Appendix

This appendix is structured as follows:

* In Appendix A, we provide details on the synthetic lab testing example, including how we
generate the loss landscape in Figure | (right).

* In Appendix B, we provide a “user’s guide” to defining and interpreting parametric shifts,
including worked examples for many common conditional distributions, as well as guidance
on how to define and interpret the shift functions s(Z;§).

* In Appendix C, we provide additional details on the worst-case optimization problem,
as well as comparisons of the reweighting-based approach to the Taylor approximation
approach. We also demonstrate that the quadratic approximation is exact, for particularly
simple structural causal models.

* In Appendix D, we compare our approach to that of worst-case conditional subpopulation
shifts, in the context of a simpler laboratory testing example where we can explicitly compute
the worst-case conditional subpopulations. Here, we demonstrate that our approach can
capture more realistic intuition regarding which shifts are plausible in practice.

* In Appendix E, we give additional experimental details, as well as illustrative samples from
the generative model, for the CelebA experiment described in Section 4.

* In Appendix F, we give an extended discussion of related work.

* In Appendix G, we give proofs for all the results in the main paper.

A Details of Figure 1

In Figure 1 (right), we consider the following, artificial, generative model, which resembles the setup
in Section 4.1, but with the addition of age as a continuous variable.

Age ~ N(0,0.5%)
P(Disease = 1|Age) = sigmoid(0.5 - Age — 1)
P(Order = 1|Disease, Age) = sigmoid(2 - Disease + 0.5 - Age — 1)
Test Result|Order = 1, Disease ~ N (—0.5 + Disease, 1)

where if Order = 0, the test result is a placeholder value of zero. In Figure 1 (right), we consider
a simple predictive model: If lab tests are not available (Order = 0), this model predicts disease
based on an unregularized logistic regression model, which uses age to predict disease. If a lab test
is available, then it uses both age and the lab test for prediction. This model is trained on 100,000
samples from the training distribution. To construct the loss landscape shown in Figure 1 (right), we
first observe that

P(O = 1|Disease, Age) = sigmoid(n(Disease, Age)),
where
n(Disease, Age) = 2 - Disease + 0.5 - Age — 1.

We construct shifts using the shift function s(Disease, Age; §) = dg - (1 — Disease) + ¢; - Disease,

and for a grid of values for (6, d1) € [—5, 5] we consider perturbed distributions with a different
conditional distribution of testing,

Ps(O = 1|Disease, Age) = sigmoid (77(Disease7 Age) + do - (1 — Disease) + &3 ~Disease),

but where all other parts of the generative model are fixed. For each value of (dp, 1) € [—5, 5]2, we
draw 10,000 samples from the corresponding distribution, and compute the negative log-likelihood of
the original predictive model under this new distribution. The resulting surface is plotted in Figure 1
(right).

16



Table 2: Examples of conditional exponential family distributions.

Distribution Parameter space Sufficient statistic Inverse parameter map

Binary(p) n(Z)eR T(W)=W p(W = 1|Z) = sigmoid(n(Z))
Categorical(py, ...,px) n(Z) € RF [TW)]; =1{W =i} P(W =i|Z) = [softmax(n(Z))];
Poisson(\) n(Z) eR TW)=W A =exp(n(2))

Gaussian(, o) W21 ERn(Z) <0 TW)=(W,W?)  u(Z) = =378, 0*(7) = — 50
Gamma(c, §) n(Z)1 > -1,m(Z)2 <0 TW)=_logW, W) «(Z)=n(Z)1+1,8(Z)=-n(Z),

B A user’s guide to defining parametric shifts

In this section, we discuss practical considerations in designing parametric shift functions for different
distributions.

* In Appendix B.1, we give examples of conditional exponential families, illustrative shift
functions, and how to interpret them.

* In Appendix B.2, we formalize the idea that one can choose shift functions which depend
on additional variables, other than the causal parents of a variable W.

* In Appendix B.3 we give guidance on how to define shift functions when the parameters
n(Z) are constrained to lie in a particular domain, which is relevant for considering shifts
such as changing the variance of a conditional Gaussian.

B.1 Conditional exponential family models and interpretations of shifts

In this section, we give examples of exponential families and their sufficient statistics, and discuss
design considerations in specifying the shift function s(Z; §). Here, we restrict attention to shifts
in a single variable, for ease of notation. In Table 2 we give examples of conditional exponential
families, along with their typical parameterizations. In the examples below, we review how shift
functions s(Z; ) impact these parameters, and how they can also be interpreted on the scale of more
commonly considered parameters (e.g., conditional means and variances).

Example B.1 (Log-odds shift in a binary variable). Consider the distribution of a binary variable W
conditioned on variables Z. Without loss of generality, we can write that

PW =1]2) = a(n(2))

where o is the sigmoid function, and 7(Z) is an arbitrary measurable function of Z, taking on values
in the extended real line 1(Z) € R U {—o00, +00}. This can be written in canonical form as

P(W|Z) = exp {n(Z) - W —log(1 + exp"(Z))}

where 1(Z) is the canonical parameter (the log-odds ratio), T'(W) = W is the sufficient statistic, and
h(#) = log(1 + exp”(#)) is the normalizing constant. We can consider shifts 15(Z) = n(Z) + 0,
yielding the new conditional distribution

Ps(W =1[2) = o(n(2) +9),
which is well-defined for any ¢ € R.

Here, we note that these shifts occur on the “natural” parameter scale 7(Z) (e.g., the log-odds), which
at first glance may seem difficult to interpret: Why should we care about changes on the log-odds
scale, instead of on the original probability scale? In addition to mathematical convenience, we argue
that in some settings, working with natural parameters is advantageous for retaining a common scale
across across multiple variables.

For instance, consider shifts in the two independent variables W7 and W5, where V; ~ Bernoulli(p;),
with p; = 10~* and p, = 0.6. Suppose we wished to consider an additive shift on the probability
scale, e.g., pj = p1 + 0.1, p5 = py + 0.1. Setting aside the inconvenience that we need to ensure
P}, Py € [0, 1], we argue that these shifts are not truly of a comparable scale. In particular, this shift
in p; may seem implausible in magnitude, while the same shift in p, seems more reasonable. On the
other hand, an additive shift in the log-odds captures some aspect of this idea.
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Of course, there is some flexibility to incorporate prior expectations of shifts in absolute probabilities.
For instance, in binary variable with no causal parents, we can always construct a one-to-one map
of ¢ to a change in the marginal probability. For conditional shifts, we can similarly construct a
one-to-one map between the value of ¢ in a shift s(Z; §) = 0 and the resulting marginal probability
of W;, as formalized below.

Proposition B.1. Consider a binary random variable W with conditional distribution
Ps(W =1|2) = o(n(Z) +9)
for an arbitrary measurable function 1(Z) whose range is the extended real numbers 1(Z) €
RU{+00, —o0}. Let py = P(n(Z) = +0), p— = P(n(Z) = —0), and assume that p; +p_ < 1.
Then, the marginal probability
pPs = PJ(W = 1)

is a strictly monotonically increasing function of § € R whose range is (p4,1 — p_),

Proposition B.1 states that, for any achievable marginal probability ps = Ps(WW = 1), there exists a
unique value of ¢ that achieves this probability. Because this relationship is strictly monotonic, we
can hope to efficiently find such a value by e.g., binary search. In the laboratory testing example
of Example 1, this would allow us to specify a plausible strength for the conditional shift § in terms
of an impact on the overall testing rate, e.g., modelling a scenario where the testing rate decreases
from 20% to 15%.

Similar to the binary case, we can (if desired) directly parameterize shifts in terms of the conditional
mean of a Gaussian distribution, as illustrated in Example B.2, which operates on the scale of (Z2)
alone.

Example B.2 (Mean shift in a conditional Gaussian). Consider the distribution of a multi-variate
Gaussian variable W conditioned on a binary variable Z, where we write

p(w]z) L N (w; p(2), 2(2))

where N (w; u(z), (7)) denotes the Gaussian density with mean p(z) and covariance X(z).
This can be written as an exponential family model with natural parameters 7(Z) =

[2(2) ' u(2), f%E(Z)_l] and sufficient statistic T'(W) = [W, WW T]. Here, a shift in the mean
can be parameterized by s(Z;8) = [£(Z) "6, 0], such that

@
ps(w]2) = N(w; u(2) + 6,5(2)).
However, shifts of the same magnitude in the conditional mean may not be comparable. Suppose that

PW|Z=0)2N(0,1) and PW|Z=1)<AN(0,0.001),
such that § = 1 in Example B.2 corresponds to

P (W|Z=0)2N(1,1) and Py (W]Z =1) L N(1,0.001).

While it may seem plausible that the mean of W|Z = 0 can increase by 1, it may seem unrealistic
for W|Z = 1. Here, it may be more reasonable to consider a different parameterization of s(Z;d),
where the impact of the shift in a direction is proportional to the variance in that direction; we discuss
this in the next example.

Example B.3 (Variance-scaled mean shift in a conditional Gaussian). Consider the distribution of a
multi-variate Gaussian variable W conditioned on variables Z, where we write

p(w]z) L N (w; p(2), 2(2))

where N (w; pu(z),%(2)) denotes the Gaussian density with mean p(z) and covariance X(z).
This can be written as an exponential family model with natural parameters 7(Z) =

[2(2) ' u(2), —%E(Z)_l} and sufficient statistic T'(W) = [W, WW T]. Here, a shift in the mean
can be parameterized by s(Z; &) = [4, 0], such that

ps(w]2) LN (w; p(2) + 6TS(2), £(2)).
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Figure 6: Illustrative example of an intervention s(X7,Y’;d), and modified causal graph, which
creates a dependence between X7 and X5 that bypasses Y.

In Example B.3, the parameter § has a different interpretation, as a variance-scaled mean-shift. If W
is one-dimensional, we can see that this becomes

ps(w]2) @ N (w; p(2) + 60%(2),5%(2)).

As we demonstrate in Appendix C.2, this particular example of a parameterization has other benefits:
For instance, for estimation of shift gradients and Hessians at 6 = 0 can be done without knowledge
of X(Z).

B.2 Adding causal edges to the graph

In Section 2, we consider the case where the shift function s(Z; §) alters a conditional P(W|Z) by
a shift function s(Z; ). We now discuss shift functions that use a larger set Z’. In particular, we
consider the setting where Z represents the parents in a graph G (that is, Z := PAg (1)), and consider
shift functions that correspond to adding additional parents in that causal graph. Our definitions and
results immediately extend to measuring the impact of shifts that add edges to the graph, in the form
of shift functions that depend on non-descendants of 1//.

Building intuition with a simple example: To build intuition, consider the causal graph given
in Figure 6. We consider a shift in X5, with a shift function which depends not only on the causal
parent Y, but also on X;. Suppose that the distribution P(X»|Y") is a conditional exponential family,
given by

P(Xs|Y) = g(Xa) exp(n(Y) T(X2) = h(n(Y)).
Using that X 1 X;]Y, we have P(X»|Y) = P(X3|Y, X2), and the joint probability factorizes as

P(X1, X2,Y) = P(Xo|Y)P(Y[X1)P(X1) = P(Xo|Y, X1)P(Y[X1)P(Xy).

This enables us to consider Z = (Y, X ) as the conditioning set in the context of Assumption 1. This
is useful, because it allows us to consider shift functions that depend on Z, which includes X in
addition to Y. The §-perturbation of this conditional distribution under the shift function s(Y, X1;d)
is given by

Ps(Xa]Y, X1) = g(Xz) exp <{n(Y) (Y, X080} TT(X) — h(n(Y) + (Y, X1 6>)>,

and we can observe that under both graphs, the distribution factorizes in the same fashion, where
Ps(X1, X2,Y) =Ps(Xo|Y, X1)P(Y|X1)P(X1),

keeping the same convention that s(Y, X7;0 = 0) = 0, such that Py = P. This is one example of
how our results can be applied with shift functions that effectively add edges to the causal graph. Of
course, not all edges are permitted, so we give a more general treatment below.

General guidelines for adding edges: Allowing for the use of non-causal parents in the shift
functions is straightforward, and can be done safely as follows, without violating Assumption 1:
Given knowledge of the directed acyclic graph G which generates the observed distribution P, we can
add edges to the graph, as long as they do not create cycles.

Formally, let G = (V, E) denote the causal DAG which generates the distribution P, where V
denotes variables and E denotes the set of edges, where we denote a directed edge by e = (V;,V}),
going from V; to V}. Let G’ = (V’, E’) denote another DAG (of our creation) with the constraint
that we can only add edges, and that the graph must remain acyclic, such that £’ O E, and V' = V.
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For any variable W; € 'V, this implies that PAg, (W;) D PAg(W;). Moreover, any new causal parent
V; of W; in G’ must have been a non-descendant of W in the original graph, as otherwise the graph G’
would have a cycle from W; — V; — W,. For ease of notation, let N (W;) := PAg (W;) \ PAg(W;)
denote the set of new causal parents of W; in G'. For any variable W; such that N(W;) # &, we can
write that

W; L gN (W) PAG(W;) (10)
by the rules of d-separation [Pearl, 2009]. As in Assumption 1, we use W = {Wy,..., W,,} to
denote the set of variables to be intervened upon, and accordingly will assume that in the causal graph
G’, we have not added new parents to any other variables, i.e., N(V;) = @ forany V; C W.

By Equation (10), we can write that the distribution P factorizes as

P<V>=< 11 P(WAPAQI(WZ-))) I PvilPAg(V:))

W,eW V,EV\W

because P(W;| PAg/ (W;)) = P(W;| PAg(W};), and if P(W;| PAg(W;)) is a conditional exponential
family satisfying Definition 2, then P(W;| PAg(W;)) also satisfies this definition, where the function
n(PAg(W;), N(W;)) is constant with respect to fluctuation in the variables N (W;). Thus, taking
Z; = PAg/(W;) as the conditioning set satisfies Assumption 1, and the rest of our results hold,
where the corresponding d-perturbations in Definition 4 are given by

Ps(V)=( [[ Ps,(WilPAg (W) [] P(VilPAg(V:))
W, eW VieVAW

with shift function s;(PAg/ (W;); d;) that are parametric functions of causal parents in the modified
graph G'.

B.3 Domain-preserving parameterizations of shift

For both of the examples considered above, we did not need to restrict the magnitude of the additive
change to 1(Z). However, in some cases, such as changing the variance of a conditional Gaussian,
we have the restriction that 75(Z) = n(Z) + s(Z;0) must lie in the proper domain, e.g., we
cannot consider a shift which causes the conditional variance to become negative. For a conditional
Gaussian, we can consider unrestricted shifts in 7(Z)1, which controls the mean, because the mean
has unrestricted domain. On the other hand, 7(Z)2 = (—202(Z))~! controls the variance, and must
remain negative, such that n(Z)2 + s(Z; )2 < 0 for the shifts we consider.

This can be resolved in one of two ways. First, one can consider parameterizations of s(Z; §) which
are guaranteed to preserve the correct domain with an additional constraint on the values of J, such
as the multiplicative shift below, which is sign-preserving for § > —1

15(Z)2 = n(Z)2 + 0n(Z)2 = (1 +0)n(Z)s.
N——
s(Z;9)
To handle the general case, at the expense of some additional complexity in the gradients of s(Z; ),

one can define the shifts as follows for parameters 7)(Z) that have a lower bound L, with an equivalent
formulation for shifts where the parameters have an upper bound, for any desired shift function
s'"(Z;9)

N(Z) + §'(Z;0) - sigmoid(y - [(n(Z) + 5'(Z;0)) — (L + €)])

s(Z;6)

where sigmoid(~y - (x — (L + €))) is a smooth relaxation of the indicator function 1 { > L + €}, for
a sufficiently large temperature parameter v > 0 and a small € > 0. This transformation preserves
the twice-differentiable nature of s(Z; ¢). In practice, however, we typically evaluate the gradient of
s(Z; ) at & = 0, where 1(Z) does not lie at the boundary of allowable parameter space, such that we
can consider simpler parameterizations like

n(Z)+s'(Z;8) - 1{n(Z) + s'(Z;8) > L + ¢}

s(Z;6)

as long as e is taken sufficient small such that 7(Z) > L + ¢ almost everywhere in PP.
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C Considerations and additional results for evaluation of the worst-case loss

In this section, we present additional results on the Taylor approximation and compare how the Taylor
approximation compares to the reweighting approach in evaluation and worst-case optimization of
the shifted loss.

* In Appendix C.1 we give a full treatment of how shift gradients and Hessians are estimated
from samples, following Theorem 1.

* In Appendix C.2, we demonstrate in some cases, one does not need to estimate all of (2),
but only the parts of 7(Z) that is shifting.

* In Appendix C.3, we demonstrate that the second-order Taylor expansion is exact in a
linear-Gaussian setting, which gives a conceptual connection between this work and that
of Anchor Regression [Rothenhiusler et al., 2021], which considered a restricted type of
additive shift intervention in a globally linear structural causal model.

* In Appendix C.4, we work out the expression for the shift gradient and Hessian when we
condition on binary variables.

* In Appendices C.5 to C.7, we provide experiments that compare the variance of the im-
portance sampling estimate Ej s (see Equation (6)) to the variance of the Taylor estimate
EA'(;,Taylor (see Equation (7)) of the loss in a shifted distribution.

* In Appendix C.8, we consider the bound in Theorem 2 in a covariate shift setting, and give
an explicit expression for this under additional assumptions.

C.1 Algorithm for Estimation of Shift Gradients and Hessians

Here, we recall the form of the shift gradients and Hessians in Theorem 1, and demonstrate how to
compute them in practice using a set of auxiliary regression functions fit to the validation data.

Theorem 1 (Shift gradients and Hessians as covariances). Assume that Ps, P satisfy Definition 4, with
intervened variables W = {Wy, ..., W,,} and shift functions s;(Z;; 6;), where 6 = (01,...,0m)-
Then the shift gradient is given by SG* = (SG1,...,SGL ) € R% where

m
Zl):l )

and the shift Hessian is a matrix of size (ds X ds), where the (i, j)th block of size ds, % ds; equals

SG} =E | D/, cov (z, T;(W5)

E D] cov (£ en2,65,2,1%:) Dia| ~E [0 Dlyerz] i=j

T T C
COV(Z’ Di,IGTi‘ZiETi‘Zij-,l) ? 7&]1

{SG*}.; = {

where D, j, := V’gisi(Zi; :)|s=0, is the gradient of the shift function for k = 1, and the Hessian for
k = 2. Here, T;(W};) is the sufficient statistic of P(W;|Z;) and er,) z, := T;(W;) — E[T'(W5)| Z;].

Notation and Dimensions: Let W = {WW;, ..., W,,} denote the set of m intervened variables, and
let Z = {Zy,...,Zn} denote the conditioning sets. Note that for a single W; € R, we will
generally have it that Z; € R%z where dyy is the dimension of W (typically 1) and dz is the number
of conditioning variables, and when considering n samples, W; will be a matrix in R™*dw and Z;
will be a matrix R"* %2 The sufficient statistic T;(W;) maps from R to R, where dr is the
dimension of the sufficient statistic. For many common distributions, T;(W;) = W;, the identity
function. For others, like the conditional multi-variate Gaussian, T;(W;) = [W;, W;W,"], where
W € R¥W and W;W,T € R4w>dw _[n these cases, we squeeze T;(W;) to be a single vector, so in
this case dp = dw + dy.

Auxiliary models: To estimate the shift gradients and Hessians, we first learn auxiliary predictive
models, which are required for computing the relevant conditional covariances. For simplicity, we do
not consider sample-splitting in the algorithm given below, but one could employ sample-splitting to
learn these predictive models on an independent validation sample.

* For each W;, we learn [iyy, (Z;) as a regression model for E[T;(W;)|Z;]. Because T;(W;)
may have multiple dimensions, this is a function from R?# to R?7 .
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* For each conditioning set Z;, we learn fi(Z;) as a regression model for E[¢|Z;]. Because
the loss is one-dimensional, this is a function from R%Z to R.

We then construct the following, which are defined for each data point in the sample.

* For each W;, we construct éy, |z, = T;(W;) — fiw,(Z;), which is a vector of length dr,.
* For each conditioning set Z;, for the loss ¢, we construct Q‘Zi =0 — [1y(Z;), which is a
real number.

* For each conditioning set Z;, we compute D; 1(Z;) as Vs,5;(Z;; ;) |<S=0’ which is a matrix
of size dr X ds,, and a function of Z; that we can evaluate on each sample.

* For each conditioning set Z;, we compute D; 2(Z;) as V%i $i(Z;04) |5:0, which is a tensor
of size dr X ds, % ds,, and a function of Z; that we can evaluate on each sample.

Estimating shift gradients The shift gradient and Hessian in Theorem 1 are expressed as conditional
covariance. Since E[cov(A, B|C)] = Elea|cep|c] where eq)c := A — E[A|C] and eg|c := B —
E[B|C], we can use the estimated conditional means above, to compute the shift gradient and Hessian.

Suppose that we observe N samples, n € {1,..., N}. For each index i € [m] := {1,...,m},
N
oo L ()T o(m)
SG; = NZEM D (2,") &1y,
n=1

which yields a vector of length d;,, and these are concatenated together for each ¢ to yield the entire
shift gradient. The shift Hessian is constructed block-wise, for each index i, j € [m] x [m] as follows:
If i = j, then we construct the corresponding ds, x ds, block as

2 1 Q= .n) T\ (M\T
SGii = NZQ\ZJ l(Di’l(Zz‘ ) gTilzi> —Dia(Z;7) éTilZfl
n=1

where v®? denotes the outer product so that v®? = vv', and the transpose of D; 5 refers to a
transpose which has dimension ds, X ds, x dr. On the other hand, if ¢ # j we have

N
SGL, = 200~ - (D2, ) (D@,

where / is the average value of ¢ in the validation sample.

C.2 Shifts where estimating all of 7(7) is not necessary for estimating shift gradient and
Hessian

The following example shows that when a shift occurs in an exponential conditional distribution
with parameter 1)(Z), we do not necessarily need to model all of 7(Z) in order to compute the
shift gradient and Hessian. In particular, we only need to model the parts of 7(Z) that shift. This
is different from estimating the shifted loss using importance sampling, where 7(Z) needs to be
evaluated to evaluate Equation (5).

Example C.1. Consider the distribution of W conditioned on variables Z that is a multi-variate
Gaussian variable,
W|Z = N(uZ),5(2)),

for unknown functions p, 3. The sufficient statistic for the multivariate Gaussian distribution is
T(W) = (W,WW ) and the canonical parameter is n(Z) = (5(Z) ' u(Z), —35(Z)*).% The
first component of 7(Z) is a signal-to-variance ratio and the second is the inverse covariance matrix.
For a shift (4, 0) that only affects the first component, we show that we do not need to model ¥(Z), but
only 1(Z). This is beneficial, since estimating a conditional covariance from data can be challenging,
especially if W is high-dimensional.

50r, more formally, T(W) = (W,vec(WW ")) and 7(Z) = (0(2) ' u(Z), -4 vec(u(Z))), where
vec denotes the vectorization operation. For a detailed walk through of the exponential family parameter-
ization of multivariate Gaussian distributions, see https://maurocamaraescudero.netlify.app/post/
multivariate-normal-as-an-exponential-family-distribution/.
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Figure 7: (Left) Graphical model assumed by Equation (11). The undirected edges represent either
any directed configuration of directed edges or the dependence structures arising due to an acyclic
SCM [Bongers et al., 2021]. (Middle) Plotting Es[(Y — T X)?] as a function of § € R? for a fixed
predictor 7. (Right) Plotting E5[(Y —~ " X)?] as a function of § € R?, with the loss indicated by the
color. The loss only varies with changes in d2 (corresponding in Lemma C.1 to v, o (0, 1, 0)h).

For § € R let s(Z;0) = (4,0) ", and suppose that we wish to estimate E;[¢] using Equation (7).
The derivative of s is given by

10 0] 70 0 0

01 -~ 0f|0 0 - 0
Dy =Vis(z;o)=11. . . ||. . . ||

00 - 100 - 0

where the first block is a dy x dy diagonal matrix, and the second is a dyy X d%v matrix of zeros.
The second derivative of s is Dy = 0. Hence, using Theorem 1, the shift gradient is

SG' = E[D; cov(¢, (W,WW 1)|Z)] = E[cov (£, W|Z)],
and

SG?=E [Dl cov(¥, (W —E[W|Z],WWT — E[WWT|Z]®2) |Z)D1T}

_E [cov(z, (W — IE[W|Z])®2|Z)] .
Conditional covariances can be computed by only residualizing one of the variables:
E[cov(A, B|C)] = E[A(B — E[B|C1])]. Thus, if we only residualize ¢, we get
SG' =E[(¢ —E[(|Z))W] and  SG? =E[({ —E[{Z]) - (W — u(Z))®?].

Therefore, given data from IP, we can estimate the shift gradients by plugging in estimators i(Z) of

E[W|Z] and L(Z) of E[¢| Z]. Tt follows that we do not need to model 3(Z) in order to estimate the
shift gradients and Hessian at § = 0.

The story is different for a reweighting based estimator that seeks to estimate Es[¢] using importance
sampling (see Section 3.1), where the weights are given by

wys(Z) = (W = u(2))"6 — 36" 2(2)3,

and hence estimating w,, 5(Z) requires estimation of (7).

C.3 The quadratic approximation is exact, for mean shifts in linear models

We now consider data generated by a linear model, and show that the shifted loss is a quadratic
function of ¢, meaning that the Taylor approximation Es ayi0r is globally exact. Suppose that data is
sampled from a linear structural causal model, and a shift in mean occurs in an variable A that does
not have any causal parents. In particular, let A have a normal distribution with mean p and finite

variance and let
X X
(Y) B<Y>+MA+6. (11)
H H
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This is the model assumed by Rothenhiusler et al. [2021], and the corresponding graphical model is
shown in Figure 7 (left). We consider the linear predictor f.(X) = + T X and the mean squared loss
((f4(X),Y) = (Y — f(X))?. Due to the linearity of the model, the loss under a mean shift in 4 is
quadratic [Rothenhdusler et al., 2021].

Lemma C.1. Suppose A ~ N (u, ) and that (X,Y, H) are generated according to Equation (11).
For vy € RYX define ( := (Y — ~v" X)2. Then there exist v, u, , € R such that for all shifts
§ € Rda:

Es[f] = E[0] + 0 "y + 36 va0] 6,

where Es corresponds to taking the mean in the distribution where A ~ N (u + 0,%). Further
Uy =0 u=0.

Proposition C.1 elicits two properties of this linear model: First the loss is described by a quadratic
function globally, i.e. also for very large 6. In Figure 7 (middle), we plot Es[¢] as a function of §.
We observe a ‘valley’ in the loss, in which the expected loss does not at all change with §. This
is a consequence of Lemma C.1, and particularly that if ¢ is orthogonal to both u,, , and v, then
Es[(] = E[¢]. In higher dimensions d4 > 2, since vyv] has rank 1, the ‘valley’ persists in that the
loss does not grow at all in d 4 — 2 dimensions (or d4 — 1 if A has mean p = 0), see Figure 7 (right).
We now show that coefficients in the quadratic form in Lemma C.1 is equal to the shift gradient and
Hessian. We use that the Gaussian distribution with known variance ¥ can be parameterized as an
exponential family with sufficient statistic 7'(A) = X! A and parameter n = y.”

Proposition C.1. Suppose A ~ N(u,X) and that (X,Y, H) are generated according to Equa-
tion (11). Then the shift gradient and Hessian are given by

SG!' =cov((,27'A)  and  SGP=cov({,SHA-p)(A—-p) ')
and the loss under a mean shift of § in A is given by
Es[f] =E[f] + 5" SG' +167 SG? 9,

where { := (Y — ~v" X)? and Es corresponds to taking the mean in the distribution where A ~
N(p+46,%).

This elicits a connection to anchor regression [Rothenhéusler et al.,, 2021]: Under the generative
model Equation (11) and using the quadratic loss £ = (Y — " X)? for v € R, they show that
for any A > 0, the worst-case loss E;[¢] over a set A = {§]|d6 " < MNE[AAT]} equals the objective
lar = E[¢] + AE[E[Y — ~v " X |A]?], which is computable from the observed distribution.

Because of Proposition C.1, ar also equals the solution of the optimization problem Equation (9)
over the constraint set A. Therefore minimizing the anchor regression objective over -y or minimizing
Equation (9) over v will lead to the same estimator. Since our proposed Taylor approximation in
Equation (9) does not assume linearity, one could use the approximation to extend the rationale of
anchor regression of minimizing the worst-case loss to non-linear models. This however comes at
the cost of not optimizing the exact worst-case loss, but rather an approximation, whose quality is
given by Theorem 2. Further, this would involving a minimax problem, minimizing Equation (9) over
models f, and there are questions, such as convexity and tractability, which would need to be solved.

C.4 Estimating the shift gradient and Hessian for conditional on binary variables

To build intuition for the shift gradient and Hessian, we here give an example where we condition on
variables Z that take a finite number of values and write out explicit expressions for the shift gradient
and Hessian. However, we emphasize, that in most practical scenarios, one will not have to work out
the shift gradient and Hessian explicitly, but can simply estimate them as covariances from the data
(Theorem 1).

Example C.2 (Shift Function of Discrete Parents). Consider a conditional distribution W|Z where
Z takes values in a finite set Z. This is for instance the case if Z = (Z1, ..., Z4) where each Z;
is binary, so |Z| = 2. Instead of a shift 7(Z) + J, where the parameter increases by the same

"It can also be parameterized as T'(A) = »/24, n= »i/2 1, which would yield the same result.
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amount for all values of Z, we may consider a shift n(Z) + s(Z; ) where s(Z;0) = > .5 0.1z,
meaning that the shift is different in each category Z. Since 7(Z) only takes a finite number of
variables, this shift corresponds to an arbitrary change in 7(Z).

5(Z;6) is a differentiable function in §, and if d7 = 1 the shift gradient is a (1 x 2%)-row vector,
Vss(Z;6) = (1z=:):cz, and the shift Hessian vanishes, V%s(Z;8) = 0. Enumerating Z =
{1,...,2%}, the i’th entry in the shift gradient becomes

(SGh); =E {12_1- cov (e, T(W)‘Z)] =P(Z =i)cov({, T(W)|Z = i),
and the 7, 7’th entry of the shift Hessian becomes 0 if j # 7 and else

(SG?)i; =E [12_1- covs (E,E?QZ Z)} =P(Z =) cov(/, e%QZ|Z =1).

Consider for example the case where both W and Z are binary. Then T(W) = W and s(Z;4) =
17-060 + 1z=101 and sV = (17-9,1z—1) and 5(? = 0. The conditional covariance can be
evaluated by residualizing only one of the variables, E[cov(A, B|C)] = E[A(B — E[B|C])], so we
can chose to residualize only W (for SG') or (W — E[W|Z = i])? (for SG?). Finally, if we let
pi = P(W = 1|Z = i) and use that E[W|Z = i] = p; and E[(W — p;)?|Z = i] = var(W|Z =

i) = pi(1 — p;), we get that
1 _ po- L (W —po)
SG"=E Kpl 0. (W—p1)>} )

_ e [0 { (W = p0)? — po(1 —po)} 0
SGZ=F {( 0 0 . 0 0 Epl{(W—p1)2—p1(1—P1)})].

and

C.5 Comparison of variance of reweighting and Taylor estimates in the lab ordering example

To compare the bias and variance of the Taylor and the importance sampling estimates of the shifted
loss, we simulate data from the following, artificial, generative model (which is the same generative
model that was used to construct the loss landscape in Figure 1 (right)).
Age ~ N(0,0.5%)
P(Disease = 1|Age) = sigmoid(0.5 - Age — 1)
P(Order = 1|Disease, Age) = sigmoid(2 - Disease + 0.5 - Age — 1)
Test Result|Order = 1, Disease ~ N (—0.5 4 Disease, 1)

where if Order = 0, the test result is a placeholder value of zero.

We consider either a shift in the logits of ordering lab tests 15(Z) = n(Z) + § (Figure 8 left) or
a mean shift in the Gaussian distribution of age 15 = ¢ (Figure 8 right). For each § in a grid, we
compute estimates E5 1s and E’5 “Taylor Of the loss under a shift of size §, We repeat this n = 1,000
times, and plot the mean and point-wise prediction intervals (the pointwise 0.05 and 0.95 quantiles)

for E5 1s and E(; “Taylor- We also simulate ground truth data from Ps, to compute the actual loss under
shift.

For shifts in the binary variable (Figure 8, left), both estimates capture the loss well for small shifts,
but as § gets larger, the quadratic approximation increasingly deviates from the true mean; the
importance sampling estimate remains very close to the ground truth shifted loss. On the contrary, for
the Gaussian mean shift (Figure 8, right), the importance sampling weights are ill-behaved, and the
variance dramatically increases as § becomes larger. This supports the intuition, that while importance
sampling tends to work well for binary variables, the variance can be large in continuous distributions,
such as the Gaussian distribution.

C.6 Comparison of theoretical variance of reweighting and Taylor estimates

Example C.3. To demonstrate the reduction in variance obtained from using the Taylor approximation
of the importance weights, we consider a simple example where P(X) ~ A(0,1) and Ps(X) ~
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Figure 8: We plot the mean and confidence intervals of Es 1ay1or and Esys when the shifted loss as in
the lab test ordering example Example 1. (Left) We consider a shift in the logits of ordering lab tests
from n(Z) to n(Z) + do. (Right) We consider a shift in the mean of Age. In the observed distribution
1 = u/o = 0 and we shift to a mean of = 4.

N (8,1) and we wish to estimate E;s[¢(X)] for some loss function ¢(X).® The importance sampling
weights are given by ws(X) = exp(—342 + X - §), and the shift gradient and Hessians are SG' =
E[¢(X)X] and SG* = E[¢/(X)X?].

Therefore samples X7, ..., X,, from P consider the estimators, for any loss function ¢(X), two
estimators of Es[¢] are

. 1 n . 1 n
fus = — ;wa(xi)g(xi) and  fiaylor = - ;E(Xi) + 6 0(X) X 4+ 56°0(X;) X7,

and the variances of the estimators are
E[{¢(X + 26)}2}

var(fis) = - exp((52)
X var (£(X) + 6 X0(X) + $6°X2((X))
Var(MTaylor) = n .

The variance of [irayior grows like 5% and the variance of fus grows exponentially fast (unless
E[{¢(X + 25)}?] also diminishes exponentially fast, which is generally not the case), and so except
for small §, the variance of the importance sampling estimator will be orders of magnitude larger than
the variance of the estimator using the Taylor approximation. While, fijs is an unbiased estimator
of Es[¢(X)] and fiTaylor 1S a biased, the overall mean squared error will be smaller for the Taylor
approximation, unless the bias of the Taylor approximation also grows exponentially.

For the sake of analysis, consider the simple example ¢(X) = X. In this case, the Taylor estimate is
unbiased because Es[X] = ¢ is a linear function of §, so the quadratic approximation is adequate.
Further, the variances are given by

exp(62)(1 + 4562) — §2 . 14562 4 Lo§4
p(6°)( u ) and Var(maylor):%_

In particular, the variance of the importance sampling estimate grows like exp(62) while that of the
Taylor estimate grows like §%.

var(fus) =

8In practice one would not use importance sampling estimation for such a simple shift, but use other
approaches, such as analytically work out an estimate of Es[¢].
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Figure 9: Median and quantiles of the error in predicting Es[¢] under a shift §.

C.7 Comparison of variance of reweighting and Taylor estimates in a simple synthetic
example

In this experiment, we compare the variance of importance sampling and Taylor estimates in a simple
synthetic example. We simulate data from P where X € R3 and Y € R! depend either linearly or
quadratically on W € R3,

W ~ N(0,1d3) and (if) ={dy—B) 'MW + (W o W) +e),

where © refers to entrywise multiplication, e ~ N (0, Idy), « is either O (linear) or % (nonlinear) and

2 1 0 1 2 1 0
12 2 0 3 12 11
B = 33 0 9 and M = 5 9 0
4 2 4 0 4 1 1

On the simulated data from IP, we then fit a linear predictor f(X) of Y, and consider a shift in the mean
of W from P(W) ~ AN (0,1d3) to Ps(W) ~ N(6,1d3), where § = [s, s, s] " for some shift strength
s > 0. We then compute the shift gradient SG' = cov(¢, W) and Hessian SG* = cov({, WW ),
and approximate Es[/] by EA(;’Tayk,r (see Equation (7)). In the linear data, the Taylor approximation is
exact (see Appendix C.3), such that any prediction error can be attributed to finite-sample fluctuation,
whereas both model misspecification and finite-sample fluctuation contribute to the error in the

nonlinear setting.
Similarly, we estimate Es[¢] by importance sampling, Es[¢] = E[ws(W){] ~ 1 3~ ws(W)¢, where

ws(W) = %((WW)) =56"W— %5T 0, and compare this to ground truth data sampled from Pg; we do

the same for an importance sampling estimator with weights ‘clipped” at the 99% quantile.

We compare the predicted loss E;[¢] by actually simulating data from P and evaluating Es[¢] (where
{ is still the model trained on data from P). We then compute the prediction error, as the difference

Eé [ﬂ - Eé,Taylor or EE [6] - Eé,IS-
For a number of different shift strengths s, we repeat this procedure M/ = 1,000 times, and in

Figure 9 we plot the median and a confidence interval defined by the 2.5 and the 97.5% quantiles of
the prediction error.

In the linear case, both the importance sampling and the Taylor approximation retains a median error

close to 0, with the variance of Ess being larger than Es 4y10r. The clipped importance sampling
estimate has a smaller variance than that of ordinary importance sampling, though the median deviates
further from 0, and the variance is not smaller than that of the Taylor estimate.

In the non-linear cases, all three models underestimate the shifted loss. For E&,Taymr, this happens
because as the mean of W shift, the mean shift is amplified by the non-linearity, such that the
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quadratic approximation of the loss is an underestimate. While the variance of the clipped importance
sampling is smaller than the variance of the ordinary importance sampling estimate and comparable
to the variance of the Taylor estimate, this prediction is further from 0 than the Taylor estimate.

Since importance sampling methods are known to produce very large outliers, the use of the median
and quantiles, as opposed to the mean an confidence intervals based on the standard deviation, is
favouring importance sampling; the Taylor method looks even more favourable if we instead plot the
mean and standard deviations.

C.8 The bound in Theorem 2 under covariate shift

The bound in Theorem 2 is in a general form that applies to any shift in the CEF framework. In
concrete cases, the bound can be made simpler, as we now demonstrate.

Suppose that X is a covariate that is Gaussian distributed A/(0, 1). Also consider a prediction target
Y := fo(X) + € for some function f; and noise variable e that is independent of X.

Suppose we consider a predictor Y = f(X) and apply our proposed methodology to estimate the
mean squared prediction error when predicting Y & f(X) under a mean shift of size § € R to X.
When we only consider shifts in the mean (and not the variance), the sufficient statistic is 7'(X) = X.
We can use Theorem 2 to bound the prediction error. In this setting,

(= =Y)?=(fo(X)— f(X)+€e)? and ensp =X —t-6,

such that the bound in Theorem 2 becomes

]E5 w] - E5,Taylor

1
< 5 sup
te[0,1]

—cov ((fo(X) = f(X) + €)% (fo(X) — f(X) + €)%, X?)

coves (fo(X) — f(X)+ €)% (X —t-6)?)

<62

The subscript covy.s indicates that the covariance is taken in the distribution N'( - §, 1); instead we
can write this in the observed distribution, and add ¢ - § to X. Further, the terms relating to e disappear,
as they are independent of X . Thus, if we define the modelling error g(x) = fo(z) — f(z), we can
write

Eé [é] - Eé,Taylor . 52.

< % sup |cov (g(X+t'5)2 *Q(X)27X2)

t€0,1]

We can bound the covariance using the inequality cov(A, B) < y/var(A) var(B),

|Vt

< = sup .62

t€(0,1]

Vvar ((9(X +1t-6)% — g(X)?)

EJ [E] - EJ,Taylor

1
2

The first term on the right hand side is the variance of the difference of approximation error in X
and in X + t6. If we are willing to make assumptions on the quality of the approximation f, we can
simplify this further. For example, we can assume that |g(x)? — g(y)?| < C - |z — y|?, meaning that
the squared error of fy(x) — f(z) does not change faster than quadratically in x. In that case, we get

< éC‘\/V&T(XQ)

In some cases, one can sharpen this bound by using prior knowledge about the data generating
mechanism (for example, the data generating function f;, may be bounded).

E(S [ﬂ - E&Taylor . 64-

D Limitations of worst-case conditional subpopulation shift for defining
plausible robustness sets

For the example in Section 4.1, we can contrast the type of shift we consider with the worst-case
(1 — a)-conditional subpopulation shift considered by Subbaswamy et al. [2021].
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In this section, we will make the following points: First, worst-case conditional (1 — «r)-subpopulation
shifts can be too pessimistic, with even moderate values of « leading to implausible conditional
distributions. Second, we will argue that parametric robustness sets enable more fine-grained control
over the set of plausible shifts, leading to more informative estimates of worst-case risk. Overall, we
argue that the two approaches are complementary, with different strengths.

Before we proceed, we define a conditional (1 — «) subpopulation shift. A (1 — «) subpopulation
shift in the conditional distribution P(O|Y") is defined by a weighting function h : O x Y — [0, 1],
which has the property that E[h(O,Y)|Y] = 1 — « for all values of Y. This can be used to construct
a worst-case objective, which measures the worst-case loss under such a shift:

1
sup
h:{0,1}2[0,1] (1-a)

s.t. Eh(O, Y)Y =y]=1—a, forye {0,1}
where ©(0,Y) = E[{(Y, f)]|O,Y], for a predictor f and loss £. This has the effect of leaving the
distribution P(Y") untouched, while changing the conditional distribution P(O|Y"). Throughout this

section, we will use the same predictor f(O, L) described in Section 4.1. The rest of this section is
structured as follows:

E[n(O,Y)u(0,Y)] (12)

In Appendix D.1, we derive the feasible set of conditional distributions P(O]Y") implicitly considered
by this objective in the simple generative model of Section 4.1, which only involves variables
O, L and Y. We do so by showing that (for discrete O, Y'), maximizing Equation (12) over h is
equivalent to solving a linear program, where we can characterize the constraints on h exactly, and
translate them into constraints on P(O = 1|Y = 1),P(O = 1|Y = 0). Here, we show that the
resulting feasible set is quite large, even for moderately large subpopulations. In particular, whenever
(1 —a) <min{P(O =1]Y =0),P(O =0[Y = 1)}, all conditional distributions are possible.

In Appendix D.2, we derive the value of i that maximizes Equation (12), and show that, as we
vary «, the worst-case shift is always in the same “direction” probability space: Healthy patients
(Y = 0) are tested more, and sick patients (Y = 1) are tested less, and for o < 0.27, the worst-case
subpopulation shift is the (unrealistic) scenario where healthy patients are always tested, and sick
patients are never tested.

In Appendix D.3, we illustrate how this type of behavior can be avoided with our approach. We first
give a parameterized shift function s(Z; dg, d1) such that we can reach any conditional distribution of
P(O|Y), for sufficiently large values of g, 0. We then demonstrate how an iterative process might
play out with domain experts, where we consider different constraint sets until we find a constraint
set that contains plausible shifts.

D.1 Feasible conditional subpopulations in Section 4.1

For the simple example in Section 4.1, we give a self-contained derivation of the feasible region for
1 — « conditional subpopulations in the distribution P(O|Y"). The advantage of working with this
simple generative model is that the conditional distribution can be described by only two numbers,
P(O =1]Y =1)and P(O = 1|Y = 0), and so we can visualize the resulting conditional distribution.

Because O, Y are discrete, the worst-case subpopulation in this simple example can be solved via a
linear program, for a fixed «. We have an optimization problem in two variables, since h1;P(O =
1Y = 1)+ ho:P(O = 0]Y = 1) = 1 — «, and likewise for 19, hoo, where h;; = h(O =14,Y = j).
We also have the constraint that each variable must live in [0, 1]. Meanwhile, the loss to maximize
is a linear function, as an expectation of E[h(O,Y)u(O,Y)], where (O, Y") takes on four possible
values, where we write p;; = P(O =i|Y = j), and p;; similarly.

max_ hooftoo + hioptio + hoipor + hiipian (13)
hER2x2

st, hipin +hoi(1—pun)=1-«
hiopio + hoo(1 —p1o) =1 -«
0< hyy <1,Vi, g
This linear program is simple enough to solve by hand, and we will do here to build intuition. In this

section, we begin by characterizing the feasible region of h, and then translating that into a feasible
region for PP, (O|Y"), which we can plot in two dimensions.
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Characterizing feasible values of i: Here, we focus on characterizing the feasible set that h can lie
in, as a way of characterizing the feasible set for P(O|Y). From the constraints, we can write that

1—a—hipn
hiipii +hoi(1—pn)=1—« = ho1 = 1
— P11
1 —a— hiopio
hiopio + hoo(l — p1o) =1 — « = hoo = S p—
— Pio

There are only two constraints on h11: Those directly imposed by 0 < hy; < 1, and those which are
imposed by the equality constraint with hg; and the fact that 0 < hg; < 1. For the latter, with some
algebra we can write that

ogl_a_h”pugl . P11—Oé§h11§1—a
1—pn P11 P11
So that the constraints on hq; become
_ 1 —
max {0, p”a} < h11 < min {1, O‘} (14)
P11 P11

which recovers our intuition that if o = 0, it must be that ~1; = 1 and hg; = 1.

Bounding feasible values of P, (O|Y") The parameters h can be understood as importance weights
whose expectation is 1 — « instead of 1, that reweight IP to a new distribution IP;, when appropriately
normalized. To compute conditional probabilities P, (O = i|Y = j) under the new distribution, we
can compute the expectation of 1 {O = 4,Y = j}, and normalize by P(Y = j).

1 hij . .

PL(O=14Y =j) = TE[h(O,Y)l {O0=4,Y =3} = %P(O =1,Y =j)
-« -«
hij ) )
= PL(O=ilY =j) = %IP(O =1Y =j)

-
where the implication follows from the fact that P, (Y') = P(Y). This allows us to translate bounds
on h;; directly into bounds on P, (O = i|Y" = j). Making use of Equation (14), we can write that

_ 1—
max{(),pu a}- P11 gPh(ozuyzl)gmin{L O‘}- P11
P11 1-« P11 1-«

which yields

max {0,227 e p (O=1y =1) <min{ L 1
1—« 1
We can apply a similar logic to h1(, which is identical except for p;; being replaced by p1¢, yielding

maX{O,piO_a} <P,(0=1]Y =0) gmin{lplo ,1}
—

Visualizing the constraint set: Figure 10 gives feasible conditional distributions under different
values of . We can observe that when o = (.8, all conditional distributions are feasible, including
the distribution where P(O = 1|Y = 0) = 1 and P(O = 1|Y = 1) = 0, representing the case where
every healthy patient gets tested, and no sick patients receive a test. This is generally possible in this
example whenever 1 — o < min{P(O = 1|Y = 0),P(O = 0|Y = 1)}, as it permits the following
subpopulation function, which yields this result.

hMO=0Y =y)=5 L-a 1{o#y}

(O =olY =vy)
D.2 Worst-case conditional subpopulation shifts
Given the constraint set which describes the feasible set of conditional distributions under the (1 — «)-

conditional subpopulation objective, we can derive the worst-case conditional distribution. Here,
since Y, O are both binary, the expected loss under a new distribution [P}, is given by

Enlf] = 1(0,y)Pr(0 = olY = y)P(Y = y)
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Figure 10: Feasible sets, worst-case directions, and worst-case solutions for a (1 — «) subpopulation
shift in the conditional distribution P(O|Y) for differing values of . Worst-case directions are
computed using Equation (15), as unit-norm vectors re-scaled to fit in the plot, and the colored dots
give the worst-case solutions, all of which lie in the lower-right corner of the constraint set. The
original conditional distribution is given by the black dot.

which we can write in terms of the constrained probabilities P}, as follows, where ¢11 = P, (O =
1‘Y = 1) and qi10 ‘= Ph(O = 1|Y = O)

P(Y = D[u(1, Dgrr + (0, 1)1 = qu)] + P(Y = 0)[(1,0)g10 + (0, 0)(1 = ga0)]
which also gives us a direction in which the loss is maximized, since the loss is given by
Epll] = g1 - P(Y = 1) - (u(1,1) — u(0,1)) + quoP(Y = 0) - ((1,0) — p£(0,0)) + € (15)

where C = P(Y = 1)u(0,1) + P(Y = 0)u(0,0). Since ¢11, g10 can be optimized independently,
the worst-case solution is given by taking the maximum value of gq7 if p(1,1) > u(0,1) and the
minimum value if p(1,1) < w(0,1), and likewise taking the maximum value of g1 if p(1,0) >
1(0,0), and the minimum value otherwise. If p(1,1) = p(0,1) or (1,0) = w(0,0), then the
objective is unaffected by the choice of ¢q1 or ¢ respectively.

Visualizing the worst-case conditional distributions The worst-case directions on the probability
scale, and the resulting worst-case conditional distribution obtained by solving Equation (13), are
given in Figure 10. The red line arrow visualizes the direction from Equation (15), and the worst-case
distribution is the point which is furthest in this direction in the constraint set. Here, we are finding
the worst-case accuracy of the same predictive model f(O, L) described in Section 4.1. We can
observe that the worst-case loss is obtained by seeking to reverse the correlation between Y and
O, decreasing the probability that a sick patient (Y = 1) gets a test ordered, and increasing the
probability that a healthy patient (Y = 0) gets a test ordered.

D.3 Iterating with domain experts to define realistic parametric robustness sets

In the previous sections, we saw that (1 — «v)-conditional subpopulation shift does not always produce
realistic worst-case conditional distributions. Moreover, given only the parameter «, there is limited
ability to control the nature of the resulting worst-case conditional distribution P(O|Y"). In this
section, we contrast this limitation with the finer-grained control enabled by considering parametric
robustness sets. In particular, we argue that parametric shifts allow for end-users to customize
robustness sets, ruling out shifts that represent unrealistic changes.

In practice, we imagine that the following iterative process could be a useful tool in model develop-
ment: (i) Define a class of shifts with an appropriate s(Z; §) and constraint set A, and search for a
worst-case shift §. (ii) Present to domain experts both the worst-case shift § (in terms of summary
statistics of the resulting distribution Ps) alongside the associated estimate of the worst-case loss.
For instance, report both the worst-case loss, as well as corresponding rate of testing among sick
and healthy patients. (iii) If the shift itself is unrealistic, further the constrain parameter set or shift
function, and repeat the process.

In Figure 11, we give a concrete example. Each sub-figure shows the set of conditional probability
distributions P(O|Y") that can be represented by a shift of (dp,d1) € Ag x Ay, along with the
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Figure 11: Each figure shows the set of conditional probability distributions (“CPDs”) P(O|Y") that
can be represented by a shift of (g, 1) € Ag x Aj, along with the worst-case distribution (given by
the red star) for the 0—1 loss. In this example, the expected loss under P; is a linear function of the
two conditional probabilities (see Appendix D.2), where the loss increases along the red arrow. (a)
captures (nearly) all conditional probability distributions, with Ag, Ay unconstrained. (b) shows a
set of CPDs with A unconstrained, and A; = [—1, 1], with resulting worst-case accuracy of 50%.
(c) shows a more restrictive set of shifts, where Ay = [—1.05,1.05], A; = {0}. The worst-case
accuracy in this case is 69%, comparable to the accuracy of 75% on the original distribution.

worst-case conditional distribution (given by the red star) for the O—1 loss. Recall that we use the
shift function s(Y'; §) = dp + 91Y, where §y controls a general increase or decrease in testing, while
01 controls a shift in the testing rate for only sick patients, and allows for a different change in the
testing rate of sick vs healthy patients.

Iteration 1: We might imagine starting with a relatively unconstrained robustness set, where dp and
01 are unconstrained. Figure 11a shows the resulting robustness set of conditional distributions, and
finds a shift with with a worst-case accuracy of 16%, compared to accuracy of 75% on the original
distribution. However, the corresponding d-perturbation Py is unrealistic, where all healthy patients
(and no sick patients) are tested. Luckily, because we have parameterized the shift, we can constrain
the robustness set to exclude these types of results.

Iteration 2: A benefit of our approach is that we can refine the robustness set, with this type of
feedback in mind. In Figure 11b, we restrict the support of d; to [—1, 1], to avoid large changes in
the relative probability of testing sick vs healthy patients. Here, the resulting worst-case accuracy is
much higher (50%), but the corresponding worst-case conditional probability distribution is perhaps
still unrealistic: No patients undergo laboratory testing at all!

Iteration 3: Finally, we consider only shifts that affect all patients in a similar way, generally raising
or lowering the conditional probability of a lab test, represented by shifts in g alone. This may
correspond to a more realistic scenario where (in a new hospital) laboratory testing use is more or
less constrained. Additionally, we can specify that this shift should decrease testing rates by at most
20%, which translates directly into a lower-bound on dy.’ Figure 11c shows the resulting robustness
set of distributions, where the worst-case shift may seem more plausible: A reduction in testing rates
for both populations. The worst-case accuracy in this case is 69%, comparable to the accuracy of
75% on the original distribution.

E CelebA: Experiment details and additional results

In this section, we give details of the computer vision experiment in Section 4.2.

E.1 Details for the experiment

Creating the training distribution To construct the training distribution P, we use the conditional
GAN in Kocaoglu et al. [2018]. In particular, we use their CausalBEGAN, which is an extends the

°In Proposition B.1, we prove that for binary random variables with a shift 7(Z) + J, there is a one-to-one
mapping between a new marginal distribution (P(O = 1) in this case) and the value of the parameter §.
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Figure 12: Causal graph over attributes, where lightning bolts indicate changes in mechanisms. Also
displayed in Figure 4.

boundary equillibrium GAN [Berthelot et al., 2017] to also take attributes as inputs. We train the
CausalBEGAN using the default hyper parameters in the implementation provided by Kocaoglu et al.
[2018], available under the MIT license. The model is trained for 250,000 iterations on a single GPU,
taking around approximately 16 hours.

Similar to Kocaoglu et al. [2018], we use the CelebA dataset [Liu et al., 2015], which contains
approximately 200,000 images of faces, along 40 binary attributes. Of those, we use the following
9 attributes {Male, Young, Wearing Lipstick, Bald, Mustache, Eyeglasses, Narrow Eyes, Smiling,
Mouth Slightly Open}. The CelebA dataset is licensed for non-commercial research purposes only,
and consists of publicly available images of celebrities, which were collected from the internet.
Although the data set has been widely used, Liu et al. [2015] do not make any mention of consent
by the individuals to have the images included in the data set, and it is therefore likely that those
celebrities did not provide consent.

Training distribution over attributes For the training distribution, we simulate binary attributes
according to the structural causal model in Figure 4 (for convenience also copied to Figure 12), where
the model parameters are

P(Young = 1
P(Male = 1

0)

0)
0.0 — 0.4 - Young)

o (0.
o (0.
o
o(—3.0 + 3.5 - Male — Young)
o(—
o
o

)

)

P(Eyeglasses = 1|Young)
P(Bald = 1|Young, Male)
P(Mustache = 1|Young, Male)
)
)
) =

2.5 4 2.5 - Male — Young)
0.25 — 0.5 - Male + 0.5 - Young)
P(Wearing Lipstick = 1|Young, Male 3.0 — 5.0 - Male — 0.5 - Young)
P(Mouth Slightly Open = 1|Young, Smiling) = o(—1.0 + 0.5 - Young + Smiling)
P(Narrow Eyes = 1|Male, Young, Smiling) = o(—0.5 + 0.3 - Male + 0.2 - Young + Smiling),

P(Smiling = 1|Young, Male

where each variable either takes the value 0 or 1 and o indicates the sigmoid. To generate data, we
first simulate attributes from this binary Bayesian network, which we then pass as inputs to the GAN
to simulate images (in addition to the random noise used by the GANSs to simulate different images).
In Figures 13 and 14, we plot examples of the training images that were generated.

Predictive model We simulate a training set of 12,000 attribute-image pairs, and a validation set
of 2,000 pairs. The training set is used to fit a classifier f, and the validation set is used for model
selection. To build a classifier f, we use the ResNet-50 [He et al., 2016] model implemented in the
python package torch. We add a final fully connected layer to adapt the ResNet model to a binary
classification task, and fine-tune the model on the training data by (only) learning the weights and
bias of the final layer. The model is trained using the negative log-likelihood criterion and an ADAM
optimizer. The model is trained for 25 epochs and we select the model which after a full epoch had
the best validation set performance. Given the learned model f, we simulate a separate validation
dataset of n = 1,000 samples, and make model predictions f(X). We then compute the model
accuracy as £ = 1 {f(X) = Y}, which is the input to computing the shift gradient and Hessian.
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Bald Smiling

Figure 13: Examples of images from the training distribution P. Each of the four groups (Bald,
Smiling, Wearing Lipstick, Male) show training images who have that characteristic.

Estimation of shifted loss We apply the methods in Section 3.2 to estimate the worst-case shift to
the distribution P (given by the binary probabilities above). For each conditional P(W;| PA(W;)),
we consider a shift 75, (PA(W;)) = n(PA(W;)) + >, = 1{PA(W;) = 2} §;, which corresponds
to arbitrarily shifting the conditional distribution (see Appendix C.4). For example, for W; = Bald,
where 7(Young, Male) = —3.0 4 3.5 - Male — 1.0 - Young, the shift would be

OBald,0, Young = 0,Male =0
OBad,1, Young =0,Male =1

Y , Male) = n(Y« , Mal 16

i (Young, Mle) = y(Young, M)+ { 1+ OUWE =0 Mae = Ly
0Bald,3, Young = 1,Male = 1.

For each W;, this means that 8; is R2 """ and in total § = (01,...,08) € R3! (we do not consider

shifts in the distribution of gender, since this is the label we are predicting).

We compute the shift gradient and Hessian using Theorem 1. In particular, since W, is binary, the
sufficient statistic is 7'(W;) = W;, so the shift gradients and Hessians given by Appendix C.4. See
Appendix C.1 for a detailed walk through of computing the shift gradient and Hessian from a sample.

For any given 0, the shifted distribution of W is given by Ps(W; = 1| PA(W;)) = o(ns, ), where ns,
is computed similar to Equation (16), and o is the sigmoid function. Then the importance sampling

weights are given by
8
_ 17 25, (PA(W3)))
o 13 o(n(PA(W:))

Using these weights, for any ¢, we can estimate Es[¢] by E’(;Js and E(;,Taylor using Equations (6)
and (8), respectively.

E.2 Full table of worst-case shift in Section 4.2

In Section 4.2, we find the worst-case shift §, and display the 5 largest components. In Table 3, we
display the full vector 6 € R3!, sorted by absolute value of the size of the component.

E.3 Sample images from training distribution in Section 4.2

In Figure 13, for the 4 attributes {Bald, Smiling, Wearing Lipstick, Male}, we display images gener-
ated from the training distribution P (i.e. by the GAN) with that particular attribute. In Figure 14 we
show 10 randomly drawn images from the training distribution P as well as the test distribution P
corresponding to the worst-case d found in Section 4.2.
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Conditional 0;

Bald | Male= 0, Young= 0 0.899
Bald | Male= 1, Young=1 -0.800
Bald | Male= 1, Young= 0 -0.680
Wearing Lipstick | Male= 0, Young= 1 -0.618
Wearing Lipstick | Male= 0, Young= 0 -0.543
Eyeglasses | Young= 1 0.507
Mustache | Male= 1, Young= 0 -0.476
Mustache | Male= 0, Young= 0 0.449
Mustache | Male= 1, Young= 1 -0.415
Eyeglasses | Young= 0 0.399
Smiling | Male= 0, Young= 0 -0.261
Wearing Lipstick | Male= 1, Young= 0 0.205

Narrow Eyes | Male= 0, Smiling= 0, Young=0  0.192
Mouth Slightly Open | Smiling= 1, Young= 1 0.191
Smiling | Male= 1, Young= 0 0.183
Narrow Eyes | Male= 1, Smiling= 1, Young=1 0.179
Mouth Slightly Open | Smiling= 0, Young= 1 -0.153
Mustache | Male= 0, Young= 1 0.133
Bald | Male= 0, Young=1 0.128
Mouth Slightly Open | Smiling= 1, Young= 0 -0.127
Narrow Eyes | Male= 0, Smiling= 1, Young=0 -0.125
Wearing Lipstick | Male= 1, Young= 1 0.123
Narrow Eyes | Male= 1, Smiling= 1, Young=0 -0.117
Narrow Eyes | Male= 0, Smiling= 0, Young=1 0.106
Young | No parents 0.092
Narrow Eyes | Male= 0, Smiling= 1, Young=1  0.057
Narrow Eyes | Male= 1, Smiling= 0, Young=1 -0.050
Narrow Eyes | Male= 1, Smiling= 0, Young=0 -0.039
Mouth Slightly Open | Smiling= 0, Young= 0 0.028
Smiling | Male= 1, Young= 1 0.028
Smiling | Male= 0, Young= 1 0.017
Table 3: Worst case shift in the § € R3! identified by the Taylor approach in Section 4.2. Each entry

corresponds to a shift in a conditional distribution given a particular outcome, and the squared sum of
the entries equal \? = 4.

Training Test

T HEE B BE
FAREIEE FAREI-IES

Figure 14: Examples of images from the training distribution P and the test distribution P that is
characterized by the worst-case shift ¢, see Figure 4.
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E.4 Impact of changing \

The shift considered in the main text yields a relatively small drop in accuracy. To demonstrate that
larger drops in accuracy are possible, we repeated our experimental setup over the same 100 initial
validation datasets, while varying the size of the constraint ||d||, < A. We report results in Table 4 for
A € [2,4,6,8,10], where A = 2 corresponds to the setting of Table 1 (right).

Table 4: Performance of the Taylor and IS approaches over different values of A\, where A = 2
corresponds to the setting of Table 1 (right). Averages taken over 100 simulations.

A=2 A=4 XA=6 A=8 A=10

Original Acc. (E[1{f(X) =Y}]) 0912 0912 0912 0912 0.912
Acc. under Taylor shift (Es, . [1{f(X) = Y}]) 0.874 0.812 0.736  0.681 0.648
IS est. of acc. under Taylor shift (Es,,, 15) 0.863 0.795 0.715 0.658 0.625
Taylor est. of acc. under Taylor shift (Es,,,, Taylor)  0.863  0.798  0.711  0.601 0.466
Acc. under IS shift (Es[1{f(X) =Y})) 0.889 0.830 0.746 0.670 0.596
IS est. of acc. under IS Shift (E5 1s) 0.821 0.670 0.463 0.264 0.130

Recall that we have two complementary goals: First, we would like to find a shift that results in a
large drop in accuracy. Second, we would like to reliably evaluate the impact of the shift that we
find, using only the training data. These two goals can be tackled with different approaches, such as
using the Taylor approximation to find a shift, but using importance sampling (IS) to estimate the
loss under that shift. Table 4 allows us to compare three different strategies: (i) using the Taylor
approximation for both finding and evaluating the shift, (ii) using IS for both finding and evaluating,
and (iii) using Taylor to find, but IS to evaluate the shift.

From Table 4, we can observe that using Taylor to find, but IS to evaluate, consistently performs
best in terms of reliable evaluation (i.e., predicting the shifted accuracy), across all values of \. For
A = 2, the bias in evaluation is 1% (predicting 86% vs ground truth of 87% on average), and for
A = 10, the bias of this approach is still only 2% (predicting 63% vs ground truth of 65% on average).
In contrast, for A = 10, the first strategy (using Taylor to find and evaluate) over-predicts the impact
by 18%, and the second strategy (using IS to find and evaluate) over-predicts the impact by 47%.

This strategy also tends to find the most impactful shifts, for moderate values of . For A < 6,
the shifts found by the Taylor approach are more impactful than those found by the IS approach.
Moreover, the drop in accuracy remains substantial (e.g., a drop of around 17% at A = 6). For A\ > 6,
the story is more subtle: The third approach (using IS to find and evaluate shifts) finds more impactful
shifts, but (as noted previously) dramatically over-estimates their impact.

F Relationship to other approaches

In this section, we give a more detailed discussion of how our work relates to other approaches
for evaluation of distributional robustness and learning of robust models. Much of the content
from Section 1.1 is duplicated here, but expanded upon to include other relevant work and detailed
discussion.

Distributionally Robust Optimization/Evaluation with divergence measures: Distributionally
robust optimization (DRO) seeks to learn models that minimize objectives of the form of Equation (1)
[Duchi and Namkoong, 2021, Duchi et al., 2020, Sagawa et al., 2020]. We focus on proactive
worst-case evaluation of a fixed model, not optimization, similar to Subbaswamy et al. [2021], Li
et al. [2021], but major differences between our work and prior work lie in the definition of the set
of plausible future distributions P, often called an “uncertainty set” in the optimization literature,
where the goal is to specify a set that captures expected shifts, without being overly conservative.

Shifts in P(X,Y): A conservative approach is to include all joint distributions P(X,Y") within a
certain neighborhood of the training distribution. Many coherent risk measures can be written as a
worst-case loss of this form. For instance, the Entropic Value-at-Risk (EVaR), with confidence level
1 — «, corresponds to the worst-case loss over a set of distributions P = {P < Py : D 1(P||Py) <
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—Ina}, where Py is the original distribution [Ahmadi-Javid, 2012]. Similarly, the Conditional
Value-at-Risk (CVaR) with parameter o can be seen as the worst-case loss over an uncertainty set
obtained from a limiting f-divergence (see Example 3 of Duchi and Namkoong [2021]), including all
a-fractions of the original distribution. These measures are appealing, in that they are straightforward
to compute, but can be very conservative.

Indeed, such measures often reduce to only considering the distribution of the loss itself. CVaR, for
instance is equivalent to sorting the training examples by their loss, and taking the average loss of
the top a-fraction. To illustrate these limitations, it is straightforward to see that, using the 0-1 loss
and a classifier with 80% accuracy, the worst-case loss under both of these measures is 1.0 for any
o < 0.2. This is intuitive for CVaR (since over 20% of samples are misclassified in the original
distribution), and follows for EVaR from the fact that the binary distribution with probability ¢ = 1
has a KL-divergence to the original distribution p = 0.2 of —In0.2.

Lam [2016] consider a more general problem of estimating the worst-case performance of stochas-
tic systems over infinitesimal changes in distribution, measured by Kullback-Leibler divergence.
Their approach is applicable beyond machine-learning settings, and generalizes to e.g., worst-case
waiting times in a queueing system. They demonstrate that for a sufficiently small neighborhood of
distributions, this worst-case performance can be well-approximated by a Taylor expansion whose
coefficients can be estimated from the original distribution.

Shifts in P(X) alone: Partially due to this overly-conservative behavior, there has been a line of
work incorporating additional restrictions on the allowable shift (i.e., adding more assumptions). For
instance, Duchi et al. [2020] considers learning predictive models that optimize a worst-case loss
similar to CVaR (a “worst-case subpopulation shift”), but where only P(X) is allowed to change, and
P(Y | X) is assumed to be constant. For similar shifts, Li et al. [2021] considers only the task of
evaluation, but provides a novel estimation procedure with dimension-free finite-sample guarantees.
However, many real-world shifts do not fit this framework: In Example 1, both P(X) and P(Y | X)
are changing, where X = (A, O, L), as a result of a shift in P(O | Y, A).

Shifts in a conditional distribution: Closer to our work is Subbaswamy et al. [2021] who consider
evaluating the loss under worst-case changes in a conditional distribution, but while we consider
parametric shifts, they estimates the loss under worst-case (1 — «) conditional subpopulation shifts.
However, it is not obvious how to choose an appropriate level of o: in some settings, seemingly
plausible values of « (e.g., a 20% subpopulation) correspond to entirely implausible shifts. We give a
simple lab-testing example in Appendix D, where the worst-case subpopulation is one where healthy
patients are always tested, and sick patients never tested.

In contrast to these methods, our approach uses explicit parametric perturbations to define shifts, as
opposed to distributional distances or subpopulations. In addition, our approach allows for shifts in
multiple marginal or conditional distributions simultaneously: In Example 1, for instance, we can
model a simultaneous change in both the marginal distribution of age, as well as the conditional
distribution of lab testing, while other conditionals are unchanged. Our main requirement is that
each shifting distribution is exponential family, and that the shift can be represented via the natural
parameters: For continuous variables this is a non-trivial restriction, but for discrete variables it is
true by definition.

Causality-motivated methods for learning robust models: Several approaches seek to learn
models that perform well under arbitrarily large causal interventions (which result in arbitrary
changes in selected conditional distributions). Several approaches proactively specify shifting mecha-
nisms/conditional distributions, and then seek to learn predictors that have good performance under
arbitrarily large changes in these mechanisms [Subbaswamy et al., 2019, Veitch et al., 2021, Makar
et al., 2022, Puli et al., 2022]. Other approaches use auxiliary information, such as environments
[Magliacane et al., 2018, Rojas-Carulla et al., 2018, Arjovsky et al., 2019] or identity indicators
[Heinze-Deml and Meinshausen, 2021] to learn models that rely on invariant conditional distribu-
tions. The worst-case optimality of these approaches is often restricted to cases where the shifts are
arbitrarily large: In Example 1, worst-case optimality under arbitrarily large shifts would correspond
to minimizing the worst-case loss under all possible lab testing policies.

However, when the causal interventions (i.e., changes in causal mechanisms) are bounded (i.e., not
arbitrary), then these approaches are not necessarily optimal. Closest to our work in motivation is
prior work on robustness to bounded shift interventions in linear causal models [Rothenhiusler et al.,
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2021, Oberst et al., 2021, Kook et al., 2022]. Our work can be seen as extending those ideas to
general non-linear causal models, where our focus is on evaluation rather than learning robust models.
We discuss this point in more detail in Appendix F.1 below.

Our work can serve as an aid to deploying these causality-motivated methods in a few ways, by
comparing their worst-case performance under bounded shifts: First, our work can inform whether
such methods should be deployed at all, as for sufficiently small shifts, it may be the case that standard
training yields better performance. Second, our work can inform hyperparameter selection for several
of these approaches, which include regularization terms that implicitly trade off between robustness
and in-distribution performance. More broadly, our approach is useful for probing (and comparing)
the reliability of specific learned models under shift, regardless of the algorithm that produced them.

Evaluating out-of-distribution performance with unlabelled samples: A recent line of work has
focused on predicting model performance in out-of-distribution settings, where unlabelled data is
available from the target distribution [Garg et al., 2022, Jiang et al., 2022, Chen et al., 2021]. In
contrast, our method operates using only samples from the original source distribution, and seeks to
estimate the worst-case loss over a set of possible target distributions.

F.1 The importance of considering restricted shifts in causal mechanisms

In Figure 15 we revisit Example 1, adopting the perspective of a model developer, who is aware that
laboratory testing policies (i.e., P(O | A,Y")) may change. As this change may impact the correlation
between laboratory testing features (O, L) and the label Y, how should the model developer proceed?

From a causal perspective, one way to approach model development is to learn a predictive model
that is “causal” in the sense that it only relies on the causal parents of the label Y. In this example,
A is the full set of causal parents of Y, and the conditional distribution P(Y = 1 | A) does not
change under changes in laboratory testing policy. This conditional distribution is an example of
an “invariant” conditional distribution [Rojas-Carulla et al., 2018], reflecting the unchanging causal
mechanisms that generate Y~ which are not affected by changes in laboratory testing policy. With this
in mind, we consider the choice between two models:

* Age-based model: f(A) ~ P(Y = 1| A), predicting disease using age alone.'’
* Full model: f(A,0,L)~ P(Y =1] A, O, L), predicting disease using all features.

We now demonstrate the utility of incorporating additional knowledge, considering not only “what”
can change (i.e., P(O | A,Y)), but also considering “how” and “how much” it can change, and
translating that knowledge into a quantitative comparison between these modelling choices. The
question of “how” corresponds to our choice of shift function, and “how much” corresponds to our
choice of constraints on shift parameters. We consider changes in testing that correspond to a uniform
increase/decrease in testing rates, parameterized as

Ps(O=1]A,Y) =sigmoid(n(4,Y) + 9) (17)
Other details of the underlying distribution are given in Appendix A.

In Figure 15 (right), we plot the loss of each model under distributions'! that correspond to different
choices of 4, and observe that despite having invariant performance, the age-based model only
out-performs the full model under substantial changes in testing policy. In this case, the model
f(A) (throwing away laboratory testing information) yields better performance if testing rates drop
substantially, but for a large set of changes in testing rates, the full model f(A, O, L) is superior.

Considering the worst-case performance of each model can guide model selection. If a substantial
change in testing rates is not plausible (which can be expressed as constraints on §), and the worst-case
loss (over plausible changes) of f(A, O, L) is lower than that of f(A), the model developer may
decide to use the full model f(A, O, L) in any case.

'"Details of how the full model f(A, O, L) is trained are described in Appendix A. The model f(A) is trained
using unregularized logistic regression. Both models are trained on data drawn from the original distribution,
where the marginal testing rate is 50%.

"n this case, every choice of § maps to a unique marginal testing rate in the distribution Ps (see Proposi-
tion B.1), so we plot the loss as a function of testing rate, instead of ¢ directly.
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Figure 15: (Left) Causal graph for Example 1, where the variables are Y € {0, 1} for the label
(Disease), A € R for Age, O € {0, 1} for whether a laboratory test is ordered (Test Order), and L € R
for the lab result (Test Result), if available. (Right) Using the same generative model as in Appendix A,
we contrast the performance of the full model f(A, O, L) and a model f(A) that only uses age, across
distributions which differ in testing rates according to Ps(O = 1| A,Y) = sigmoid(n(A4,Y") + J).
Comparing performance on a range of distributions where we vary ¢, we observe that f(A) has
invariant loss, but (A, O, L) has better performance for a wide range of shifts J. In particular, if we
compare the worst-case loss under shifts |§| < 1.5 (corresponding to marginal testing rates in the
grey region), we can observe that the worst-case loss of f(A, O, L) is lower than that of f(A).

G Proofs

G.1 Proof of Proposition 1

Proposition 1. For any Ps(V),P(V) that satisfy Definition 4, supp(P) = supp(PPs) and the density
ratio ws = Py /P is given by

= exp (Z Zz,(s > exp (Zh 1:(Z;)) — h(n(Z;) + 5,;(Zﬁ5¢))> .

Proof. By Definition 4 and Assumption 1, we have that

Bs(vV) = [[Bs Wiz [ B0

i=1 V;eVA\W
=[[rwilz) ] PW;lup.
i=1 V;eV\W

It follows that the supports of P5 and PP are the same: Since the exponential family density is given by
the base measure g;(W;) times a exponential term (which is always strictly positive), and since the
terms [ [, ey w P(V;|U;) are shared between P5 and P, their supports agree.

To get the density ratio, we take the ratio of Ps(V) and P(V), and the terms V; € V \ W cancel:
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By Definition 4 and Assumption 1, each Ps, (W;|Z;) is a é;-perturbation around the CEF distribution
P(W;|Z;), so plugging in the exponential family densities, we get

w g(W) exp ({m(zn S (Za 8V TTUW) — b (Z2) + s:(Zs fm))

-1 o(W,) exp (m<zi>TTi<Wz-> - m(m(&«)))

=1l (81 Zi56:)T;(W;) — hi(ni(Zs) + si(Z3305)) + hi(ni(Zi)))

e (S s S5m0 - i) o)

G.2 Proof of Theorem 1

Theorem 1 (Shift gradients and Hessians as covariances). Assume that Ps, P satisfy Definition 4, with
intervened variables W = {Wh1, ..., Wy, } and shift functions s;(Z;;6;), where § = (01,...,0m).
Then the shift gradient is given by SG1 (SG1,...,SGL) € R% where

2)]

and the shift Hessian is a matrix of size (ds x ds), where the (i, j)th block of size ds, % ds; equals

SG; =E | D/, cov (e, T;(W;)

E [DZ.T1 cov (e, eTi‘Z,ie;ilszi) D,;J} —E[¢-Dlyerz] i=j
cov(l, Dfyer, z.e1.1, Dj1) i # 7,

{SG*}.; = {

where D j, := V’gisi(Zi; 0:)|s=0, is the gradient of the shift function for k = 1, and the Hessian for
k = 2. Here, T;(W};) is the sufficient statistic of P(W;|Z;) and er,) z, := T;(W;) — E[T'(W5)| Z;].

1)

Proof. For simplicity throughout, we use hg to denote the gradient of the log-partition function

Vh;(-) with respect to the arguments, which is a column vector of length dr,, and we use h§2) to
denote the Hessian V2h;(-), which is a matrix of size dr, x dr,. We also use 7, (z;) as short-hand
for n;(z;) + si(24i59;).

Shift Gradient: By Definition 4, the probability density / mass function Ps factorizes as follows,
where § = (d1,...,0m)

Pa(V)( II Pai(Wilzz-)) [T pwviiPAM)) |, (18)

W;eW V:eV\W
and the gradient with respect to shift parameters §; is given by
Vi,ps(v) = ps(v) Vs, log ps(v) = ps(v) Vs, log ps, (wil2;)

where the last equality follows from additivity of the log-likelihood in the conditionals, the factoriza-
tion above, and the fact that J; only enters into the given conditional distribution. Given the assumed
form of log ps, (w;|z;) given in Definition 3, we can observe that

Vs, log ps, (wilz:) = Vs, | (0 (20) + 8i(2i;8:)) T To(ws) — hi(n(z:) + si(z4; 51‘))}
= (Vs,5i(2500) Ti(wi) = (Vs,50(2i50:)) " Vhi(n(z:) + 5(2i; 61))
)

= (Vs,5:(2i30)) T (Ti(w;) — b (s, (1)) (19)
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where Vs, 5;(2:;0;) € RI7:*9s: and Vh;(n(z;) + s4(2:;0;)) is the gradient of the function h; :
R47: — R, which is a column vector of length dr,. It follows from known properties of the log-

partition function [Wainwright et al., 2008, Proposition 3.1], that hl(-l)(n(;i(zi)) = Es[T; (W) 2]
This gives us that

Vo Esll] = Es [0+ (Vo,5:(Zi5 ) (Ti(W:) — Bs[Ti (W) Z:])|

= Es (V5 5:(2:56)) "Eslt - (T.(W:) = E4[T(W3) ) 2]

Es [(Va,5i(Zi561)) " covs(6, Ti(Wi)|Z0)|
where the second equality follows from the tower property and Z;-measurability of Vs, s;(Z;; d;),

and the final equality follows from the definition of the conditional covariance. This expression,
evaluated at § = 0, gives us the desired result, that

SG; = Vs,Es[l]|,_, = E D], cov(¢, T;(W3)|Zy)] ,

where D; 1 = V5,5,(Z;,0;)|s=0. The result follows from the definition that gradients are taken
entry-wise, giving SG' = (SGJ,...,SG})) € R+ dom

Shift Hessian (Diagonal): For the shift Hessian, we first compute the diagonal entries of VZE;[¢]|5—o,
which are blocks of size R%: *95; . We begin by computing the Hessian of the likelihood.

V3.ps(v)

Vs, (Pé (0)Vs, og ps, <wi|zz->)
= ps(v) <(Val log ps, (wi2:))®* + V3, log ps, (wizi))

= ps(v) ({vsi 512360} T (Ti(wi) — B (05, (20))) P2 { Vs, 80(2i3 60) }
—{V2 523 00)} T (Ti(wi) — hD (s, (1))
(V51213 6} TR (0, (20)) (T &-)}),

= ps(v) ({vfsisxzi; 5)7 ((mwz—) D (5 (200)) 2 — B <zi>>){vaisi<zi; 5}
—{V3 5i(2;6)} " (Ti (w;) — hz(l)(néi (Zi))))

where we use the notation v®2 := vv ', and we note that V2 s(z;;0;) is a tensor of size dr, x
ds, x ds,, and {V3 s(z; 6;) }Th(1 (+) is a matrix of size ds, X ds,, where the (m,n)’th entry is
{5 a0 5(zi:0)} ThD ().

Now, using the fact that (1) (5, (2)) = Es[Ti(W;)|2] and b (ns, (2;)) = vars[T;(W;)| 2] [Wam—

wright et al., 2008, Proposition 3.1], and the definition e, 7, = T;(W;) — Es[T;(W;)|Zi], w
obtain

V3 .Esld]

=By |£ (Va5 Z0)} T (5, — vans(TOW)12) ) (Vs 2500}
—Es [0-{V5,5:(Z:;6:)} "er, 2,

=By | (a5(Z 00} oovs (6653, | ) (T30}

— Es [Z : {Vglsz(zu 5i)}T6Ti|Z1‘J

which gives the desired result when we evaluate at § = 0.
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Shift Hessian (Off-Diagonal) For i # j, we have that
V5. Vs;ps(v)
= Vs, (ps(v) Vs, log ps,; (w;25))
= Vs, (ps(v) Vs, log ps, (w;2;))
T
= ps(v) Vs, log ps, (wil2:) (Vs log s, (wy]2))

— ps(v) ({v&sxza 5} (Ti(w) — h§”<n(si<zi>>>)

({Véj 55(25:0)} T (T (wy) — b (s, (Zj)))>

where the third line follows from the fact that V5, (Vs, log ps; (w;|2;)) = 0, and the last line follows
from the derivation of the gradient of the log-likelihood in Equation (19). We can again use the fact

that h{" (15, (Z:)) = E4[T;(W;)| Z;] and the shorthand er, 7, = Ty(W;) — Es[T;(W;)|Zi] to write
that

Vs, Vs, Es[l]
B[ (Vi sz 00} ((nm) - hf»”(n(s,;(zz—))))

-
1
(@500 = 1, 520 9s,850:53090)]
and when we evaluate this expression at § = 0, we obtain
V(;i V5_7E5[€] |§=0 = E [€ . D;l,—lgTi‘Zi (ETJ\ZJ)TDj,l] = COV(E, D;l,—leTi\ZiG’}—ﬂZj Dj,l).

Where the last equality follows because IE[D;r 16731 Z: e;j 2, D; ;] = 0. To see this, note that one of

W;, W, must be a non-descendant of the other, and we will assume without loss of generality that W;
is a non-descendant of W; in the causal graph consistent with the factorization given in Equation (18),
which implies that Z; (the parents of W} in the underlying graph) are also non-descendants of
W;.Thus, W; L (W}, Z;)|Z;, because (W;, Z;) are both non-descendants of W;. Then, observe
that D; ; is a function of Z;, and er,|z, is a variable with zero-mean conditioned on Z;. Thus,

E[D/ e,z = 0, for all Z;. Moreover, given Z;, we have that D] ey, 7, is independent of
D] e, z,- As aresult, we can write that

E[D/ er,iz.€1,2,Di1) = EE[D] er, z.€1, 7, Dj| Zi)]
[E[D] 1, 2,|Zi|Eler, 7, Dja| Zi]]

G.3 Proof of Corollary 1

Corollary 1 (Simple shift in a single variable). Assume the setup of Theorem I, restricted to a shift
in a single variable W, and that s(Z;6) = 6. Then D1 = 1, Dy = 0, and
7))

Proof. We have V5s(Z;6) = Vs§ = 1 and V3s(Z;0) = V36 = 0. The result now follows from
Theorem 1. O

SG!' =E {cov <€,T(W)‘Z>} and SG* =E [cov <€, eT\Z€;|Z

where T(W) is the sufficient statistic of W and ez := T(W) — E[T'(W)|Z].
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G.4 Proof of Theorem 2

Theorem 2. Assume that Ps, P satisfy the conditions of Theorem 1, with a shift in a single variable
W, where s(Z;6) = 0. Let E5 puy10r be the population Taylor estimate (Equation (7)) and let o (M)
denote the largest absolute value of the eigenvalues of a matrix M. Then

Es [é] — Es 1aytor

<1 S?p]a(covt s(2, €t5T|Z€t5T|Z) —cov(l, €016, TlZ)) 16112,
telo,1

where T(W) is the sufficient statistic of W|Z and ¢,.517)1z = T(W|Z) — Ep.5[T(W|Z)].

Proof. The expectation is continuous and twice-differentiable with respect to J, because of the
smoothness of the exponential family in the parameter, the fact that the shift function s is twice-
differentiable, and because the support does not change. Thus, applying Taylors remainder theorem
to the function ¢ — E,.s[¢], it follows that there exist a ¢y € [0, 1] such that

Erol] - Basld - (4.1 - (s5Ecsin)

= SG! and by the same arguments (see the proof of Theorem 1), it follows
t=0

(20)

t=to

We have (iEt.g[ﬁo

that <2 dztIEf 5[£]>
t=to
on both sides of Equatlon (20) yields

% sT (covto.(;(ﬁ, Ef?faj\z) cov(, € TZ)) 5‘

= 3" covy,.s(4, ei?{smz)é. Plugging this in, and subtracting 26" SG?6

E5 [é] - E§,Tay10r

1
< 5 sup
t€[0,1]

5T <covt.5(€, €5 T‘Z) cov (¢, € TZ)) 5‘

Let K := <covt,5(€, ef?leZ) cov(, € TZ)> . Since K is symmetric and real valued, it is diago-

nalizeable, K = U " AU for an orthonormal matrix U and diagonal matrix A = diag(ay, ..., aq).
We then have

6T KS| = [0TUTAUS|
= |(AY2U8)T(AY2Us))|
= |IAY2u5)
< IAY2E1Us|3
= o (K)|19]13,
where A1/2 = diag(y/aq, ..., /aq), denotes the supremum-norm when applied to matrices and

the 2-norm when applied to vectors and ||Ud||2 = ||0]|2 because ||[US||2 =5TUTUS =66 = ||6]|2,
using orthonormality of U. Plugging in this inequality, we get that

< étz%pllo(covt.g(ﬁ,et 6T|Z) cov (¢, 6892T|Z)> 16112,

E5 [E] - EJ,Taylor

which concludes the proof. O

G.5 Proof of Proposition B.1

Proposition B.1. Consider a binary random variable W with conditional distribution
Ps(W =1|2) = o(n(2) +9)

for an arbitrary measurable function 1n(Z) whose range is the extended real numbers 1n(Z) €
RU{+00, —o0}. Let py = P(n(Z) = +0), p— = P(n(Z) = —o0), and assume that p; +p_ < 1.
Then, the marginal probability

ps =Ps(W =1)

is a strictly monotonically increasing function of § € R whose range is (p4,1 — p_),
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Proof. Let F' denote the event that (7)) is finite (i.e., 7(Z) & {—o0, +00}). Under F, the conditional
probability function o (n(Z) + 4) is a strictly monotonically increasing function of 4, and if n(Z) €
{—00, +00}, then the conditional probability is a constant function of ¢ (zero or one, respectively).
Hence, we can write that

Ps(W =1) =Ps(W = 1|F)(1 — p+ —p-) + p+

and by assumption, 1 — p; — p_ > 0. The marginal probability Ps(W = 1|F) is a strictly
monotonically increasing function of §, with a limit of 1 as § — oo, and a limit of 0 as § — —oco. As
aresult, it is bounded in (p4,1 — p_). O

G.6 Proof of Lemma C.1

Lemma C.1. Suppose A ~ N (u, %) and that (X, Y, H) are generated according to Equation (11).
For v € R define £ := (Y — v X)2. Then there exist Uy Uy € R4 such that for all shifts
§ € Ria;

Es[f) =E[f) + 6 uyq + %5Tv7v35,
where Eg corresponds to taking the mean in the distribution where A ~ N (u + 6, %). Further
Uy, =0ifp=0.

Proof. Tt follows from Equation (11) that one can write (X ", YT, H") = (1 — B)"}(MA + ¢),
and for a given ~, there exist by, £ such that Y — T X = b] A + k] e [Rothenhiusler et al, 2021].
In Ps, we can write A = p + 8§ + €4, where e4 ~ N(0, %), for all values of p and §. Plugging this
in yields

Es[(b] A+ k] €)?]

Es[(b] (1146 + €a) + 17 €)]

E[(bT(u—i—eA) + k7€)% + (26 1) by + 6706
E[(Y —~v"X)?] + (2b] 11)6 "by + 6 " byby) .

Es[(Y — " X)?

where we do not put a subscript on the expectation in the third line because it is taking expectations
over €4 and ¢, both which do not depend on the choice of p and d. The statement of the lemma

follows by letting wu,, , = 2b] uand vy = /2b,. O
G.7 Proof of Proposition C.1

Proposition C.1. Suppose A ~ N(u,X) and that (X,Y, H) are generated according to Equa-
tion (11). Then the shift gradient and Hessian are given by

SG' =cov((,X7'A)  and  SG? =cov({, XA - p)(A—p)'8T)
and the loss under a mean shift of § in A is given by
Es[(] = E[f] + 6" SG' +16" SG*9,

where ¢ = (Y — " X)? and E; corresponds to taking the mean in the distribution where A ~
N(u+46,%).

Proof. Similar to Lemma C.1, we rewrite Y —y ' X = bIA + k"¢, and by rewriting A = i+ +e€4,
where e4 ~ N(0,X), we obtain

Es[(Y =7 " X)?] =E(b] (u+€a) + £ €) (21)
+ (2b$u)5Tb (22)
+6TbbTo. (23)

We recognize that Equation (21) equals E(Y — ~T X)2. Similarly, we now show that Equations (22)
and (23) match the shift gradients (multiplied appropriately with 0).
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First, we assume that ¥ = Id. Since A is a Gaussian with (known) mean Id, the sufficient statistic is
T(A) = A. Hence, according to Theorem I, we can compute the shift gradient as

SG! = cov(A,£) = cov(A, (Y — v X)?) = cov(A, (b;rA)Q).
We can calculate the 7’th entrance of this vector as:
SG' = cov(4;, (by A)?) = cov(A; — i, (by A)?))
= cov(A; — i, b2 ;A7 +23 bibjAiAj)
J#i
= b'2y,z COV(AZ‘ — Mg, AZZ) + 2b%7; Z bj COV(Ai — Mg, AiAj),
J#i

where in the first equality we use that subtracting a constant doesn’t change the covariance, and

we use independence of A; from A;A; when i ¢ {j,j’}. Using the assumption that A; has unit
variance, we now get that

cov(A; — pi, A7) = BIAT — A7) = (1 + 3ps) — i +1) = 2p,
cov(Ai — iy AiAy) = E[A? — Ay ]E[Aj] = (1 + 1 — )y = .
By plugging in, we obtain
SGI(/LZ‘) = 2b'2y,iui + 2b, 4 Z bjj
J#i
= 2b, ;b p.

Since this was element-wise, we obtain that the full vector is SG' =2p bTu, which, when multiplied
with § yields Equation (22).

We compute SG? similarly. The diagonal entries are given by
SG7,; = cov((A; — ps)%, (b] A)?)
= cov((Ai — )2, b2 AT + byi > by jAIA))

? v [ (]
i
=07 s cov((Ai — )% A7) + by Y by cov((As — mi)?, Asdy).
J#i

Because ¥ = Id, the second through fourth moments of A; are given by E[A?] = u? + 1, E[A3] =
3 + 3p; and E[AF] = pf + 647 + 3. Using this, we get

cov((A; — wi)?, A7) = E[A} — 2, A% + pf AT] — E[(A; — i) |E[47]
= (i + 607 +3) — 205 (ud + 3ps) + p3 (u +1) — 1+ (uF + 1)

_9,
and for j # 1:
cov((A; — pi)?, AiAj) = cov((As — pi)?, (Ai — i) Aj) + cov((Ai — )%, i)
= cov((A; — pi)?, (Ai — i) Aj)
= E[(Ai — 1) *|E[A;] — E[(Ai — 1)’ |E[(As — i) JE[A;]
—0-0,

using linearity of the covariance, that A; 1. A; and that the first and third moments are zero for a
centered Gaussian A; — p;. Plugging this in, we get that the diagonal entries are given by

SG7, =202 ,.
We can compute the off-diagonal entries similarly. For ¢ # j, we have:

G}, = cov ((Ai — i) (A5 = ), (24)

b2 AT+ 02 A%+ 2by by s AA +2 D byibynAiA, + b%jbw,AjAv) :
vg{ij}
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Using the independence of A; and A;, we have
cov((A; — pi)(Aj — 1y), A7)
= E[A7(Ai — 1) E[A; — 1] — E[A; — ] E[A; — 5] E[A7]

=0 =0

=0,
and similarly cov((A; — u;)(A; — pj), A2 ) = 0. Using the same reasoning, for v ¢ {3, j}
cov((Ai — pi)(A; — pj), Az Ay)
= E[(As — 1) AJE[A; — 15 |E[Ay] — E[(A; — ) |E[A]E[A; — 5]E[A, ]
=0,
and the same for cov((A; — p;)(A; — p;)
cov((A; — Mz‘)(A' - ‘) AiA;

A;A,). Finally, we have
)

) Aj] = E[(Ai = ) [E[AJE[(A; — p)]E[A;]
A

= B[(4i — 1) AJE[(4; — gy
= E[(A; — pi) AJE[(A; — p5) 4]
= E[A] — i AjE [A?—MA]-]
= [(uf + ) ui][[(u,?ﬂ)—u?]]

=1
Plugging into Equation (24), we get that
SG7, = 2by.iby
and hence for both diagonal and off-diagonal entries, SG?’ j = 2by,iby;, implying that
SG? = 2b,by .
In particular 367 SG* § matches Equation (23).

Finally, we consider the case ¥ # Id. Let ¥~ 1/2 be the ‘square-root’ of ¥, such that . ~1/2%~T/2
(where the latter denotes (X~1/2)T.12

The sufficient statistics for the mean in a multivariate Gaussian distribution with known variance is
given by T'(A) = X~ A. We then have

SG' = cov(S7' 4, (b] A)?)
_ 2—1/2 COV( —1/2A ((Zl/Qb’y)Tz—l/ZA)2>
=X covi(A, (b] A)%),

where A = %7124 =~ N (j3,1d), i = ¥~/?yand b, = %'/2b,,. In particular, since A has unit
variance, we can use the above derivations to obtain

SG' = 2572(byb] fi) = 2b,b] .
In particular, the first shift gradient is the when 3 # Id as when ¥ = Id. Similarly,
SG® = cov(S TN (A —p)(A—p) 'S, (b] A)?)
— cov(SY2EV2(A — p)(A— ) TR T2 T2, (21/2b’y)T271/2A)2)
=52 covp((A - @) (A - )T, (b1 A2z T/
= %7122, b 0T/
=2b,b].

Hence, also when 3 £ 1d, the terms of Equations (22) and (23) matches the expression given by ek
and SG2. This concludes the proof. O

2Formally, if £~ = UAU " where A = diag(\1, ..., Aa, ), define ¥~1/2 := U diag(v/ A1, . - ., v/ Ady)-
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