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Abstract

In this paper, we investigate a realistic but underexplored problem, called few-shot
temporal knowledge graph reasoning, that aims to predict future facts for newly
emerging entities based on extremely limited observations in evolving graphs. It
offers practical value in applications that need to derive instant new knowledge
about new entities in temporal knowledge graphs (TKGs) with minimal supervi-
sion. The challenges mainly come from the few-shot and time shift properties of
new entities. First, the limited observations associated with them are insufficient
for training a model from scratch. Second, the potentially dynamic distributions
from the initially observable facts to the future facts ask for explicitly modeling
the evolving characteristics of new entities. We correspondingly propose a novel
Meta Temporal Knowledge Graph Reasoning (MetaTKGR) framework. Unlike prior
work that relies on rigid neighborhood aggregation schemes to enhance low-data
entity representation, MetaTKGR dynamically adjusts the strategies of sampling
and aggregating neighbors from recent facts for new entities, through temporally
supervised signals on future facts as instant feedback. Besides, such a meta tempo-
ral reasoning procedure goes beyond existing meta-learning paradigms on static
knowledge graphs that fail to handle temporal adaptation with large entity variance.
We further provide a theoretical analysis and propose a temporal adaptation regu-
larizer to stabilize the meta temporal reasoning over time. Empirically, extensive
experiments on three real-world TKGs demonstrate the superiority of MetaTKGR
over state-of-the-art baselines by a large margin.

1 Introduction

Temporal Knowledge Graphs (TKGs) [34, 3, 22, 55] store temporally evolving facts (By fact, we
refer to a subject entity has a relation with an object entity at some time, e.g., “Macron” was “elected”
as “French president” in “2017”). It has been increasingly used in various knowledge-driven and
time-sensitive applications, such as social event forecasting [38, 24, 53], question answering [40],
and recommendation [70, 69, 54]. Large scale TKGs are hard to obtain due to the time-varying nature
of labels and the excessive cost of human annotation. As such, automating prediction and reasoning
about missing facts over time has attracted more recent interest [47, 10, 13, 48, 20]. However, most
prior efforts are limited to reasoning about existing entities but neglecting the commonly observed
low-data regime where many new entities emerge with extremely few observations as new events or
topics evolve over time [44]. This restricts their applicability.

Instead, inspired by the human ability to recognize new concepts from exposure to only very few
instances, we propose and solve a practical and challenging few-shot temporal knowledge graph
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reasoning problem that specifically aims to predict future facts for newly emerging entities with a
few observed links on TKGs. Existing efforts [15, 52, 1, 8] in similar settings simplify the task by
ignoring the emergence of new entities over time and randomly simulating unseen entities on static
knowledge graphs. This formulation, originating from few-shot learning in the vision domain [11, 39],
fails at capturing the real-world divergence between the distributions of seen and unseen entities. To
the best of our knowledge, the generalized few-shot temporal reasoning task, that aims to imitate the
fast learning ability of humans, has still not been formally investigated.

The challenges in solving this problem are two-fold: 1) few-shot: the extremely few facts associated
with new entities cannot provide sufficient information for representation learning from scratch. 2)
time shift: new entities usually exhibit different characteristics in the future, due to the time-evolving
nature of TKGs. It leads models to generalize poorly in the future. Unfortunately, prior work fails to
overcome these two challenges simultaneously.

On one hand, to enhance low-data entity characterization, a diverse range of neighborhood aggregation
schemes that retrieve related information from other entities are explored, such as hard subgraph
sampling methods (e.g., vanilla hop-based sampling [41], random sampling [16], personalized
Pagerank sampling [66, 54], importance sampling [6], etc) and soft sampling via trainable attention
mechanisms [47, 48, 20]. However, those rigid methods cannot well adapt to the new entities with
the time-varying distributions due to the lack of instant supervision. On the other hand, recent
attempts [1, 68, 18, 4] leverage meta-learning to improve unseen entity adaptation. While the setup
for unseen entities is simulated by randomly splitting entity sets from static graphs, they fail to handle
the more realistic temporal adaptation with large entity variances.

To overcome both the aforementioned challenges, we propose a novel Meta Temporal Knowledge
Graph Reasoning (MetaTKGR) framework, where learning the strategies for sampling and aggregating
neighbors from recent facts (to enhance the new entities’ predictions) can be dynamically adapted
from signals of temporal supervision on their future facts as instant feedback. Intuitively, the global
knowledge of sampling and aggregating can be extracted as learning to learn ability through such a
meta-optimization, which takes the time-evolving nature of knowledge into consideration, avoiding
progressive performance drift over time. Concretely, we formulate this learning strategy to be
parameterized by a temporal encoder. On the simulated new entities during training phase, starting
from the initial few-shot links, the temporal encoder can softly sample and attentively integrate
relative and time-aware information from the temporal neighbors, making the strategy learning
(neighbor sampling + aggregation) differentiable. The quantitative measurement of how well the
current strategy performs can be reflected in the performance on predicting future facts allowing
one to automatically adjust the strategy in turn. During the nested loop for meta-optimization, we
firstly learn the temporal encoder on recent facts (inner loop), then gradually increase the difficulties
by autoregressively adapting it to farther away future facts (outer loop). Furthermore, to better
estimate the supervision signal given by future facts in different and unseen distributions, we adopt
the PAC-Bayes method [35] to theoretically analyze the temporal adaptation bound on the future facts.
This can serve as an adaptation regularizer to provide stability and improve the generalization ability
of current strategy over time. Empirically, extensive experiments on three real-world TKGs validate
the effectiveness of MetaTKGR, which significantly outperforms all baselines from static/temporal KG
reasoning and few-shot (knowledge) graph learning areas, by up to 11.4% relative gain on average
with competitive efficiency. To sum up, our main contributions are three-fold:

• Problem formulation: We explore a practical few-shot temporal knowledge graph reasoning
setting, minimizing the gap with the realistic few-shot learning scenarios for humans;

• Novel framework: We propose a novel meta temporal reasoning framework on TKGs,
namely MetaTKGR, to address both few-shot and time shift challenges;

• Extensive evaluation: the proposed MetaTKGR method demonstrates significant gains in
effectiveness on three real-world TKGs over a diverse range of state-of-the-art baselines.

2 Problem Definition

In this section, we formally define the few-shot temporal knowledge graph reasoning task. First of
all, a temporal knowledge graph can be defined as follows:
Definition 2.1 (Temporal Knowledge Graph). A temporal knowledge graph can be denoted as
GT = {(es, r, eo, t)} ✓ ET ⇥R⇥ ET ⇥ T , where ET denotes a set of entities that appear in time
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interval (0, T ), R denotes relation set, and T denotes timestamp set. Each temporal link (es, r, eo, t)
refers to the fact that a subject entity es 2 ET has a relation r 2 R with an object entity eo 2 ET at
timestamp t 2 T .

As a temporal knowledge graph evolves, new entities continuously emerge, leading to an expansion
of the entities set ET over time. We further define new entities as follows:
Definition 2.2 (New Entities in a Temporal Knowledge Graph). Given a time interval (T, T 0)
(T 0

> T ), entities that join the graph during (T, T 0), i.e., ẽ 2 ET 0 \ ET (\ denotes setminus), are
defined as new entities on time interval (T, T 0).

Knowledge graph reasoning (KGR) is essentially the problem of predicting missing facts in the
partially observed KG. While existing few-shot KGR models simulate unseen entities by randomly
selecting from the existing entities, we focus specifically on predictions for newly emerging entities
over time, which can be formalized as few-shot temporal knowledge graph reasoning task:
Definition 2.3 (Few-shot Temporal Knowledge Graph Reasoning). Given a temporal knowledge
graph GT collected no later than T , for each new entity ẽ 2 ET 0 \ ET (T 0

> T ), we assume the first
K associated facts are observed: {(ẽ, ri, ei, ti) or (ei, ri, ẽ, ti)}Ki=1. The task aims to predict the
missing entities in the future facts (ẽ, r, ?, t) or (?, r, ẽ, t) given the relation r 2 R and specific time
t 2 (T, T 0). We further assume K is a small number, as a realistic setting.

3 Learning to Sample And Aggregate with MetaTKGR

In this section, we present a novel framework MetaTKGR to solve the few-shot temporal knowledge
graph reasoning problem. We first introduce the basic setup of our learning objective and the overall
framework, and then detail the temporal encoder module to represent new entities, followed by
introduction of meta temporal reasoning for model training.

3.1 Learning Objective

Suppose we are given a temporal knowledge graph GT = {(es, r, eo, t)} ✓ ET ⇥ R ⇥ ET ⇥ T
collected no later than time T . For each new entity ẽ appearing within a later interval (T, T 0), we
aim to predict future links (ẽ, r, e, t) or (e, r, ẽ, t) happening at timestamp t 2 (T, T 0). Towards this
goal, we measure correctness of each possible quadruple by a score function s(·;�) parameterized
by �, and maximize the scores of true quadruples containing any new entities in order to rank them
higher than all other false quadruples:

max
�

Eẽ⇠p(Ẽ)[s(ẽ, r, e, t;�) or s(e, r, ẽ, t;�)], where Ẽ = ET 0
\ ET , t 2 (T, T 0), (1)

where p(Ẽ) denotes distribution of all new entities, � denotes parameters of model to represent
entity/relation into d-dimensional space hẽ,he,hr 2 Rd. To represent ẽ into hẽ via � , as aforemen-
tioned, the challenges lie in how to enable � to encode generalized knowledge (how to sample and
aggregate temporal neighbors) that can be easily adapted to new ẽ and achieve robust performance
over time, even for a long time interval (T, T 0). We thereby formulate few-shot temporal knowledge
graph reasoning as a meta-learning problem to extract such knowledge.

3.2 MetaTKGR Framework

Figure 1 shows the MetaTKGR framework. To be more formal, each task corresponds to each
new entity ẽ over distribution p(Ẽ), and the links can be represented as a chronological sequence
{(ẽ, ri, ei, ti) or (ei, ri, ẽ, ti)|ti 2 (T, T 0), ti  tj if i < j}Nẽ

i=1, where Nẽ denotes total number of
links associated to ẽ. Then we divide them into support set Sẽ = {(ẽ, ri, ei, ti) or (ei, ri, ẽ, ti)}Ki=1,
and query set Qẽ = {(ẽ, ri, ei, ti) or (ei, ri, ẽ, ti)}Nẽ

i=K+1, where K denotes the amount of initially
observable facts of ẽ.

During the meta-training phase, we simulate a set of new entities from existing entity set by assuming
there are only few-shot links of these entities (support set Sẽ). The model first fine-tunes parameters
� on Sẽ (inner loop), and then minimizes the predictive loss on corresponding query set Qẽ using the
updated parameters �ẽ (outer loop). It optimizes the global sampling and aggregation strategy as
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Figure 1: An overview of MetaTKGR framework. (a) Task illustration; (b) Temporal encoder pa-
rameterized by � samples and aggregates information from temporal neighbors; (c) Meta temporal
reasoning adopts a bi-level optimization to learn �. In the inner optimization: MetaTKGR initializes
entity-specific parameters from global parameters via step (1), and fine-tunes them on support set
via step (2) to optimize entity-specific parameters; In the outer optimization, MetaTKGR optimizes
global parameters on query set via step (3) to learn good and robust global parameters.

generalized knowledge (i.e., learning to learn ability) by this bi-level optimization, as this procedure
mimics the normal machine learning and inference process. For simplicity, to represent new entity
ẽ along time, we denote f�ẽ as the temporal encoder parameterized by �ẽ, L(f�ẽ ,Sẽ) as model
predictive loss on Sẽ. Model-agnostic meta-learning (MAML) [11] can be utilized to fulfill this goal
as follows:

�⇤  � argmin
�

Eẽ⇠p(Ẽ) [L(f�ẽ ,Qẽ)] , where �ẽ = �� ⌘
@L(f�,Sẽ)

@�
, (2)

where ⌘ denotes inner-loop learning rate. However, this training strategy cannot guarantee good
generalization ability over time (challenge 2), as they assume identical distributions between Sẽ and
Qẽ, contradicting the facts that new entities are highly evolving over time on TKGs. To coherently
resolve the two challenges, we advance the existing few-shot KG reasoning works by proposing:

• Temporal encoder, which learns the time-aware representation of each new entity ẽ by
sampling and aggregating information from TKG neighbors on continuous domain.

• Meta temporal reasoning, which learns an optimal sampling and aggregating parameters via
bi-level optimization (inner optimization and outer optimization). The learned parameters
can be easily adapted to new entities and maintain temporal robustness.

3.3 Temporal Encoder

Algorithm 1: Temporal Neighbor Sampler.
Input: New entity ẽ, temporal knowledge graph Gt, current

timestamp t, neighbor budget b, time bound �t.
Output: Temporal Neighbor Nẽ(t).
Initialize Queue ẽ, Nẽ(t) {};
while |Nẽ(t)| < b and Queue is not empty do

e Queue.dequeue();
for each (es, r, eo, t) in Gt do

if es == e and t > tmax ��t then
Add (es, r, t) to Nẽ(t), Add es to Queue;

if eo == e and t > tmax ��t then
Add (eo, r, t) to Nẽ(t), Add eo to Queue;

On temporal knowledge graphs, entities
are evolving over time. The temporal en-
coder f� is to embed each entity ẽ into
low-dimensional latent space at each
time: hẽ(t) 2 Rd, where it can model
the temporal pattern of ẽ along time. By
doing so, it resolves the scarcity issues
caused by few-shot links to some ex-
tent. Towards this goal, f� first samples
temporal neighbors from TKGs, then at-
tentively aggregates information from
the temporal neighbors of each entity,
which takes neighbor feature, relation
feature and time feature into account.

To better represent few-shot entities, a wider range of neighbors should be considered, as the close
neighbors around the new entities are usually insufficient. Conventionally, stacking several graph
neural networks (GNNs)-based layers can integrate information from multi-hop neighbors [41, 16].
In few-shot cases, such layer-by-layer procedure faces difficulties. For one thing, the limited one-hop
neighbors can dominate the aggregation process, as the information of multi-hop neighbors is all
propagated from them to the target entity. Also, the size of neighbors grows exponentially with
the increase of GNN layers, as they collect all neighbors in each hop without strategic selection,
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causing severe efficiency issues. Instead, our temporal encoder first samples multi-hop neighbors via
a time-bounded breadth-first-search algorithm, then aggregates information directly from the sampled
neighbors in an attentive manner. As summarized in Algorithm 1, at each time, it selectively samples
up to b multi-hop temporal neighbors Nẽ(t) which have interactions within a recent time range �t.
Given the temporal neighbor Nẽ(t) for each new entity, temporal encoder f� represents a new entity
as hẽ(t) at time t:

hl
ẽ(t) = �

0

@
X

(ei,ri,ti)2Nẽ(t)

↵ẽ,ei

⇣
hl�1
ei (ti)W

⌘
1

A , (3)

where l denotes the layer number, �(·) denotes the activation function ReLU, ↵ẽ,ei denotes the
attention weight of entity i to new entity ẽ, and W is the trainable transformation matrix. To
aggregate from history, ↵ẽ,ei is supposed to be aware of entity feature, time delay and topology
feature induced by relations. Thus, we design ↵ẽ,i as follows:

↵ẽ,ei =
exp(qẽ,ei)P

(ek,rk,tk)2Nẽ(t)
exp(qẽ,ek )

, qẽ,ei = a
⇣
hl�1
ẽ khl�1

ei khrik�(t� ti)
⌘
, (4)

where qẽ,ei measures the pairwise importance by considering the entity embedding, relation embed-
ding and time embedding, a 2 R4d is the shared parameter in the attention mechanism. Following [9]
we adopt random Fourier features as time encoding �(�t) to reflect the time difference.

3.4 Meta Temporal Reasoning

Let hL
ẽ (t) denote the representations of new entity ẽ produced by f� with L layers. For each

quadruple (ẽ, r, e, t), we employ a translation-based score function [2] to measure the correctness:
s(ẽ, r, e, t;�) = �khL

ẽ (t) +hr �hL
e (t)k2. We first fine-tune f� on support set Sẽ for entity-specific

parameters f�ẽ , and then optimize training loss on query set Qẽ to learn the global parameters shared
by all entities. To calculate the predictive loss, since each set only contains positive quadruples, we
perform negative sampling [2] to update MetaTKGR by training it to rank positive quadruples higher
than negative ones. Specifically, taking the support set Sẽ of entity ẽ as an example, we construct a
negative set S�

ẽ = {(ẽ, r, e�, t) or (e�, r, ẽ, t)} by replace the ground truth entity e with a corrupted
entity e

�. We then use empirical hinge loss on the given set as follows:

L̂(f�ẽ ,Sẽ) =
X

(es,r,eo,t)2Sẽ

X

(es,r,eo,t)�2S�
ẽ

max
�
� � s(es, r, eo, t) + s(es, r, eo, t)

�, 0
�
, (5)

where � > 0 is a margin value to distinguish positive and negative quadruples.

Algorithm 2: MetaTKGR: Meta-training.
Input: Temporal knowledge graph GT ✓ ET ⇥R⇥ ET ⇥ T ,

randomly initialized �.
Output: Learned global parameter �.
Simulate new entity set Ẽ from ET ;
Train model parameter � from many-shot entities ET \ Ẽ ;
Construct Sẽ and Qẽ for each new entity ẽ, where
Qẽ = {Q(1)

ẽ ,Q(2)
ẽ , · · · ,Q(M)

ẽ };
while � not converge do

for each time interval m do
# Outer optimization:
for each new entity ẽ do

# Inner optimization:
Calculate L̂(f�,Sẽ) on Sẽ by Eq. 5;
Perform adaptation by Eq. 6 to update �ẽ;
Calculate L̂(f�ẽ ,Q

(m)
ẽ ) by Eq. 5;

Calculate temporal adaptation regularizer by Eq. 8;
Update �(m) by Eq. 9;
� �(m)

Inner optimization: For each task
corresponding to new entity ẽ ⇠ p(Ẽ),
we first adapt the global parameter �
for each new entity ẽ by minimizing
the predictive loss on the support set
Sẽ:

�ẽ = �� ⌘
@L̂(f�,Sẽ)

@�
, (6)

where ⌘ is the inner loop learning rate.
By Eq. 6, we simulate the adaption for
new entities. Updating from an opti-
mal global parameter �, the model is
fine-tuned into entity-specific for new
entities. Thus, it is crucial to design a
meta-learning strategy to learn an op-
timal global parameter � with a robust
generalization ability over time.

Outer optimization: Since new enti-
ties evolve over time, it is not only Qẽ

but also each part of Qẽ that follows
different distributions. Thus, instead of optimizing the meta-learner on the whole query set Qẽ at
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once by Eq. 2, we first adapt entity-specific parameters �ẽ to recent facts, then gradually increase
the difficulties by autoregressively adapting it to farther away future facts. Through this process, we
are able to guide and stablize the training of global parameters via a temporal signal. Specifically,
we split the time span of query sets into M time intervals, where each new entity has a sequence of
query set corresponding to different time intervals Qẽ = {Q(1)

ẽ ,Q(2)
ẽ , · · · ,Q(M)

ẽ }. We first adapt
and optimize �ẽ for each new entity on Q(1)

ẽ for �(1) encoding global knowledge for predictions in
the 1-st time interval. Then we gradually adapt each �ẽ fine-tuned from last time interval on farther
away intervals until �(M) is learned, which maintain temporal robustness from time interval 1 to M .

We then discuss how to measure the feedback (predictive loss) from each adaptation. To simulate
real scenarios, we assume query sets to follow different and unseen distributions. Taking adaptation
from m-th time interval to m+ 1-th time interval as example, we view p(�(m)) as prior parameter
distribution and aim to learn the posterior parameter distribution q(�(m+1)) conditioning on query
set in m+ 1-th interval. The unseen query set distribution in m+ 1-th interval prevent us to estimate
q(�(m+1)) by either using unbiased empirical loss or Bayes rules. To resolve this, we instead adopt
the PAC-Bayes method [35], which allows one to learn a parameter posterior that fits the observations
without knowing the observations distribution. We propose the following theorem to relate real
predictive loss in new time interval with its empirical verson:

Theorem 3.1 (PAC-Bayes Generalization Bound on Temporal Adaptation). Let D(m+1) =S
ẽ2Ẽ Q

(m+1)
ẽ denote all query sets in m + 1-th time interval of all new entities from Ẽ . For any

� 2 (0, 1) and learned parameter distribution p(�(m)) in last time interval, with probability at least
1� � on D(m+1):

L(f�(m) ,D(m+1))  L̂(f�(m) ,D(m+1)) +

s
KL(q(�(m+1))kp(�(m))) + log |D(m+1)|

�

2|D(m+1)|� 1
, (7)

where L(f�(m) ,D(m+1)) = Eẽ⇠p(Ẽ)

h
L(f

�(m)
ẽ

,Q(m+1)
ẽ )

i
denotes real predictive loss on new time

interval with new and unknown data distribution, L̂(f�(m) ,D(m+1)) denote the empirical version of
the loss, and KL(·k·) is the Kullback-Leibler divergence.

Readers can refer to Appendix A.1 for proof. Thus, using Theorem 3.1, we can adapt �(m) to m+ 1
time interval and estimate the feedback (predictive loss) for our meta-learning framework via the
following temporal adaptation regularizer:

R(f�(m) ;D(m+1)) , L̂(f�(m) ,D(m+1)) +

s
KL(q(�(m+1))kp(�(m))) + log |D(m+1)|

�

2|D(m+1)|� 1
. (8)

Remark. To interpret the temporal adaptation regularizer R(f�(m) ;D(m+1)), it can be viewed as a
combination of empirical risk on the query set in the new time interval as well as a regularizer of
parameter distribution across time intervals in form of KL-divergence. The regularizer along time
domain can guarantee that global knowledge � is trained by predictive losses from all time intervals
without overfitting in specific time interval. Thus, we can improve the generalization ability of our
meta-learner over time by the following update step by step, from m = 1 to m = M :

�(m+1) = �(m) � �
@R(f�(m) ;D(m+1))

@�
, (9)

where �
(0) can be obtained by training on existing entities. The meta-training phase of MetaTKGR is

summarized in Algorithm 2. During meta-test phase, given a new entity ẽ, we can first fine-tune � on
few-shot links, and then utilize f�ẽ to represent ẽ for future predictions.

4 Experiments
Datasets. We evaluate the proposed MetaTKGR framework on three public TKGs, where YAGO [34]
and WIKI [22] stores time-varying facts and ICEWS18 [3] is event-centric. They are collected from
different time ranges and have different time units, which can validate our framework in the context
of various types of evolution. Notably, most new entities appear with few-shot facts, validating the
practical value of our proposed setting. Table 1 shows the detailed statistics. We report detailed
dataset descriptions as well as entity links distribution in the Appendix A.2.
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Table 2: The results of 3-shot temporal knowledge graph reasoning. Average results on 5 independent
runs are reported. ⇤ indicates the statistically significant improvements over the best baseline, with
p-value smaller than 0.001. We report standard deviation in Appendix A.5

Models YAGO WIKI ICEWS18
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE 0.223 0.158 0.242 0.360 0.161 0.111 0.171 0.236 0.058 0.052 0.062 0.098
TransR 0.234 0.165 0.259 0.382 0.183 0.138 0.188 0.245 0.061 0.062 0.073 0.109
RotatE 0.241 0.182 0.278 0.409 0.232 0.171 0.223 0.284 0.078 0.074 0.082 0.128

RE-NET 0.261 0.210 0.298 0.410 0.261 0.210 0.251 0.331 0.232 0.139 0.241 0.369
RE-GCN 0.283 0.226 0.307 0.421 0.277 0.223 0.262 0.344 0.233 0.142 0.238 0.350

LAN 0.230 0.154 0.247 0.352 0.185 0.133 0.201 0.287 0.207 0.119 0.234 0.321
I-GEN 0.303 0.238 0.323 0.420 0.221 0.179 0.229 0.264 0.212 0.120 0.251 0.346
T-GEN 0.292 0.218 0.310 0.394 0.234 0.185 0.222 0.271 0.169 0.122 0.184 0.265

MetaDyGNN 0.350 0.270 0.379 0.511 0.309 0.238 0.309 0.459 0.307 0.216 0.309 0.469
MetaTKGR 0.370* 0.303* 0.416* 0.558* 0.329* 0.253* 0.335* 0.489* 0.335* 0.249* 0.340* 0.527*
Gains (%) 5.68 12.21 9.80 9.19 6.26 6.38 8.47 6.35 9.11 14.85 9.89 12.4

Table 3: The results of 1-shot and 2-shot experiment. We report complete results in Appendix A.5.
YAGO WIKI ICEWS18

1-shot 2-shot 1-shot 2-shot 1-shot 2-shotModels
MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

TransE 0.183 0.268 0.193 0.304 0.144 0.186 0.146 0.213 0.049 0.077 0.058 0.086
TransR 0.189 0.270 0.198 0.312 0.160 0.183 0.160 0.225 0.050 0.080 0.060 0.090
RotatE 0.215 0.280 0.210 0.359 0.175 0.190 0.201 0.268 0.068 0.098 0.070 0.091

RE-NET 0.221 0.304 0.233 0.390 0.212 0.259 0.239 0.294 0.185 0.250 0.200 0.341
RE-GCN 0.233 0.320 0.241 0.407 0.223 0.250 0.247 0.310 0.193 0.247 0.205 0.347

LAN 0.196 0.269 0.200 0.310 0.174 0.275 0.162 0.273 0.170 0.301 0.188 0.317
I-GEN 0.238 0.321 0.237 0.402 0.181 0.241 0.223 0.287 0.199 0.320 0.177 0.337
T-GEN 0.247 0.331 0.260 0.379 0.202 0.245 0.240 0.319 0.131 0.262 0.161 0.259

MetaDyGNN 0.269 0.396 0.316 0.496 0.241 0.371 0.271 0.390 0.249 0.420 0.269 0.441
MetaTKGR 0.294* 0.428* 0.356* 0.526* 0.277* 0.419* 0.309* 0.441* 0.295* 0.496* 0.301* 0.500*
Gains (%) 9.43 8.04 12.69 6.14 14.64 12.93 14.04 13.20 18.45 17.87 11.47 13.39

Table 1: Dataset statistics.

Datasets # Entities # Relations # Quadruples Time Unit
YAGO 10,623 10 201,090 1 year
WIKI 12,554 24 669,935 1 year

ICEWS18 23,033 256 281,205 1 day

Baselines. We compare nine state-of-the-art
baselines from four related areas: 1) TransE [2],
2) TransR [33], 3) RotatE [46]: Translation
distance based embedding methods for static
knowledge graphs; 4) RE-NET [20], 5) RE-
GCN [31]: Temporal knowledge graph embedding methods; 6) LAN [52]; 7) I-GEN [1]; 8)
T-GEN [1]: Few-shot methods on static knowledge graph; 9)MetaDyGNN [65]: A meta-learning
framework for few-shot link prediction on homogeneous graphs. We describe the baselines in detail
in Appendix A.3.

Experimental Setup. Given the temporal knowledge graph, we first split the time duration into four
with a ratio of 0.4:0.25:0.1:0.25 chronologically, then we collect the entities that firstly appear in
each period as background/meta-training/meta-validation/meta-test entity set. We train our model
on background set as initialization and simulate few-shot tasks on meta-training set. To construct
few-shot tasks, we assume the first K = 1, 2, 3 quadruples of new entities are known and report the
performance of the remaining quadruples in the future. For fair comparison, we keep the dimension of
all embeddings as 128, and utilize pre-trained 1-shot TransE embeddings for initialization for models
if applicable. We report detailed experimental setup, especially of MetaTKGR, in the Appendix A.4.

Evaluation Protocol and Metrics. For each prediction (ẽ, r, ?, t) or (?, r, ẽ, t), we use ranking
scheme to evaluate the performance. Specifically, we rank all entities at the missing position in
quadruples, and adopt mean reciprocal rank (MRR) and Hits at {1,3,10} (H@{1,3,10}) as evaluation
metrics. It is worth noting that we measure the ranks in a filtered setting, where we filter other true
quadruples existing in datasets, following [33, 46].

Main Results. Table 2 and Table 3 report overall result for K = 3 and K = 1, 2 few-shot experiments
respectively. On average, MetaTKGR achieves 11.4% relative improvement over best baseline model,
demonstrating the superiority of MetaTKGR in modeling new entity evolution in low-data regime.
Baselines (TransE, TransR, RotatE, RE-NET) that do not optimize for new entities perform poorly on
all datasets, although they are trained on both existing entities and new entities with few-shot links.
LAN, I-GEN, T-GEN also produce unsatisfying results, despite the fact that they propose special
designs to represent new entities. Note that they have worse performance in some cases than RE-NET
that does not optimize for new entities, as they ignore the temporal information and perform poorly in
future predictions. Compared with MetaDyGNN, MetaTKGR shows consistently better performance,
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because our temporal encoder can handle multi-relational graphs in low-data regimes better, and our
temporal meta-learning framework can produce more robust predictions.

Figure 2: Performance of YAGO (left) and ICEWS18 (right) over time.

Performance of Predic-
tion over Time. Next,
we study the performance
of MetaTKGR over time.
Figure 2 shows the per-
formance comparisons of
3-shot predictions over
different timestamps on
the YAGO and ICEWS18
datasets, measured by
filtered H@10 metrics. MetaTKGR consistently beats all strong baselines. Although the compared
baselines can optimize newly emerging entities, they perform poorly in wide time intervals because
they largely ignore the temporal information and the distribution discrepancy caused by evolution.
We notice that the relative gains of our model get more significant with increasing time steps. It
illustrates that our temporal meta-learning framework can improve the generalization ability over
time. Performance on ICEWS18 fluctuates more severely. This is expected since the evolution of
ICEWS18 is not stable due to the much shorter time unit (day).

Figure 3: Ablation Studies, evaluated by filtered Hit@10.

Ablation Study. We evaluate performance improvements brought by the temporal meta-learning
framework by following ablations: 1) Fine-Tuning is trained on existing entities without using any
meta-learning strategy, and then fine-tuned on new entities; 2) Static Meta-Learning utilizes conven-
tional MAML to train models; 3) MetaTKGR w/o Regularizer meta-trains model parameters on each
time interval step by step, without explicitly optimizing the temporal adaptation regularizer. Figure 3
reports the results measured by filtered H@10. We can conclude that modeling the distribution
discrepancy caused by the temporal evolution and optimizing the temporal adaptation regularizer can
improve the performance in the future prediction. Also, simply fine-tuning the model parameters on
new entities leads to poor results, as during background phase, the model does not extract generalized
knowledge that can be easily adapted to new entities.

1-Shot (Training) 3-Shot (Training)
Test MRR H@1 H@10 MRR H@1 H@10
1-S 0.294 0.240 0.428 0.281 0.242 0.403
3-S 0.354 0.297 0.540 0.370 0.303 0.558
5-S 0.377 0.360 0.569 0.389 0.369 0.591
R-S 0.358 0.304 0.542 0.377 0.316 0.570

Table 4: Cross-shot results on YAGO.
Figure 4: MRR over training time.

Cross-shot Learning. In reality, new entities are usually associated with various numbers of facts
initially. Thus, the robustness of models on different numbers of shots during testing phase is critical.
To simulate such scenario, we evaluate MetaTKGR by varying the number of shots including 1-, 3-, 5-,
and random-shot (R-S: between 1 and 5) during meta-training and meta-test phases. Table 4 reports
the cross-shot learning results. As expected, with the increase of observable shots during testing
phase, the performance becomes better. The differences in the number of shots used for training do
not significantly affect the results, demonstrating that MetaTKGR trained with a fixed number of shots
performs robustly under the various number of shots during testing.
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Efficiency Analysis. We train MetaTKGR and baseline models from scratch on both existing entities
and new entities and compare the training time, for the 3-shot experiment on YAGO. Figure 4 shows
that MetaTKGR significantly outperforms baseline models with reasonable training time. Compared
with slow temporal models RE-NET, MetaDyGNN for knowledge graph reasoning, MetaTKGR is more
efficient because 1) our temporal encoder can learn temporal entity embeddings via sampled temporal
neighbors at each continuous timestamp without using RNNs; 2) our temporal neighborhood sampler
can prevent the size of multi-hop neighbors from increasing exponentially.

5 Related Work
Few-shot Learning on Knowledge Graph. To alleviate data scarcity, various advanced techniques
have emerged, such as transfer learning [37, 25], semi-supervised learning [5], domain adaptation [30,
27, 28, 26] and few-shot learning (FSL) [56, 67]. Few-shot learning aims at learning generalized
knowledge from existing tasks to extract transferable priors for new tasks with few labeled samples,
including metric learning based approaches [50, 45] and meta-learning based approaches [11, 39,
12, 29]. For knowledge graph reasoning, the success of few-shot learning has facilitated learning
the representations of scarce entities [15, 52, 43, 1] and scarce relations [68, 58, 7, 36] respectively.
In this paper, we are primarily interested in works to represent entities with few-shot facts, as
relation set is relatively stable along time [44]. Given a new entity linked with few-shot facts,
the neighborhood aggregator used in graph neural networks (GNNs) reduces the inductive bias
via structural knowledge [21, 16, 41]. [15] computes the representations of few-shot entities by
GNN-based neighboring aggregation scheme. [52, 43, 36] further extend it by utilizing attention
mechanisms. However, those models are usually trained on both many-shot and few-shot entities,
ending up being suboptimal for few-shot entities. To address it, a recent work [1] explores how to
mate-train the neighborhood aggregator so as to effectively adapt global knowledge for few-shot
knowledge reasoning. Deep graph learning has been attracting enormous interest recently [21, 16, 51,
61, 63, 64, 62, 60, 23]. More broadly on graphs, Meta-Graph [4], G-Meta [18] and MetaDyGNN [65]
are proposed to utilize meta-learning for link prediction across multiple graphs, on static/temporal
homogeneous graphs. However, most works are designed for few-shot learning on static (knowledge)
graphs. How to aggregate neighbors considering time factors and optimize for long-term performance
are unsolved. MetaDyGNN [65] is a recent framework combining MAML with TGAT [9] on temporal
homogeneous graph. But it did not consider distribution difference between few-shot facts and future
facts caused by the evolution of new entities either, leading to increasingly poor performance over
time, especially on temporal knowledge graphs with more complicated structures.

Temporal Knowledge Graph Reasoning. Temporal knowledge graphs (TKGs) store time-varying
facts in the real-world. Temporal knowledge graph reasoning aims to predict missing facts at a
certain time in the future. It is mostly formulated as measuring the correctness of factual samples
and negative samples by specially designed score functions [2, 33, 49, 46, 13]. Compared with
static KG reasoning tasks [19], the main challenge lies in how to incorporate time information into
the representation process. Several embedding-based methods have been proposed. They encode
time-dependent information of entities and relations by decoupling embeddings into static component
and time-varying component [59, 14], utilizing recurrent neural networks (RNNs) to adaptively learn
the dynamic evolution from historical fact sequence [20, 57], or learning a sequence of evolving
representations from discrete knowledge graph snapshots [17, 32, 20]. However, all of the existing
temporal KG reasoning models aim to extrapolate future facts among existing entities, and how to
predict future facts specifically for new emerging entities is largely under-explored.

6 Conclusion
We study a realistic but underexplored few-shot temporal knowledge graph reasoning problem, which
aims at predicting future facts for newly emerging entities with a few facts. To this end, we propose a
novel Meta Temporal Knowledge Graph Reasoning framework MetaTKGR. It meta-learns the global
knowledge of sampling and aggregating temporal neighbors, which can be adapted quickly to new
entities for future prediction. Such procedure is gradually guided by the performance on predicting
future facts, from near time intervals to far away ones. We further theoretically analyze and propose a
temporal adaptation regularizer to stabilize and generalize the learned knowledge on future tasks. We
empirically validate the effectiveness of MetaTKGR on three real-world temporal knowledge graphs,
on which the proposed framework significantly outperforms an extensive set of SOTA baselines.
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