
parts of the state space [1, 10, 39, 37, 43, 41]. Prior safe RL algorithms assume that the agent is given
a safety label on demand for every state it visits. In contrast, an autonomous agent may not know
when it has reached an irreversible state (such as knocking an important object off a table), and an
algorithm in this setting should instead learn to both detect and avoid such states, while minimizing
queries about whether a state is reversible.

With this in mind, we design our setup to provide help to the agent in two ways: through an
environment reset or through the reversibility label of a state. However, unlike in safe RL, we can
reduce the labeling requirement with a simple observation: all states proceeding an irreversible state
are irreversible, and all states preceding a reversible state will be reversible. Based on this observation,
we design a scheme based on binary search to generate reversibility labels for a trajectory of length T

using at most O(log T) label queries, compared to the O(T) queries made by safe RL methods. We
further reduce labeling burden by only querying labels in a large batch at the end of each extended
episode, i.e. typically only after tens of thousands of steps. By combining this label efficient scheme
with proactive requests for an intervention and batch of labels, we can enable agents to learn amidst
irreversible states with a high degree of autonomy.

Concretely, we propose a framework for reversibility-aware autonomous RL, which we call proactive

agent interventions (PAINT), that aims to minimize human monitoring and supervision required
throughout training. First, we train a reversibility-aware Q-value function that penalizes visits to
irreversible states. Second, the reversibility labels are generated by a label-efficient binary search
routine, which makes at most a logarithmic number of queries in the length of the interaction with the
environment. Finally, the labeled states can be used to learn a classifier for predicting irreversible
states, which can then be leveraged to proactively call for interventions. Our proposed framework
PAINT can be used to adapt any value-based RL algorithm, in both episodic and non-episodic
settings, to learn with minimal and proactive interventions. We compare PAINT to prior methods for
autonomous RL and safe RL on a suite of continuous control tasks, and find that PAINT exhibits both
better sample- and intervention-efficiency compared to existing methods. On challenging autonomous
object manipulation tasks, PAINT only requires around 100 interventions while training for 3 million
steps, which is up to 15⇥ fewer than those required by prior algorithms.

2 Related Work

Deployment of many RL algorithms in physical contexts is challenging, because they fail to avoid
undesirable states in the environment and require human-provided resets between trials. Safe RL,
reversibility-aware RL, and autonomous RL, which we review next, address parts of these problems.

Safe RL. The goal of our work is to learn to avoid irreversible states. Algorithms for safe RL also
need to avoid regions of the state space, and achieve this by formulating a constrained optimization
problem [10, 39, 37, 50] or by assigning low rewards to unsafe states [43, 41]. Another class of
algorithms construct shielding-based policies that yield control to a backup policy if following the
learning policy leads to an unsafe state [1, 3, 42, 40, 7, 43, 6]. Critically, however, all of these
approaches assume that safety labels for each state can be queried freely at every time-step of training,
whereas our objective is to minimize labeling requirements over training.

Reversibility-aware RL. Reversibility and reachability have been studied in the context of RL to
avoid actions that lead to irreversible states [24, 23, 31, 15] or, conversely, to guide exploration
towards difficult-to-reach states [33, 5]. Unlike prior work, our study of reversibility primarily
focuses on the non-episodic setting to minimize the number of human interventions during learning.
While prior methods are self-supervised, our experiments also find that our algorithm learns with
significantly fewer interventions than prior methods by leveraging some binary reversibility labels.

2

Autonomous RL. Multiple prior works have also studied autonomy in RL, motivated by the fact
that deployments of RL algorithms on real robots often require human-provided resets between
episodes [13, 16, 14]. To avoid the supervision needed for episodic resets, prior work has proposed to
learn controllers to return to specific state distributions, such as the initial state [19, 11], the uniform
distribution over states [53] or demonstration states [36], adversarially learned distributions [47], or
curriculum-based distributions [34]. However, most work in the reset-free setting assumes the agent’s
environment is reversible [30, 35, 34, 17], whereas we specifically tackle the setting where this is
not the case. One notable exception is the Leave No Trace algorithm [11], which checks whether
the agent has successfully returned back to the initial state distribution and requests an intervention
otherwise. Our approach differs from Leave No Trace by requesting a reset based on the estimated
reversibility of the state, which we find requires significantly fewer interventions in our evaluation.

Human-in-the-loop learning. Learning from human feedback has enabled RL agents to acquire
complex skills that are difficult to encode in a reward function [22, 27, 45, 12, 4]. However, interactive
RL algorithms are often to difficult to scale as they rely on feedback at every time-step of training.
More feedback-efficient algorithms have learned reward models from human-provided preferences [2,
38, 46, 32, 8, 26, 44], which removes the need for constant feedback. Similarly, the interactive
imitation learning learning has seen more query-efficient algorithms, which query expert actions
based on the estimated risk or novelty of a visited state [51, 28, 21, 20]. While these algorithms
augment the agent with human-provided preferences or expert actions, our approach leverages a
different mode of feedback, that is, reversibility labels for visited states.

3 Reinforcement Learning in Irreversible Environments

Consider a Markov decision process M = (S,A,P, r, ⇢0, �) with state space S, action space A,
transition dynamics P : S ⇥A⇥ S 7! [0, 1], bounded reward function r : S ⇥A 7! [Rmin, Rmax],
initial state distribution ⇢0 : S 7! [0, 1] and discount factor � 2 [0, 1). In this work, we build on the
formalism of autonomous RL [35], but we remove the assumption that the environment is reversible,
i.e., the MDP is no longer strongly connected (see example in [25, Chapter 38] and description
below). The environment is initialized at s0 ⇠ ⇢ and an algorithm continually interacts with the
environment till it requests the environment to be reset via an external intervention to state s

0
0 ⇠ ⇢.

Specifically, an algorithm A : {si, ai, si+1, ri}
t�1
i=0 7! (at,⇡t) generates a sequence (s0, a0, s1, . . .)

in M, mapping the states, actions, and rewards seen till time t�1 to an action at 2 A[{areset}, and
the current guess at the optimal policy ⇡t : S ⇥A 7! [0,1). Here, areset is a special action the agent
can execute to reset the environment through extrinsic interventions, i.e. P (· | s, areset) = ⇢0(·).

Figure 2: Example of
an MDP with irreversible
states (in red). The agent
starts in the state ‘S’ and
its goal is to reach the state
‘G’, which are connected.

A MDP is strongly connected if for all pairs of states si, sj 2 S, there
exists a policy ⇡ such that sj has a non-zero probability of being visited
when executing the policy ⇡ from state si. This assumption can easily be
violated in practice, for example, when a robot arm pushes an object out of
its reach. At an abstract level, the agent has transitioned into a component
of MDP that is not connected with the high reward states, and thus cannot
continue making progress, as visualized in Figure 2. The agent can invoke
an extrinsic agent (such as a human supervisor) through areset, and the
extrinsic agent can reset the environment to a state from the initial state
distribution. For example, the human supervisor can reset the object to
the initial state, which is within the reach of the robot arm. For every state
s 2 S, define R⇢ : S 7! {0, 1} as the indicator whether the state s is in
the same component as the initial state distribution. State s is defined to
be reversible if R⇢(s) = 1, and irreversible if R⇢(s) = 0. We assume that
the R⇢ is unknown, but can be queried for a state s.

While we do not assume that the MDP is strongly connected, we assume that the states visited by
the optimal policy are in the same connected component as the initial state distribution. Under this
assumption, we can design agents that can autonomously practice the task many times. Otherwise,
the environment would need to be reset after every successful trial of the task.

The objective is to learn an optimal policy ⇡
⇤
2 argmax⇡ J(⇡) = argmax⇡ E[

P1
t=0 �

t
r(st, at)].

Note, J(⇡) is approximated by computing the return when the policy is rolled out from
s0 ⇠ ⇢0. Algorithms are typically evaluated on the sample efficiency, that is minimizing

3

D(A) =
P1

t=0 J(⇡
⇤)� J(⇡t). However, since we care about minimizing the human supervision

required and resetting the environment can entail expensive human supervision, we will primarily
evaluate algorithms on intervention-efficiency, defined as I(A) =

P1
k=0 J(⇡

⇤)� J(⇡k), where ⇡k is
the policy learned after k interventions.

4 Preliminaries

Episodic settings reset the environment to a state from the initial state distribution after every trial,
typically after every few hundred steps of interaction with the environment. Such frequent resetting
of the environment entails an extensive amount of external interventions, typically from a human.
Prior works on autonomous RL have sought to reduce the supervision required for resetting the
environments by learning a backward policy that resets the environment [11, 52, 34]. Meaningfully
improving the autonomy of RL in irreversible environments requires us to curb the requirement
of episodic resets first. While our proposed framework is compatible with any autonomous RL
algorithm, we describe MEDAL [36], which will be used in our experiments.

MEDAL learns a forward policy ⇡f and a backward policy ⇡b, alternately executed for a fixed
number of steps in the environment. The forward policy maximizes the conventional cumulative
task reward, that is E [

P1
t=0 �

t
r(st, at)], and the backward policy minimizes the Jensen-Shannon

divergence DJS
�
⇢
b(s) || ⇢̂⇤(s)

�
between the marginal state distribution of the backward policy ⇢

b

and the state distribution of the optimal forward policy ⇢̂
⇤, approximated by a small number of expert

demonstrations. Thus, the backward policy keeps the agent close to the demonstration states, allowing
the forward agent to try the task from a mix of easy and hard initial states. The proposed divergence
can be minimized via the objective min⇡b maxC Es⇠⇢⇤

⇥
logC(s)

⇤
+ Es⇠⇢b

⇥
log(1�C(s))

⇤
, where

C : S 7! [0, 1] is a classifier that maximizes the log-probability of states visited in the forward
demonstrations, and minimizes the probability of the states visited by the backward policy. The
optimization problem for the backward policy can be written as a RL problem:

min
⇡b

Es⇠⇢b [log (1� C(s))] = max
⇡b

E
"
�

1X

t=0

�
t log (1� C(s))

#
(1)

where ⇡b maximizes the reward function r(s, a) = � log (1� C(s)). Correspondingly, C(s) is
trained to discriminate between states visited by the backward policy and the demonstrations.

5 Proactive Agent Interventions for Autonomous Reinforcement Learning

To minimize human monitoring and supervision when an agent is learning in an environment with
irreversible states, the agent needs to (a) learn to avoid irreversible states over the course of training
and (b) learn to detect and request an intervention whenever the agent is stuck. For the former,
we first describe a simple modification to the reward function to explicitly penalize visitation of
irreversible states in Section 5.1. However, such a modification requires the knowledge of reversibility
of the visited states, which is not known apriori. We learn a classifier to estimate reversibility,
proposing a label-efficient algorithm to query reversibility labels of visited states in Section 5.2. Since
both the dynamics and the set of irreversible states are unknown apriori, the agent will inevitably
still visit irreversible states as a part of the exploration. To ensure that a human does not have to
monitor the agent throughout training, the agent should have a mechanism to decide and request
for an intervention. We discuss such a mechanism in Section 5.3. Finally, we put together all these
components in Section 5.4 for our proposed framework Proactive Agent INTerventions (PAINT), an
overview of which is given in Figure 3.

5.1 Penalizing Visitation of Irreversible States

Our goal is to penalize visitation of irreversible states by ensuring all actions leading to irreversible
states are ‘worse’ than those leading to reversible states. To this end, we adapt the reward-penalty
framework from safe RL [41] for learning in the presence of irreversible states. For a transition
(s, a, s0), consider a surrogate reward function r̃:

r̃(s, a) =

⇢
r(s, a), R⇢(s0) = 1
Rmin � ✏, R⇢(s0) = 0

(2)

4

Figure 3: Overview of our framework PAINT for minimiz-
ing human monitoring and supervision when learning in the
presence of irreversible states. The agent proactively requests
interventions, freeing the human from active monitoring of
training. When an intervention is requested, the human re-
sets the environment and provides reversibility labels for the
latest experience since the previous intervention.

Algorithm 1: Reversibility Labeling via
Binary Search
input: ⌧ = {si}Ti=0; // unlabeled trajectory
while len(⌧) > 0 do

m blen(⌧)/2c; // get midpoint
// query for midpoint
if R⇢(sm) = 1 then

// label first half reversible and query
for second half
label {si}mi=0 as 1;
⌧ {si}len(⌧)

i=m+1;
else

// label second half irreversible and
query for first half
label {si}len(⌧)

i=m+1 as 0;
⌧ {si}mi=0;

Whenever the next state s0 is a reversible state, the agent gets the environment reward. Otherwise if it
has entered an irreversible, it gets a constant reward Rmin � ✏ that is worse than any reward given out
by the environment. Whenever an agent enters an irreversible state, it will continue to remain in an
irreversible state and get a constant reward of Rmin � ✏. Therefore, the Q-value whenever R⇢(s0) = 0
is given by:

Q
⇡(s, a) = E

" 1X

t=0

�
t
r̃(st, at) | s0 = s, a0 = a

#
= (Rmin � ✏)

1X

t=0

�
t =

Rmin � ✏

1� �

This observation allows us to bypass the need to perform Bellman backups on irreversible states, and
instead directly regress to the Q-value. More specifically, we can rewrite the loss function for the
Q-value function as, `(Q) = E(s,a,s0,r)⇠D [Q(s, a)� B

⇡
Q(s, a)] , where the application of Bellman

backup operator B⇡
Q(s, a) can be expanded as:

B
⇡
Q(s, a) =

⇢
r(s, a) + �Ea0⇠⇡(·|s0)Q̂(s0, a0), R⇢(s0) = 1
(Rmin � ✏) / (1� �) , R⇢(s0) = 0

(3)

= R⇢(s
0)
⇣
r(s, a) + �Ea0⇠⇡(·|s0)Q̂(s0, a0)

⌘
+ (1�R⇢(s

0))
Rmin � ✏

1� �
(4)

Here, D denotes the replay buffer, Q̂ denotes the use of target networks commonly used in Q-learning
algorithms to stabilize training when using neural networks as function approximators [29]. This
surrogate reward function and the modified Bellman operator can be used for any value-based
RL algorithm in both episodic and autonomous RL settings. The hyperparameter ✏ controls how
aggressively the agent is penalized for visiting irreversible states. In general, Q-values for actions
leading to irreversible states will be lower than those keeping the agent amongst reversible states,
encouraging the policies to visit irreversible states fewer times over the course of training. More
details and proofs can be found in Appendix A.1.1.

5.2 Estimating Reversibility

In general, R⇢ is not known apriori and will have to be estimated. We define R̂⇢ : S 7! [0, 1] as
an estimator of the reversibility of a state s 2 S. We can then define an empirical Bellman backup
operator B̂⇡ from equation 4 by replacing R⇢ with the estimator R̂⇢:

B̂
⇡
Q(s, a) = Es0⇠P(·|s,a)


R̂⇢(s

0)
�
r(s, a) + �Ea0⇠⇡(·|s0)Q(s0, a0)

�
+

⇣
1� R̂⇢(s

0)
⌘
Rmin � ✏

1� �

�

Analogous to B̂
⇡, we can define the empirical Bellman optimality operator B̂⇤ (Eq 12) for value

iteration when using R̂⇢. The following theorem bounds the suboptimality of the policy learned by
value iteration under B̂⇤:

5

Theorem 5.1. Let ⇡
⇤

denote the optimal policy and Q
⇤

denote the corresponding optimal Q-value

function. Let ⇡̂
⇤

denote the optimal policy returned by empirical Bellman optimality operator B̂
⇤
.

Assuming kR⇢ � R̂⇢k1  �,

Q
⇡̂⇤
(s, a) � Q

⇤(s, a)�
2� (Rmax �Rmin + ✏)

(1� �)2

for all (s, a) 2 S ⇥A.

The proof and related discussion can be found in Appendix A.1.2. The result guarantees that closer R̂⇢

is to R⇢ under the 1-norm, the closer ⇡̂⇤ is to ⇡
⇤. To this end, we propose to learn R̂⇢ by minimizing

the binary cross-entropy loss `(R̂⇢) = �Es⇠D
⇥
R⇢(s) log R̂⇢(s) + (1�R⇢(s)) log(1� R̂⇢(s))

⇤
,

where the states s ⇠ D represent the states visited by the agent.

Minimizing `(R̂⇢) requires the reversibility labels R⇢(s) for s ⇠ D. Since labeling requires supervi-
sion, it is critical to query R⇢ efficiently. Given a trajectory of states ⌧ = (s0, s1, . . . sT), a naïve
approach would be to query the labels R⇢(si) for all states si, leading to O(T) queries per trajectory.
However, observe that we have the following properties: (a) all states following an irreversible
state will be irreversible and (b) all states preceding a reversible state will be reversible. It follows
from these properties that every trajectory can be split into a reversible segment ⌧r = (s0, s1, . . . sk)
and an irreversible segment ⌧⇠r = (sk+1, . . . sT), where the irreversible segment ⌧⇠r can be empty
potentially. Identifying sk+1, the first irreversible state, generates the labels for the entire trajectory
automatically. Fortunately, we can construct a scheme based on binary search to identify sk+1 in
O(log T) queries: sk+1 occurs after the midpoint of the trajectory if the midpoint is reversible,
otherwise it occurs before it. The pseudocode for this routine is given in Alg 1.

The total number of labels required would be O
�
N log |⌧ |max

�
, where N is the number of trajectories

in the replay buffer D and the |⌧ |max denotes the maximum length of the trajectory. This represents a
reduction in label requirement of O

�
N |⌧ |max

�
by prior safe RL methods. Furthermore, agent trains

to avoid irreversible states, resulting in fewer and longer trajectories over the course of training. Thus,
labeling reduces over time because the labels required is linear in N and logarithmic in |⌧ |max.

5.3 Proactive Interventions

Despite trying to avoid irreversible states via reward penalties, an agent will inevitably encounter
some irreversible states due to exploratory behaviors. It is critical that the agent proactively asks
for help in such situations, so that a human does not need to constantly monitor the training process.
More specifically, an agent should request an intervention when it is an irreversible state. Since R⇢(s)
is not available, the agent again needs to estimate the reversibility of the state. It is natural to reuse
the learned reversibility estimator R̂⇢ for this purpose. We propose the following rule: the agent
executes areset whenever the reversibility classifier’s prediction falls below 0.5, i.e., R̂⇢(s) < 0.5.

5.4 Putting it Together Algorithm 2: PAINT
input: P; // agent, params abstracted away
initialize R̂⇢,D; // rev classifier, replay buffer
while not done do

s ⇠ ⇢0; // reset environment
// continue till classifier detects irreversibility
while R̂⇢(s) > 0.5 do

// step in the environment
a ⇠ P(s), s ⇠ P(· | s, a);
// update replay buffer and agent
update D,P;

// optionally explore environment
for explore steps do

a ⇠ unif(A), s ⇠ P(· | s, a);
update D;

// reversibility labels via binary search
update reversibility labels in D;
// train classifier on all labeled data, new and old
train R̂⇢;

With the key components in place, we summa-
rize our proposed framework. High-level pseu-
docode is given in Alg. 2, and a more detailed
pseudocode is deferred to Appendix A.2.

PAINT can modify any value-based RL algo-
rithm, in both episodic and autonomous settings.
This description and Alg. 2 focus on the latter
setting, although adapting it to the episodic set-
ting is straightforward. The agent’s interaction
with the environment consists of a sequence of
trials that end whenever the environment is re-
set to a state s ⇠ ⇢0. During each trial, the
agent operates autonomously, and the Bellman
update for the critic is modified according to the
empirical Bellman backup B̂

⇡. Whenever the

6

Figure 4: A subset of our evaluation tasks: Tabletop Manipulation, Peg Insertion, and Half-Cheetah Velocity.
Irreversible states in the first two environments are when the agent drops the object outside the red boundary
(left) and off of the table (middle). The cheetah is in an irreversible state whenever it is flipped over (right).

reversibility classifier R̂⇢ < 0.5, parameterized
as a neural network, the agent requests an intervention. The agent can execute a fixed number of
exploration steps after requesting an intervention and before the intervention is performed. Whenever
the classifier predicts an irreversible state correctly, these exploration steps can help the agent gather
more information about irreversible states. At the time of the intervention, all new states visited
since the previous intervention are labeled for reversibility via Algorithm 1. Finally, the reversibility
classifier is trained on all the labeled data before the environment is reset to a state s ⇠ ⇢0 for the
next trial. Full implementation details can be found in Appendix A.4.

The agent is provided reversibility labels only when the external reset is provided. This simplifies
supervision as the human can reset the environment and provide labels at the same time. This means
the replay buffer D will contain states with and without reversibility labels, since states from the
current trial will not yet have labels. We use Eq. 4 for states that have reversibility labels to avoid
errors from the classifier affecting the critic update and use B̂

⇡ for those that do not have labels.

6 Experiments

We design several experiments to study the efficiency of our algorithm in terms of the required
number of reset interventions and number of queried reversibility labels. Our code and videos of our
results are at: https://sites.google.com/view/proactive-interventions.

6.1 Experimental Setup

Environments. To illustrate the wide applicability of our method, we design environments that
represent three distinct RL setups: episodic, forward-backward, and continuing.

• Maze (episodic). A 2D continuous maze environment with trenches, which represent groups
of connected irreversible states. The agent can fall into a trench, and once entered, it can roam
freely within the trench but cannot leave it without an environment reset. In this task, resets are
infrequently provided to the agent after 500 time-steps.

• Tabletop Organization [35] (forward-backward). The agent must grasp the mug and put it down
on one of the four goal positions. Dropping the mug outside of the red boundary is irreversible.

• Peg Insertion [35] (forward-backward). The agent must insert the peg into the goal but can
potentially drop it off the table, which is irreversible.

• Half-Cheetah Vel [9] (continuing). The agent must run at the specified target velocity, which
changes every 500 steps, and can potentially flip over onto its back, which is irreversible.

We visualize and fully describe each environment in Fig. 4 and in Appendix A.3 respectively.

Comparisons. In the episodic and continuing settings, we consider safe RL baselines that rely on
reversibility labels at every time-step of training.

• Safe Model-Based Policy Optimization (SMBPO) [41]. This comparison implements the modi-
fied Bellman operator defined in Eqn. 4 in Section 5.1, using the true reversibility labels.

• Safety Q-functions for RL (SQRL) [37]. A safe RL method that trains a safety critic, which
estimates the future probability of entering an irreversible state for a safety-constrained policy.

7

https://sites.google.com/view/proactive-interventions

Figure 5: (left) Task success versus interventions.
Shaded regions denote the standard error over 5 seeds.
(right) Predictions generated by our reversibility classi-
fier, where the purple region is predicted to be reversible.

Task Method Labels

Maze SMBPO/SQRL 200K
PAINT (Ours) 3260± 12

Tabletop PAINT (Ours) 1021± 69

Peg Insertion PAINT (Ours) 2083± 149

Cheetah SMBPO w Term. 3M
PAINT (Ours) 8748± 3762

Figure 6: Number of queried reversibility labels. For
our method, we average the number of labels used
across 5 seeds and report the standard error.

In the forward-backward setting, we consider methods designed for the autonomous learning setup.
These methods do not require any reversibility labels. Hence, our goal here is to compare the
reset-efficiency of our method to prior work.

• Leave No Trace (LNT) [11]. An autonomous RL method that jointly trains a forward policy and
reset policy. When the reset policy fails to return to the initial state, the agent requests a reset.

• Matching Expert Distributions for Autonomous Learning (MEDAL) [36]. This method trains a
reset policy that returns to the distribution of demonstration states provided for the forward policy.
MEDAL does not have a built-in intervention rule.

In all tasks, we compare to a recently proposed reversibility-aware RL method, Reversibility-Aware
Exploration (RAE) [15], which does not require any reversibility labels. It instead trains a self-
supervised reversibility estimator to predict whether a state transition (s, s̃) is more likely than the
reverse (s̃, s). We augment RAE with an intervention rule, similar to our method, defined in terms
of predictions from its self-supervised classifier. In the forward-backward setting, we train both the
forward and backward policies with RAE. Finally, we also evaluate Episodic RL, which represents
the typical RL setup with frequent resets and thus provides an upper-bound on task success. In
Appendix A.4, we provide full implementation details of each comparison, and in Appendix A.5, we
discuss the set of assumptions made by each comparison.

6.2 Main Results

In Fig. 5 (left) and Fig. 7, we plot the task success versus the number of interventions in the 4 tasks.
For methods that use reversibility labels, we report the total number of labels queried in Table 6.

Maze. While the safe RL methods, SMBPO and SQRL, require reversibility labels at every time-step,
our approach PAINT only requires on average 3260 queries to label all 200K states visited. In Fig. 5
(right), we visualize predictions from our reversibility classifier at the end of training, where zero
predicts ‘reversible’ and one predicts ‘irreversible’. The classifier correctly identifies the path that
leads to the goal as reversible. Interestingly, it classifies all other regions as stuck states, including the
states that are reversible. Because these states are irrelevant to the task, however, classifying them
as irreversible, and therefore to be avoided, is advantageous to our policy as it reduces its area of
exploration.

More complex domains. In the Tabletop Organization and Peg Insertion tasks, each agent is reset
every 200K and 100K time-steps, per the EARL benchmark [35]. However, we allow agents to
request earlier resets, and under this setting, we compare PAINT to other methods that implement
intervention rules. Compared to Leave No Trace and Reversibility-Aware Exploration, PAINT
requires significantly fewer resets—80 and 124 resets respectively, which corresponds to roughly one
intervention for every 25K steps. Importantly, the number of interventions plateaus as training
progresses, and the agent requires fewer and fewer resets over time (see Appendix A.6 for additional
plots of number of interventions versus time-steps). The exception is MEDAL (green segment near
the origin), which is not equipped with an early termination rule and so only uses 10 interventions
total. However, it also fails to make meaningful progress on the task with few resets.

8

Figure 7: Task success versus interventions averaged over 5 seeds. Methods with stronger assumptions, i.e.,
SAC resets every H steps and SMBPO requires labels at every time-step, are dotted. Note the short green
segment near the origin representing MEDAL.

Figure 8: (left) After removing the early termination condition, which initiates random exploration, we find that
PAINT learns less efficiently. (right) Varying the number of demonstrations suggests that PAINT and SMBPO
are robust to the amount of available demonstrations.

On the continuing Half-Cheetah task, agents do not receive any resets, unless specifically requested.
Here, we compare PAINT to SMPBO with early termination, an oracle version of our method,
which assumes that reversibility labels are available at every time-step and immediately requests an
intervention if the agent is flipped over. PAINT converges to its final performance after around 750
resets, on par with the number of resets required by SMPBO with early termination. On the other
hand, a standard episodic RL agent, which receives resets at every 2K steps, and RAE, which trains a
self-supervised classifier, learn significantly slower with respect to the number of interventions.

6.3 Ablations and Sensitivity Analysis

Early termination. In the episodic Maze setting, our algorithm switches to a uniform-random policy
for the remainder of the episode if the termination condition is met. In Fig. 8 (left), we plot the
performance without early termination, i.e., running the agent policy for the full episode. Taking
random explorations, after the agent believes it has entered an irreversible state, significantly helps
our method, as it increases the number and diversity of irreversible states the agent has seen.

Varying the number of demonstrations. Our method leverages demonstrations in a subset of
environments. While we provide these demonstrations to all comparisons as well, we want to study
how much our method relies on them. We plot the average task success during training versus number
of demonstrations in Fig. 8 (right). While PAINT and SMBPO are robust to the amount, alternative
methods tend to achieve significantly lower success when given fewer demonstrations.

7 Discussion

In this work, we sought to build greater autonomy into RL agents, particularly in irreversible
environments. We proposed an algorithm, PAINT, that learns to detect and avoid irreversible states,
and proactively requests an intervention when in an irreversible state. PAINT leverages reversibility

9

labels to learn to identify irreversible states more quickly, and improves upon existing methods on a
range of learning setups in terms of task success, reset-efficiency, and label-efficiency.

Despite these improvements, PAINT has multiple important limitations. In environments where
irreversible states are not encountered until further into training, the reversibility classifier may
produce false positives which would significantly delay the next intervention. Further, while PAINT is
far more label-efficient than prior safe RL methods, it still requires around thousands of reversibility
labels. We expect that this limitation may be mitigated with more sophisticated querying strategies,
e.g. that take into account the classifier’s confidence. Finally, we hope that future work can validate the
ability for reversibility aware techniques to improve the autonomy of real robotic learning systems.

Acknowledgments and Disclosure of Funding

AX was supported by an NSF Graduate Research Fellowship. The work was also supported by
funding from Google, Schmidt Futures, and ONR grants N00014-21-1-2685 and N00014-20-1-2675.
The authors would also like to thank members of the IRIS Lab for helpful feedback on an early
version of this paper.

References
[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization.

In International conference on machine learning, pages 22–31. PMLR, 2017.
[2] Riad Akrour, Marc Schoenauer, and Michele Sebag. Preference-based policy learning. In Joint

European Conference on Machine Learning and Knowledge Discovery in Databases, pages
12–27. Springer, 2011.

[3] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum, and
Ufuk Topcu. Safe reinforcement learning via shielding. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 32, 2018.
[4] Christian Arzate Cruz and Takeo Igarashi. A survey on interactive reinforcement learning:

design principles and open challenges. In Proceedings of the 2020 ACM designing interactive

systems conference, pages 1195–1209, 2020.
[5] Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven

Kapturowski, Olivier Tieleman, Martín Arjovsky, Alexander Pritzel, Andew Bolt, et al. Never
give up: Learning directed exploration strategies. arXiv preprint arXiv:2002.06038, 2020.

[6] Osbert Bastani, Shuo Li, and Anton Xu. Safe reinforcement learning via statistical model
predictive shielding. In Robotics: Science and Systems, 2021.

[7] Homanga Bharadhwaj, Aviral Kumar, Nicholas Rhinehart, Sergey Levine, Florian Shkurti, and
Animesh Garg. Conservative safety critics for exploration. arXiv preprint arXiv:2010.14497,
2020.

[8] Erdem Biyik and Dorsa Sadigh. Batch active preference-based learning of reward functions. In
Conference on robot learning, pages 519–528. PMLR, 2018.

[9] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[10] Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained
reinforcement learning with percentile risk criteria. The Journal of Machine Learning Research,
18(1):6070–6120, 2017.

[11] Benjamin Eysenbach, Shixiang Gu, Julian Ibarz, and Sergey Levine. Leave no trace: Learning
to reset for safe and autonomous reinforcement learning. arXiv preprint arXiv:1711.06782,
2017.

[12] Taylor A Kessler Faulkner, Elaine Schaertl Short, and Andrea L Thomaz. Interactive reinforce-
ment learning with inaccurate feedback. In 2020 IEEE International Conference on Robotics

and Automation (ICRA), pages 7498–7504. IEEE, 2020.
[13] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel. Deep

spatial autoencoders for visuomotor learning. In 2016 IEEE International Conference on

Robotics and Automation (ICRA), pages 512–519. IEEE, 2016.

10

[14] Ali Ghadirzadeh, Atsuto Maki, Danica Kragic, and Mårten Björkman. Deep predictive policy
training using reinforcement learning. In 2017 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 2351–2358. IEEE, 2017.
[15] Nathan Grinsztajn, Johan Ferret, Olivier Pietquin, Matthieu Geist, et al. There is no turning

back: A self-supervised approach for reversibility-aware reinforcement learning. Advances in

Neural Information Processing Systems, 34, 2021.
[16] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning

for robotic manipulation with asynchronous off-policy updates. In 2017 IEEE international

conference on robotics and automation (ICRA), pages 3389–3396. IEEE, 2017.
[17] Abhishek Gupta, Justin Yu, Tony Zhao, Vikash Kumar, Aaron Rovinsky, Kelvin Xu, Thomas

Devlin, and Sergey Levine. Reset-free reinforcement learning via multi-task learning: Learning
dexterous manipulation behaviors without human intervention. ArXiv, abs/2104.11203, 2021.

[18] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International

Conference on Machine Learning, pages 1861–1870. PMLR, 2018.
[19] Weiqiao Han, Sergey Levine, and Pieter Abbeel. Learning compound multi-step controllers

under unknown dynamics. In 2015 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 6435–6442. IEEE, 2015.
[20] Ryan Hoque, Ashwin Balakrishna, Ellen Novoseller, Albert Wilcox, Daniel S Brown, and

Ken Goldberg. Thriftydagger: Budget-aware novelty and risk gating for interactive imitation
learning. arXiv preprint arXiv:2109.08273, 2021.

[21] Ryan Hoque, Ashwin Balakrishna, Carl Putterman, Michael Luo, Daniel S Brown, Daniel
Seita, Brijen Thananjeyan, Ellen Novoseller, and Ken Goldberg. Lazydagger: Reducing context
switching in interactive imitation learning. In 2021 IEEE 17th International Conference on

Automation Science and Engineering (CASE), pages 502–509. IEEE, 2021.
[22] W Bradley Knox and Peter Stone. Interactively shaping agents via human reinforcement: The

tamer framework. In Proceedings of the fifth international conference on Knowledge capture,
pages 9–16, 2009.

[23] Victoria Krakovna, Laurent Orseau, Ramana Kumar, Miljan Martic, and Shane Legg. Penalizing
side effects using stepwise relative reachability. arXiv preprint arXiv:1806.01186, 2018.

[24] Maarja Kruusmaa, Yuri Gavshin, and Adam Eppendahl. Don’t do things you can’t undo:
reversibility models for generating safe behaviours. In Proceedings 2007 IEEE International

Conference on Robotics and Automation, pages 1134–1139. IEEE, 2007.
[25] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.
[26] Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive rein-

forcement learning via relabeling experience and unsupervised pre-training. arXiv preprint

arXiv:2106.05091, 2021.
[27] James MacGlashan, Mark K Ho, Robert Loftin, Bei Peng, Guan Wang, David L Roberts,

Matthew E Taylor, and Michael L Littman. Interactive learning from policy-dependent human
feedback. In International Conference on Machine Learning, pages 2285–2294. PMLR, 2017.

[28] Kunal Menda, Katherine Driggs-Campbell, and Mykel J Kochenderfer. Ensembledagger: A
bayesian approach to safe imitation learning. In 2019 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 5041–5048. IEEE, 2019.
[29] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G

Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[30] Teodor Mihai Moldovan and Pieter Abbeel. Safe exploration in markov decision processes.
arXiv preprint arXiv:1205.4810, 2012.

[31] Nasim Rahaman, Steffen Wolf, Anirudh Goyal, Roman Remme, and Yoshua Bengio. Learning
the arrow of time for problems in reinforcement learning. 2020.

[32] Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and Sanjit A Seshia. Active preference-based

learning of reward functions. 2017.

11

[33] Nikolay Savinov, Anton Raichuk, Raphaël Marinier, Damien Vincent, Marc Pollefeys, Tim-
othy Lillicrap, and Sylvain Gelly. Episodic curiosity through reachability. arXiv preprint

arXiv:1810.02274, 2018.
[34] Archit Sharma, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. Au-

tonomous reinforcement learning via subgoal curricula. Advances in Neural Information

Processing Systems, 34, 2021.
[35] Archit Sharma, Kelvin Xu, Nikhil Sardana, Abhishek Gupta, Karol Hausman, Sergey Levine,

and Chelsea Finn. Autonomous reinforcement learning: Formalism and benchmarking. arXiv

preprint arXiv:2112.09605, 2021.
[36] Archit Sharma, Rehaan Ahmad, and Chelsea Finn. A state-distribution matching approach to

non-episodic reinforcement learning. arXiv preprint arXiv:2205.05212, 2022.
[37] Krishnan Srinivasan, Benjamin Eysenbach, Sehoon Ha, Jie Tan, and Chelsea Finn. Learning to

be safe: Deep rl with a safety critic. arXiv preprint arXiv:2010.14603, 2020.
[38] Hiroaki Sugiyama, Toyomi Meguro, and Yasuhiro Minami. Preference-learning based inverse

reinforcement learning for dialog control. In Thirteenth Annual Conference of the International

Speech Communication Association, 2012.
[39] Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization.

arXiv preprint arXiv:1805.11074, 2018.
[40] Brijen Thananjeyan, Ashwin Balakrishna, Suraj Nair, Michael Luo, Krishnan Srinivasan, Minho

Hwang, Joseph E Gonzalez, Julian Ibarz, Chelsea Finn, and Ken Goldberg. Recovery rl: Safe
reinforcement learning with learned recovery zones. arXiv preprint arXiv:2010.15920, 2020.

[41] Garrett Thomas, Yuping Luo, and Tengyu Ma. Safe reinforcement learning by imagining the
near future. Advances in Neural Information Processing Systems, 34, 2021.

[42] Matteo Turchetta, Andrey Kolobov, Shital Shah, Andreas Krause, and Alekh Agarwal. Safe
reinforcement learning via curriculum induction. Advances in Neural Information Processing

Systems, 33:12151–12162, 2020.
[43] Nolan C Wagener, Byron Boots, and Ching-An Cheng. Safe reinforcement learning using

advantage-based intervention. In International Conference on Machine Learning, pages 10630–
10640. PMLR, 2021.

[44] Xiaofei Wang, Kimin Lee, Kourosh Hakhamaneshi, Pieter Abbeel, and Michael Laskin. Skill
preferences: Learning to extract and execute robotic skills from human feedback. In Conference

on Robot Learning, pages 1259–1268. PMLR, 2022.
[45] Zhaodong Wang and Matthew E Taylor. Interactive reinforcement learning with dynamic reuse

of prior knowledge from human/agent’s demonstration. arXiv preprint arXiv:1805.04493, 2018.
[46] Christian Wirth and Johannes Fürnkranz. Preference-based reinforcement learning: A prelim-

inary survey. In Proceedings of the ECML/PKDD-13 Workshop on Reinforcement Learning

from Generalized Feedback: Beyond Numeric Rewards. Citeseer, 2013.
[47] Kelvin Xu, Siddharth Verma, Chelsea Finn, and Sergey Levine. Continual learning of control

primitives: Skill discovery via reset-games. ArXiv, abs/2011.05286, 2020.
[48] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous

control: Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645,
2021.

[49] Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regu-
larizing deep reinforcement learning from pixels. In International Conference on Learning

Representations, 2021. URL https://openreview.net/forum?id=GY6-6sTvGaf.
[50] Moritz A Zanger, Karam Daaboul, and J Marius Zöllner. Safe continuous control with con-

strained model-based policy optimization. In 2021 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 3512–3519. IEEE, 2021.
[51] Jiakai Zhang and Kyunghyun Cho. Query-efficient imitation learning for end-to-end autonomous

driving. arXiv preprint arXiv:1605.06450, 2016.
[52] Henry Zhu, Abhishek Gupta, Aravind Rajeswaran, Sergey Levine, and Vikash Kumar. Dexterous

manipulation with deep reinforcement learning: Efficient, general, and low-cost. In 2019

International Conference on Robotics and Automation (ICRA), pages 3651–3657. IEEE, 2019.

12

https://openreview.net/forum?id=GY6-6sTvGaf

[53] Henry Zhu, Justin Yu, Abhishek Gupta, Dhruv Shah, Kristian Hartikainen, Avi Singh, Vikash
Kumar, and Sergey Levine. The ingredients of real-world robotic reinforcement learning. arXiv

preprint arXiv:2004.12570, 2020.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 7.
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix A.1.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Related Work
	Reinforcement Learning in Irreversible Environments
	Preliminaries
	Proactive Agent Interventions for Autonomous Reinforcement Learning
	Penalizing Visitation of Irreversible States
	Estimating Reversibility
	Proactive Interventions
	Putting it Together

	Experiments
	Experimental Setup
	Main Results
	Ablations and Sensitivity Analysis

	Discussion
	Appendix
	Proofs
	Penalizing Visitation of Irreversible States
	On Empirical Bellman Backup Operator

	Detailed Pseudocode
	Environment Details
	Implementation Details
	Forward-Backward Algorithms
	Codebase

	Discussion on Comparisons
	Additional Experimental Results
	Additional Plots
	Ablations and Sensitivity Analysis

