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A Appendix

The supplementary material is structured as follows:

• Section A.1 gives the proof and analysis of Theorem 3.1;

• Section A.2 introduces the datasets and their statistics in detail;

• Section A.3 introduces the baselines utilized in experiments;

• Section A.4 discusses the experimental setup of baseline models as well as MetaTKGR;

• Section A.5 reports detailed experiment performance with statistical test results;

A.1 Statements, Proof and Analysis of Theorem 3.1

Theorem A.1 (PAC-Bayes Generalization Bound on Temporal Adaptation). Let D(m+1) =⋃
ẽ∈Ẽ Q

(m+1)
ẽ denote all query set in m + 1-th time interval of all new entities from Ẽ . For any

δ ∈ (0, 1) and learned parameter distribution p(ϕ(m)) in last time interval, with probability at least
1− δ on D(m+1):

L(fϕ(m) ,D(m+1)) ≤ L̂(fϕ(m) ,D(m+1)) +

√
KL(q(ϕ(m+1))∥p(ϕ(m))) + log |D(m+1)|

δ

2|D(m+1)| − 1
, (1)

where L(fϕ(m) ,D(m+1)) = Eẽ∼p(Ẽ)

[
L(f

ϕ
(m)
ẽ

,Q(m+1)
ẽ )

]
denotes real predictive loss on new time

interval with new and unknown data distribution, L̂(fϕ(m) ,D(m+1)) denote the empirical version of
the loss, and KL(·∥·) is the Kullback-Leibler divergence.

Proof. As a realistic scenario, D(m+1) in the new time interval follow different distribution from
those in the last time interval, i.e., m-th time interval, and such new distribution is unknown at
advance. To improve the generalization ability over time, we gradually adapt model parameters
learned from last time interval ϕ(m) to next time interval, resulting in updated parameters ϕ(m+1).
Formally, we view p(ϕ(m)) as prior parameter distribution and aim to learn the posterior parameter
distribution q(ϕ(m+1)) conditioning on D(m+1). The unseen distribution of D(m+1) prevents us
from estimating q(ϕ(m+1)) by either using unbiased empirical loss or Bayes rules. Therefore, for
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convinience of discussion, we first define the difference of real predictive loss and its empirical
extimation as follows:

∆L = L(fϕ(m) ,D(m+1))− L̂(fϕ(m) ,D(m+1)). (2)

We are interested at the relation of ∆L and the distribution discrenpency between p(ϕ(m)) and
p(ϕ(m+1)). Towards this goal, following [9, 10], we construct the following function:

f(D(m+1)) = 2(|D(m+1)| − 1)Eϕ∼q(ϕ(m+1))

[
(∆L)2

]
−KL(q(ϕ(m+1))∥p(ϕ(m))). (3)

Next, using Markov’s inequality, we have:

p(f(D(m+1)) > ϵ) = p(ef(D
(m+1)) > eϵ) ≤

Eẽ

[
ef(D

(m+1))
]

eϵ
, (4)

where Eẽ

[
ef(D

(m+1))
]

denotes the expectation of ef(D
(m+1)) w.r.t. new entity distribution. To upper

bound the expectation, we have the following inequality:

f(D(m+1)) = 2(|D(m+1)| − 1)Eϕ∼q(ϕ(m+1))

[
(∆L)2

]
−KL(q(ϕ(m+1))∥p(ϕ(m))) (5)

= Eϕ∼q(ϕ(m+1))

[
log

(
e2(|D

(m+1)|−1)(∆L)2 q(ϕ
(m+1))

p(ϕ(m))

)]
(6)

≤ log

(
Eϕ∼q(ϕ(m+1))

[
e2(|D

(m+1)|−1)(∆L)2 q(ϕ
(m+1))

p(ϕ(m))

])
(7)

= log
(
Eϕ∼p(ϕ(m))

[
e2(|D

(m+1)|−1)(∆L)2
])

, (8)

where Jensen’s inequality is utilzied to derive the inequality. Therefore, we have

Eẽ

[
ef(D

(m+1))
]
≤ EẽEϕ∼p(ϕ(m))

[
e2(|D

(m+1)|−1)(∆L)2
]

(9)

= Eϕ∼p(ϕ(m))Eẽ

[
e2(|D

(m+1)|−1)(∆L)2
]
, (10)

we switch the order of expectations because p(ϕ(m)) is independent to D(m+1). Next, based on
Hoeffding’s inequality, we have:

p(∆L > ϵ) ≤ e−2|D(m+1)|ϵ2 , (11)

and we can further derive the following inequality:

Eẽ

[
ef(D

(m+1))
]
≤ Eϕ∼p(ϕ(m))Eẽ

[
e2(|D

(m+1)|−1)(∆L)2
]
≤ |D(m+1)|. (12)

Combining Eq. 12 and Eq. 4, we get:

p(f(D(m+1)) > ϵ) ≤ |D(m+1)|
eϵ

= δ, (13)

where δ = |D(m+1)|/eϵ. Therefore, with probability of at least 1− δ, we have that for all ϕ(m+1):

f(D(m+1)) = 2(|D(m+1)| − 1)Eϕ∼q(ϕ(m+1))

[
(∆L)2

]
−KL(q(ϕ(m+1))∥p(ϕ(m))) (14)

≤ log |D(m+1)|
δ

. (15)

Further, by utilizing Jensen’s inequality again, we have:(
Eϕ∼q(ϕ(m+1)) [(∆L)]

)2 ≤ Eϕ∼q(ϕ(m+1))

[
(∆L)2

]
(16)

≤
KL(q(ϕ(m+1))∥p(ϕ(m))) + log |D(m+1)|

δ

2(|D(m+1)| − 1
. (17)
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Subsituting definition of ∆L in Eq. 17, we proof the PAC-Bayes Generalization Bound on Temporal
Adaptation:

L(fϕ(m) ,D(m+1)) ≤ L̂(fϕ(m) ,D(m+1)) +

√
KL(q(ϕ(m+1))∥p(ϕ(m))) + log |D(m+1)|

δ

2|D(m+1)| − 1
(18)

Based on Eq. 18, we define the following temporal adaptation regularizer:

R(fϕ(m) ;D(m+1)) ≜ L̂(fϕ(m) ,D(m+1)) +

√
KL(q(ϕ(m+1))∥p(ϕ(m))) + log |D(m+1)|

δ

2|D(m+1)| − 1
. (19)

Remark. To interpret the temporal adaptation regularizer R(fϕ(m) ;D(m+1)), it can be viewed as
a combination of empirical risk on the query set in the new time interval as well as a regularizer
of parameter distribution across time intervals in form of KL-divergence. The regularizer along
time domain can guarantee that global knowledge ϕ is trained by predictive losses from all time
intervals without overfitting in specific time interval. Such regularizre provides a stable feedback
signal to guide the outer optimization phase. Thus, we can improve the generalization ability of our
meta-learner over time by the following update step by step,

A.2 Datasets
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Figure 1: Number of entities over time. New entities continuously emerge on three public TKGs.
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Figure 2: Distribution for new entity occurrences. The figures in first row show the complete
distribution, and the figures in second row show the detailed distribution between [0,200]. Most of
new entities are associated with limited amount of facts.

Dataset Information. We validate the proposed MetaTKGR framework on three public temporal
knowledge graphs: 1) YAGO [8]: YAGO is a collection from the Wikipedias in multiple languages.
2)WIKI [5]: WIKI is a newly collected temporal knowledge graph of Wikipedias. 3)ICEWS18 [3]:
Integrated Crisis Early Warning System (ICEWS18) is the collection of coded interactions between
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socio-political actors which are extracted from news articles. ICEWS18 is collected from 1/1/2018
to 10/31/2018, and the minimum time unit is one day; YAGO and WIKI span much longer periods
(184 years and 232 years respectively), with one year as minimum time units. They can validate
our temporal framework within different time ranges. Notably, ICEWS18 represents temporal facts
as quadruples (es, r, eo, t), and WIKI, YAGO datasets consist of facts in format (es, r, eo, [ts, te]),
where each fact is associated with a valid time range from start time ts to end time te. We follow [4] to
preprocess WIKI and YAGO. Specifically, we preprocess the format such that each fact is converted
to a sequence {(es, r, eo, ts), (es, r, eo, ts + 1), · · · , (es, r, eo, te)} from ts to te, with the minimum
time unit as one step. Noisy events of early years are removed (before 1786 for WIKI and 1830 for
YAGO). Figure 1 shows the amount of new entities appearing over time. New entities continuously
join the TKGs on three public TKGs, e.g., 41.7, 61.3%, 9.8% of entities on YAGO, WIKI, and
ICEWS18 are new entities that firstly appear in the last 25% time steps. We further investigate
the amount of facts associated with those new entities. Figure 2 shows the corresponding distributions.
Most new entities are associated with a limited amount of facts. Figure 1 and Figure 2 validate
the practical value of our proposed setting, which aims to predict the future facts of newly emerging
entities based on initial few-shot observations.

Splitting Scheme. Given the temporal knowledge graph, we first split the time duration into four
parts with a ratio of 0.4:0.25:0.1:0.25 chronologically, then we collect the entities that firstly appear
in each period as well as the associated facts as training/meta-training/meta-validation/meta-test set.
For the nodes in the meta-validation and meta-test set, we assume that their first K = 1, 2, 3 facts are
known and can be used to adapt parameters for meta-learning based methods or train/compute new
entity representations for non-meta ones. The remaining facts are utilized to evaluate performance of
baseline models and MetaTKGR. Detailed setup is introduced in Appendix A.4.

A.3 Baselines

We describe the baseline models utilized in the experiments in detail:

• TransE [2] is a translation-based embedding model, where both entities and relations are
represented as vectors in the latent space. The relation is utilized as a translation operation
between the subject and the object entity;

• TransR [7] advances TransE by optimizing modeling of n-n relations, where each entity
embedding can be projected to hyperplanes defined by relations;

• RotatE [11] represents entities as complex vectors and relations as rotation operations in a
complex vector space;

• RE-NET [4] is a generative model to predict future facts on temporal knowledge graphs,
which employs a recurrent neural network to model the entity evolution, and utilizes a
neighborhood aggregator to consider the connection of facts at the same time intervals;

• RE-GCN [6] learns the temporal representations of both entities and relations by modeling
the KG sequence recurrently;

• LAN [12] computes the embedding of entities by GNN-based neighboring aggregation
scheme, and attention mechanisms are utilized to consider relations with neighboring
information for new entities;

• I-GEN [1] utilizes meta-learning technique to learn the representations of new entities,
which is achieved by aggregating information from neighbors attentively;

• T-GEN [1] further extends I-GEN by optimizing predictions for unseen-unseen links among
unseen users. A stochastic inference is proposed to model the randomness of such links;

• MetaDyGNN [13] is a recent work modeling the links predictions for new nodes on
homogeneous graphs. A hierarchical meta-learner is proposed to better extract global
knowledge which is beneficial for link prediction task.

A.4 Experimental Setup

Baseline Setup. For static knowledge graph reasoning methods, i.e., TransE, TransR, and RotatE, we
ignore all time information in quadruples, and view temporal knowledge graphs as static, cumulative
ones. Then we train the models with training set, meta-training set as well as first K triples of each
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Table 1: The results of 1-shot temporal knowledge graph reasoning.
Models YAGO WIKI ICEWS18

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
TransE 0.183 0.136 0.196 0.268 0.144 0.118 0.139 0.186 0.049 0.030 0.053 0.077

TransE (std) ± 0.008 ± 0.005 ± 0.004 ±0.007 ± 0.005 ± 0.008 ± 0.010 ±0.011 ± 0.004 ± 0.004 ± 0.003 ±0.005

TransR 0.189 0.132 0.208 0.270 0.160 0.129 0.145 0.183 0.050 0.034 0.056 0.080
TransR (std) ± 0.007 ± 0.011 ± 0.007 ±0.009 ± 0.008 ± 0.012 ± 0.013 ±0.009 ± 0.005 ± 0.006 ± 0.004 ±0.003

RotatE 0.215 0.143 0.217 0.280 0.175 0.139 0.153 0.190 0.068 0.053 0.062 0.098
RotatE (std) ± 0.005 ± 0.009 ± 0.012 ±0.011 ± 0.009 ± 0.013 ± 0.012 ±0.008 ± 0.006 ± 0.004 ± 0.010 ±0.010

RE-NET 0.221 0.159 0.225 0.304 0.212 0.178 0.183 0.259 0.185 0.129 0.209 0.250
RE-NET (std) ± 0.006 ± 0.008 ± 0.004 ±0.007 ± 0.010 ± 0.008 ± 0.009 ±0.010 ± 0.013 ± 0.011 ± 0.012 ±0.009

LAN 0.196 0.145 0.210 0.269 0.174 0.126 0.185 0.275 0.170 0.086 0.159 0.301
LAN (std) ± 0.015 ± 0.015 ± 0.019 ±0.020 ± 0.016 ± 0.015 ± 0.019 ±0.014 ± 0.021 ± 0.019 ± 0.022 ±0.019

I-GEN 0.238 0.195 0.243 0.321 0.181 0.156 0.166 0.241 0.199 0.101 0.217 0.320
I-GEN (std) ± 0.007 ± 0.005 ± 0.009 ±0.011 ± 0.008 ± 0.006 ± 0.011 ±0.013 ± 0.021 ± 0.019 ± 0.022 ±0.019

T-GEN 0.247 0.199 0.266 0.331 0.202 0.167 0.189 0.245 0.131 0.072 0.139 0.262
T-GEN (std) ± 0.023 ± 0.019 ± 0.022 ±0.031 ± 0.019 ± 0.013 ± 0.022 ±0.024 ± 0.031 ± 0.026 ± 0.029 ±0.032

MetaDyGNN 0.269 0.219 0.297 0.396 0.241 0.176 0.271 0.371 0.249 0.179 0.269 0.420
MetaDyGNN (std) ± 0.010 ± 0.008 ± 0.011 ±0.015 ± 0.013 ± 0.010 ± 0.013 ±0.016 ± 0.012 ± 0.009 ± 0.014 ±0.018

MetaTKGR 0.294* 0.240* 0.319* 0.428* 0.277* 0.203* 0.3071* 0.419* 0.295* 0.207* 0.309* 0.496*
MetaTKGR (std) ± 0.012 ± 0.008 ± 0.014 ±0.009 ± 0.015 ± 0.011 ± 0.013 ±0.010 ± 0.007 ± 0.019 ± 0.016 ±0.012

Table 2: The results of 2-shot temporal knowledge graph reasoning.
Models YAGO WIKI ICEWS18

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
TransE 0.193 0.139 0.204 0.304 0.146 0.122 0.146 0.213 0.058 0.042 0.054 0.086

TransE (std) ± 0.007 ± 0.006 ± 0.009 ±0.013 ± 0.006 ± 0.005 ± 0.007 ±0.009 ± 0.005 ± 0.004 ± 0.004 ±0.005

TransR 0.198 0.140 0.217 0.312 0.160 0.131 0.170 0.225 0.060 0.054 0.061 0.090
TransR (std) ± 0.007 ± 0.005 ± 0.009 ±0.011 ± 0.005 ± 0.004 ± 0.008 ±0.009 ± 0.003 ± 0.004 ± 0.006 ±0.007

RotatE 0.210 0.162 0.244 0.359 0.201 0.160 0.214 0.268 0.070 0.065 0.068 0.091
RotatE (std) ± 0.010 ± 0.006 ± 0.010 ±0.009 ± 0.009 ± 0.006 ± 0.005 ±0.008 ± 0.004 ± 0.003 ± 0.008 ±0.008

RE-NET 0.233 0.220 0.281 0.390 0.239 0.191 0.238 0.294 0.200 0.109 0.214 0.341
RE-NET (std) ± 0.008 ± 0.007 ± 0.008 ±0.010 ± 0.005 ± 0.007 ± 0.008 ±0.013 ± 0.010 ± 0.012 ± 0.014 ±0.019

LAN 0.200 0.144 0.209 0.310 0.162 0.108 0.178 0.273 0.188 0.089 0.176 0.317
LAN (std) ± 0.007 ± 0.008 ± 0.004 ±0.006 ± 0.010 ± 0.006 ± 0.008 ±0.011 ± 0.008 ± 0.009 ± 0.011 ±0.013

I-GEN 0.237 0.216 0.291 0.402 0.223 0.185 0.230 0.287 0.177 0.092 0.212 0.337
I-GEN (std) ± 0.011 ± 0.010 ± 0.014 ±0.017 ± 0.009 ± 0.009 ± 0.012 ±0.013 ± 0.010 ± 0.014 ± 0.013 ±0.020

T-GEN 0.260 0.200 0.278 0.379 0.240 0.193 0.248 0.319 0.161 0.111 0.185 0.259
T-GEN (std) ± 0.029 ± 0.020 ± 0.030 ±0.032 ± 0.023 ± 0.019 ± 0.022 ±0.028 ± 0.032 ± 0.027 ± 0.030 ±0.031

MetaDyGNN 0.316 0.265 0.332 0.496 0.271 0.225 0.287 0.390 0.269 0.184 0.267 0.441
MetaDyGNN (std) ± 0.009 ± 0.006 ± 0.009 ±0.011 ± 0.010 ± 0.009 ± 0.014 ±0.018 ± 0.011 ± 0.009 ± 0.011 ±0.015

MetaTKGR 0.356 0.284 0.372 0.526 0.309 0.249 0.325 0.441 0.300 0.208 0.311 0.500
MetaTKGR (std) ± 0.013 ± 0.007 ± 0.012 ±0.010 ± 0.014 ± 0.013 ± 0.012 ±0.013 ± 0.011 ± 0.010 ± 0.012 ±0.014

new entity in meta-validation and meta-test sets. For temporal knowledge graph reasoning methods
RE-NET and RE-GCN, we train the models with training set, meta-training set as well as first K
quadruples of each new entity in meta-validation and meta-test sets. For baselines that optimize
few-shot entities on static knowledge graphs, we ignore all time information in quadruples. We
train them via training set and meta-training set, and adapt parameters via the first K quadruples of
each new entity in meta-validation and meta-test sets. As for MetaDyGNN, since it is designed for
homogeneous graphs, we adopt score function of TransE in the framework to support it on temporal
knowledge graphs. Similarly, training and meta-training sets are utilized to train initial model
parameters, then the few-shot facts of new entities are used to adapt entity-specific model parameters.
For fair comparisons, we keep the dimension of all embeddings as 128, we feed pre-trained 1-shot
TransE embeddings to those that require initial entity/relation embeddings, and we train all baseline
models and MetaTKGR on same GPUs (GeForce RTX 3090) and CPUs (AMD Ryzen Threadripper
3970X 32-Core Processor).

MetaTKGR Setup. We use training set to train MetaTKGR for parameter initialization, then we
simulate few-shot tasks by utilizing meta-training set to adapt model parameters and further improve
the temporal generalization ability. For new entities, we use initial K = 1, 2, 3 facts to fine-tune
entity-specific models. During evaluation, we tune hyperparameters based on MRR on meta-validation
set, and report the performance on the remaining facts on meta-test set. Next, we report the choices of
hyperparameters. For model training, we utilize Adam optimizer, and set maximum number of epochs
as 50. We set batch size as 20, the dimension of all embeddings as 128, and dropout rate as 0.5. For
the sake of efficiency, we set the neighbor budget b of temporal neighbor sampler as 16, and employ
1 neighborhood aggregation layer in temporal encoder. We divide query sets into 3 time intervals to
simulate the real scenario. We perform a single step of gradient descent for inner loop optimization.
We mainly tune margin value γ in score functions in range {0.3, 0.4, 0.5, 0.6, 0.7}, inner/outer loop
learning rate η and β in range {0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001}. For YAGO
and ICEWS18, we set γ = 0.5, η = β = 0.0001. For WIKI, we set γ = 0.4, η = 0.00005, and
β = 0.0001.

5



Table 3: The results of 3-shot temporal knowledge graph reasoning.
Models YAGO WIKI ICEWS18

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
TransE 0.223 0.158 0.242 0.360 0.161 0.111 0.171 0.236 0.058 0.052 0.062 0.098

TransE (std) ± 0.006 ± 0.004 ± 0.007 ±0.011 ± 0.007 ± 0.008 ± 0.010 ±0.011 ± 0.004 ± 0.002 ± 0.007 ±0.006

TransR 0.234 0.165 0.259 0.382 0.183 0.138 0.188 0.245 0.061 0.062 0.073 0.109
TransR (std) ± 0.009 ± 0.007 ± 0.010 ±0.013 ± 0.004 ± 0.003 ± 0.006 ±0.008 ± 0.007 ± 0.003 ± 0.005 ±0.008

RotatE 0.241 0.182 0.278 0.409 0.232 0.171 0.223 0.284 0.078 0.074 0.082 0.128
RotatE (std) ± 0.012 ± 0.007 ± 0.013 ±0.011 ± 0.007 ± 0.010 ± 0.007 ±0.010 ± 0.006 ± 0.007 ± 0.009 ±0.011

RE-NET 0.261 0.210 0.298 0.410 0.261 0.210 0.251 0.331 0.232 0.139 0.241 0.369
RE-NET (std) ± 0.010 ± 0.009 ± 0.009 ±0.012 ± 0.006 ± 0.009 ± 0.011 ±0.010 ± 0.012 ± 0.009 ± 0.012 ±0.018

LAN 0.230 0.154 0.247 0.352 0.185 0.133 0.201 0.287 0.207 0.119 0.234 0.321
LAN (std) ± 0.010 ± 0.007 ± 0.009 ±0.012 ± 0.015 ± 0.014 ± 0.011 ±0.007 ± 0.009 ± 0.014 ± 0.015 ±0.013

I-GEN 0.303 0.238 0.323 0.420 0.221 0.179 0.229 0.264 0.212 0.120 0.251 0.346
I-GEN (std) ± 0.013 ± 0.011 ± 0.011 ±0.015 ± 0.017 ± 0.013 ± 0.016 ±0.020 ± 0.014 ± 0.012 ± 0.019 ±0.012

T-GEN 0.292 0.218 0.310 0.394 0.234 0.185 0.222 0.271 0.169 0.122 0.184 0.265
T-GEN (std) ± 0.027 ± 0.024 ± 0.028 ±0.041 ± 0.028 ± 0.021 ± 0.030 ±0.033 ± 0.016 ± 0.013 ± 0.020 ±0.022

MetaDyGNN 0.350 0.270 0.379 0.511 0.309 0.238 0.309 0.459 0.307 0.216 0.309 0.469
MetaDyGNN (std) ± 0.013 ± 0.009 ± 0.011 ±0.014 ± 0.008 ± 0.006 ± 0.011 ±0.013 ± 0.006 ± 0.004 ± 0.007 ±0.011

MetaTKGR 0.370* 0.303* 0.416* 0.558* 0.329* 0.253* 0.335* 0.489* 0.335* 0.249* 0.340* 0.527*
MetaTKGR (std) ± 0.016 ± 0.012 ± 0.015 ±0.008 ± 0.012 ± 0.014 ± 0.012 ±0.014 ± 0.009 ± 0.015 ± 0.014 ±0.010

A.5 Detailed Experimental Results

In this section, we report the complete experimental results of 1/2/3-shot temporal knowledge graph
reasoning tasks in Table 1, 2, 3, measured by MRR and Hit@{1, 3, 10}. Average results on 5
independent runs with different random seeds are reported. ∗ indicates the statistically significant
improvements over the best baseline, with p-value smaller than 0.001. We also report the detailed
standard deviation for all models. MetaTKGR can beat all state-of-the-art baselines on all datasets,
and we observe that MetaTKGR and most baselines are stable w.r.t. the performance with small
standard deviations.
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