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Abstract

Chaotic systems are notoriously challenging to predict because of their sensitivity to1

perturbations and errors due to time stepping. Despite this unpredictable behavior,2

for many dissipative systems, the long term trajectories converge to an invariant3

measure supported on a low dimensional set, known as the global attractor. For4

Markovian systems, the statistical properties of long-term trajectories are uniquely5

determined by a Markov operator that maps the evolution of the system over an6

infinitesimal time step. In this work, we propose a machine learning framework to7

learn the underlying Markov operator of dissipative chaotic systems which captures8

their statistical behavior without the need to predict the exact trajectories. Using9

this framework, for the first time, we are able to predict various statistics of the10

invariant measure for the turbulent Kolmogorov Flow dynamics with Reynolds11

numbers up to 500.12

1 Introduction13

Machine learning methods for chaotic systems. Chaotic systems are characterized by strong14

instabilities. Small changes in the initialization or errors during time-stepping accumulate and15

lead to vastly diverging trajectories. Such instability makes chaotic systems challenging, both for16

mathematical analysis and numerical simulation. Because of the intrinsic instability, it is infeasible17

for any method to capture the exact trajectory of a chaotic system for long periods. Therefore, prior18

works either fit recurrent neural networks (RNN) on extremely short trajectories or only learn a19

step-wise projection from a randomly generated evolution using reservoir computing (RC) [1–4].20

These previous attempts are able to push the limits of faithful prediction to moderate periods on21

low dimensional ordinary differential equations (ODEs), e.g. the Lorenz-63 system, or on one-22

dimensional partial differential equations (PDEs), e.g. the Kuramoto-Sivashinsky (KS) equation.23

However, they are less effective at modeling more complicated turbulent systems such as the Navier-24

Stokes equation (NS), especially over long time periods. Indeed, predicting long trajectories of such25

chaotic systems is an ill-posed problem and we cannot expect such attempts to be successful. Instead,26

we take a new perspective: we aim to capture statistical properties of long trajectories, even if we27

cannot precisely predict them.28

Invariants in chaos. Despite their instability, many chaotic systems exhibit certain reproducible29

statistical properties, such as the auto-correlation and, for PDEs, the energy spectrum. Such properties30

remain the same for different realizations of the initial condition [5]. This is provably the case for the31

Lorenz-63 model [6, 7] and empirically holds for many dissipative PDEs, such as the KS equation32

and the two-dimensional Navier-Stokes equation (Kolmogorov flows) [8]. Dissipativity is a physical33

property of many natural systems. Intuitively higher-energy flows in such systems dissipate more34

strongly. Mathematically, there exists a global attractor which is a compact set towards which35

the system tends to evolve. The dissipativity property implies that for a given system there is a set36

which any given trajectory enters in finite time, depending on the initial condition, and thereafter37
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Figure 1: Dynamic evolution of the Markov neural operator for Kolmogorov Flow systems, from
initial conditions near the attractor, with and without the enforced dissipativity constraints. The
baseline model in the middle has no dissipativity constraint while the dissipative model on the
right has the constraint enforced during its time evolution. Baseline model blows up, whereas the
dissipative model returns to the attractor. The dissipative models is trained using the Fourier neural
operator architecture in the manner shown in Figure 2.

remains inside. The global attractor is defined by mapping all initial conditions from bounded sets38

forward in time. Furthermore there is strong empirical evidence that many dissipative systems are39

ergodic i.e. there exists an invariant measure which charges the global attractor. While learning40

infinite time-horizon trajectories is intractable, it is possible to approximate the attractor and invariant41

measure using a Markov operator, a memoryless deterministic operator that captures the evolution42

of the dynamics along an infinitesimal time step. The dissipativity property helps to make this43

problem tractable [9, 10]. For Markovian systems, e.g. autonomous differential equations, samples44

from the invariant measure can be obtained through repeatedly composing the Markov operator.45

This property is implied since the family of Markov operators defined for any fixed time forms a46

semigroup [9]. By learning a Markov operator, we are able to quickly and accurately generate an47

approximate attractor and estimate its invariant measure for a variety of chaotic systems that are of48

interest to the physics and applied mathematics communities [11–17].49

Neural operators. To learn the Markov operators for PDEs, we need to model the time-evolution50

of functions in infinite-dimensional function spaces. This is especially challenging when we need51

to generate long trajectories since even a small error accumulates over multiple compositions of52

the learned operator, potentially causing an exponential build-up or a collapse due to the high53

dimension of the space. Because we study the evolution of functions in time, we propose to use54

the recently developed operator learning method known as the neural operator [18, 19]. The neural55

operator remedies the mesh-dependent nature of finite-dimensional operator methods such as RNNs,56

CNNs, and RC. Neural operators are guaranteed to universally approximate any operator in a57

mesh independent manner, and hence, can capture the Markov operator of chaotic systems. This58

approximation guarantee and the absorption of trajectories by the global attractor makes it possible to59

accurately follow it over long time horizons, allowing us access to the invariant measure of chaotic60

systems.61

Our contributions. In this work, we formulate a machine learning framework for chaotic systems62

exploiting their dissipativity and Markovian properties. We propose the Markov neural operator63

(MNO) and train it given only one-step evolution data from a chaotic system. By composing the64

learned operator over a long horizon, we accurately approximate the global attractor of the system [20].65

Our architecture is outlined in Figure 2. In order to assess its performance, we study the statistics of66

the associated invariant measure such as the Fourier spectrum, the spectrum of the proper orthogonal67

decomposition (POD), the point-wise distribution, the auto-correlation, and other domain-specific68

statistics such as the turbulence kinetic energy and the dissipation rate. Furthermore we study the69

behavior of our leaned operator over long horizons and ensure that it does not blow up or collapse but70

rather accurately follows the global attractor. In this work:71

• We theoretically prove that, under suitable conditions, the MNO can approximate the underlying72

Markov operator of chaotic PDEs, while conventional neural networks lack such strong guarantees.73
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Figure 2: Markov neural operator (MNO): learn global dynamics from local data
Learn the MNO from the local time-evolution data with the Sobolev and dissipativity losses . u(t) is t’th time
step of the chaotic system. Sobolev losses of various order are used to compute the loss of prediction next time

step û(t+ 1) as of u(t+ 1). Dissipativity loss is computed by drawing a random sample u(t) from the
dissipativity shell to make sure that in expectation next time step prediction û(t+ 1) dissipates and has a

smaller norm as of v.

• We impose dissipativity by augmenting the data on an outer shell to enforce that the dynamic74

evolution stays close to the attractor. We show this is a crucial for learning in a chaotic regime as75

demonstrated by Figure 1. The resulting system remains stable against large perturbations.76

• We study the choice of time steps for training the MNO, demonstrating that the error follows77

a valley-shaped phenomenon. This gives rise to a recipe for choosing the optimal time step for78

accurate learning.79

• We show that standard mean square error (MSE) type losses for training are not adequate, and the80

models often fail to capture the higher frequency information induced from the derivatives.81

• We investigate various Sobolev losses in operator learning. We show that using the Sobolev82

norms for training captures higher-order derivatives and moments, as well as high frequency83

details [21, 22]. This is similar in spirit to pre-multiplying the spectrum by the wavenumber, an84

approach commonly used in fluid analysis [23].85

• We investigate multiple exiting deep learning architectures, including U-Net [24], long short-term86

memory convolution neural networks (LSTM-CNN) [25], and gated recurrent unit (GRU) [26], in87

place of the neural operator to learn the predictive operator. We show MNO provides an order of88

magnitude lower error on all loss functions studied in this paper. Furthermore, we show that the89

MNO desirably outperforms the above mentioned neural network models previous models, on all90

statistics mentioned.91

Our experiments show that Sobolev norms are crucial in training the MNO, allowing for significant92

performance improvement over standard loss functions (e.g. MSE) and for preserving invariant93

statistics such as the spectrum. Thus we propose a principled approach for learning chaotic systems94

that incorporates operator learning and dissipativity.95

2 Problem setting96

We consider potentially infinite dimensional dynamical systems where the phase space U is a Banach97

space and, in particular, a function space on a Lipschitz domain D ⊂ Rd (for finite dimensional98

systems, U will be a Euclidian space). We are interested in the initial-value problem99

du

dt
(t) = F (u(t)), u(0) = u0, t ∈ (0,∞) (1)

for initial conditions u0 ∈ U where F is usually a non-linear operator. We will assume, given some100

appropriate boundary conditions on ∂D when applicable, the solution u(t) ∈ U exists and is unique101

for all times t ∈ (0,∞). When making the spatial dependence explicit, if it is present, we will102

write u(x, t) to indicate the evaluation u(t)|x for any x ∈ D. We define the family of operators103
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St : U → U as mapping u0 7→ u(t) for any t ≥ 0, and note that, since (1) is autonomous, St satisfies104

the Markov property i.e. St(Ss(u0)) = u(s+ t) for any s, t ≥ 0. We adopt the viewpoint of casting105

time-dependent PDEs into function space ODEs (1), as this leads to the semigroup approach to106

evolutionary PDEs which underlies our learning methodology.107

Dissipativity. Systems for which there exists some bounded, positively-invariant set E such that for108

any bounded B ⊂ U , there is some time t∗ = t∗(E,B) beyond which the dynamics of any trajectory109

starting in B enters and remains in E are known as dissipative systems ([9]). The set E is known as110

the absorbing set of the system. For such systems, the global attractor A, defined subsequently, is111

characterized as the ω-limit set of E. In particular, for any initial condition u0 ∈ U , the trajectory112

u(t) approaches A as t → ∞. In this work, we consider dissipative dynamical systems where there113

exist some α ≥ 0 and β > 0 such that114

1

2

d

dt
||u||2 ≤ α− β||u||2 (2)

for all u ∈ U . It can be shown that systems which satisfy this inequality are dissipative ([9]) with115

the absorbing set E, an open ball of radius
√

α/β + ε for any ε > 0. There are several well-known116

examples of dynamical systems that satisfy the above inequality. In this paper we consider the117

finite-dimensional Lorenz-63 system and the infinite-dimensional cases of the Kuramoto-Sivashinsky118

and 2D incompressible Navier-Stokes equations, in the form of Kolmogorov flows ([8]).119

Global Attractors. The long time behavior of the solution to (1) is characterized by the set120

U = U(u0) ⊂ U which is invariant under the dynamic i.e. St(U) = U for all t ≥ 0, and the orbit121

u(t) converges122

inf
v∈U

∥u(t)− v∥U → 0 as t → ∞.

When it exists, U is often identified as the ω-limit set of u0. The chaotic nature of certain dynamical123

systems arises due to the complex structure of this set because u(t) follows U and U can be, for124

example, a fractal set. A compact, invariant set A is called a global attractor if, for any bounded125

set B ⊂ U and any ϵ > 0 there exists a time t∗ = t∗(ϵ, A,B) such that St(B) is contained within126

an ϵ-neighborhood of A for all t ≥ t∗. Many PDEs arising in physics such as reaction-diffusion127

equations describing chemical dynamics or the Navier-Stokes equation describing the flow of fluids128

are dissipative and possess a global attractor which is often times finite-dimensional [8]. Therefore,129

numerically characterizing the attractor is an important problem in scientific computing with many130

potential applications.131

Data distribution. For many applications, an exact form for the possible initial conditions to (1)132

is not available; it is therefore convenient to use a stochastic model to describe the initial states. To133

that end, let µ0 be a probability measure on U and assume that all possible initial conditions to (1)134

come as samples from µ0 i.e. u0 ∼ µ0. Then any possible state of the dynamic (1) after some time135

t > 0 can be thought of as being distributed according to the pushforward measure µt := S♯
tµ0 i.e.136

u(t) ∼ µt. Therefore as the dynamic evolves, so does the type of likely functions that result. This137

further complicates the problem of long time predictions since training data may only be obtained138

up to finite time horizons hence the model will need the ability to predict not only on data that is139

out-of-sample but also out-of-distribution.140

Ergodic systems. To alleviate some of the previously presented challenges, we consider ergodic141

systems. Roughly speaking, a system is ergodic if there exists an invariant measure µ such that after142

some time t∗ > 0, we have µt ≈ µ for any t ≥ t∗ (in fact, µ can be defined without any reference to143

µ0 or its pushforwards, see [27] for details). That is, after some large enough time, the distribution of144

possible states that the system can be in is fixed for any time further into the future. Indeed, µ charges145

the global attractor A. Notice that ergodicity is a much more general property than having stationary146

states which means that the system has a fixed period in time, or having steady states which means147

the system is unchanged in time.148

Ergodicity mitigates learning a model that is able to predict out-of-distribution since both the input149

and the output of Ŝh, an approximation to Sh, will approximately be distributed according to µ.150

Furthermore, we may use Ŝh to learn about µ since sampling it simply corresponds to running the151

dynamic forward. Indeed, we need only generate data on a finite time horizon in order to learn Ŝh,152
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and, once learned, we may use it to sample µ indefinitely by simply repeatedly composing Ŝh with153

itself. Having samples of µ then allows us to compute statistics which characterize the long term154

behavior of the system and therefore the global attractor A. Note further that this strategy avoids the155

issue of accumulating errors in long term trajectory predictions since we are only interested in the156

property that Ŝh(u(t)) ∼ µ.157

Notably, the existence of a global attractor does not imply the existence of an invariant measure.158

Indeed, the only deterministic and chaotic systems that are proven to possess an invariant measure159

are certain ODEs such as the Lorenz-63 system [7]. On the other hand, proving the existence of an160

invariant measure for deterministic and chaotic PDEs such as the KS or KF equations are still open161

problems, despite ergodic behavior being observed empirically.162

3 Learning the Markov neural operator in chaotic dynamics163

We propose the Markov neural operator, a method for learning the underlying Markov operators of164

chaotic dynamical systems. In particular, we approximate the operator mapping the solution from165

the current step to the next step Ŝh : u(t) 7→ u(t+ h). We approximate the Markov operator Sh, an166

element of the underlying continuous time semigroup {St : t ∈ [0,∞)}, using a neural operator as167

detailed in Figure 2. See Appendix B.1 for background on the Markov operator and semigroup.168

Long-term predictions. Having access to the map Ŝh, its semigroup properties allow for approxi-169

mating long time trajectories of (1) by repeatedly composing Ŝh with its own output. Therefore, for170

any n ∈ N, we compute u(nh) as follows,171

u(nh) ≈ Ŝn
h (u0) := (Ŝh ◦ · · · ◦ Ŝh)︸ ︷︷ ︸

n times

(u0). (3)

The above semigroup formulation can be applied with various choices of the backbone model for Ŝh.172

In general, we prefer models that can be evaluated quickly and have approximation guarantees so the173

per-step error can be controlled. Therefore, we choose the standard feed-forward neural network [28]174

for ODE systems, and the Fourier neural operator [29] for infinite dimensional PDE systems.175

For the the neural operator parametric class, we prove the following theorem regarding the Markov176

neural operator. The result states that our construction can approximate trajectories of infinite-177

dimensional dynamical systems arbitrary well. The proof is given in the Appendix.178

Theorem 1. Let K ⊂ U be a compact set and assume that, for some h > 0, the Markov operator179

Sh : U → U associated to the dynamic (1) is locally Lipschitz. Then, for any n ∈ N and ϵ > 0 there180

exists a neural operator Ŝh : U → U such that181

sup
u0∈K

sup
k∈{1,...,n}

∥u(kh)− Ŝk
h(u0)∥U < ϵ.

Theorem 1 indicates that of choice of backbone model is rich enough to approximate many chaotic182

dynamical systems for a arbitrarily long period. For finite-dimensional systems, the same theorem183

holds with feed-forward neural networks instead of neural operators. We note that standard neural184

networks such as RNNs and CNNs do not possess such approximation theorems in the infinite-185

dimensional setting.186

Invariant statistics. A useful application of the Markov operators is to estimate statistics of the187

invariant measure of a chaotic system. Assume the target system is ergodic and there exists an188

invariant measure µ such that u(t) ∼ µ for any t as discussed in Section 2. An invariant statistic is189

defined as190

TG :=

∫
U
G(u) dµ(u) = lim

T→∞

1

T

∫ T

0

G(u(t)) dt (4)

for any functional G : U → Rd. Examples include the L2 norm, any spectral coefficients, and the191

spatial correlation, as well as problem-specific statistics such as the turbulence kinetic energy and192

dissipation rates in fluid flow problems. Given the property (3) and using the ergodicity from (4), the193

approximate model Ŝh can be used to estimate any invariant statistic simply by computing TG ≈194
h
T

∑n
k=1 G(Sk

h(u0)) for some n = T/h and T > 0 large enough. Examples of fast approximation195

Ŝh which accurately predict invariant statics are given in Section 4.196
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(a) Without dissipativity enforced (b) Dissipativity enforced

Figure 3: Enforcing dissipativity on the Lorenz 63 system – extrapolated flow maps.
The red points are training data on the attractor. The dissipativity is imposed by augmenting the data
on the blue shell. The dissipativity enforcing training results in a learned dissipative Markov operator.

Enforcing dissipativity. In practice, training data for dynamical systems is typically drawn from197

trajectories that lie close to the global attractor of the system, so a priori there is no guarantee of a198

learned model’s behavior far from the attractor. Thus, if we seek to learn the global attractor and199

invariant statistics of a dynamical system, it is crucial that we place contraints on the model to enforce200

that it learns a dissipative dynamical system.201

In particular, given some Markov operator mapping between time-steps Ŝh : u(t) 7→ u(t+ h) and202

cost functional CD : U × U → R, we supplement the loss function with the additional term203

Eu∼ν

[
CD

(
Ŝh(u), u

)]
=

∫
U
∥Ŝh(u)− λu∥2U dν(u), (5)

up to some multiplicative constant with respect to the other terms in the loss function, where204

0 < λ < 1 is some constant factor for scaling down (i.e., enforcing dissipativity) inputs u drawn205

from a probability measure ν. We choose ν to be a uniform probability distribution supported on206

some shell with a fixed inner and outer radii from the origin in U . Our choice of cost functional CD207

as given in eq. 5 scales down u by some constant factor λ, but in principle alternative dissipative cost208

functionals can be used.209

We find that enforcing this dissipativity constraint on a shell at a sufficiently large radius encourages210

the learned Markov operator to produce dissipative predictions arbitrarily far away from the shell. In211

Section 4 we demonstrate that the constraint in eq. 5 prevents blow-up of a Markov operator trained212

on the turbulent Kolmogorov flow system.213

4 Experiments214

We evaluate the efficacy of our approach on the finite-dimensional, chaotic Lorenz-63 system as well215

as chaotic regimes of the 1D Kuramoto-Sivashinsky and 2D Navier-Stokes equations. In all cases we216

show that enforcing dissipativity is crucial for capturing the global attractor and evaluating statistics217

of the invariant measure. To the best of our knowledge, we showcase the first machine learning218

method able to predict the statistical behavior of a highly turbulent regime of the Navier-Stokes.219

4.1 Lorenz-63 system220

To motivate and justify our framework for learning chaotic systems in the infinite-dimensional setting221

(e.g., Navier-Stokes equations), we first apply our framework on the simple yet still highly chaotic222

Lorenz-63 ODE system.223

The Lorenz-63 system constitutes a simplified climate model and is described by the following ODEs,224

u̇x = α(uy − ux), u̇y = −αux − uy − uxuz, u̇z = uxuy − buz − b(r + α). (6)

In this paper, we use the canonical parameters (α, b, r) = (10, 8/3, 28) [30]. Since the Markov225

operator of the Lorenz-63 system is finite-dimensional, we learn the Markov operator by training a226
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(a) (b) (c)

Figure 4: (a) Choice of time step for directly learning the Markov operator and learning its identity
residual. We observe that both models induce smaller per step error for smaller h. When learn models
are composed to generate longer trajectories, we observe that learning residual is advantageous. (b)
Fourier spectrum of the predicted attractor. All models are able to capture the Fourier modes with
magnitude larger than O(1), while MNO is more accurate on the tail. (c) Spatial correlation of the
attractor, averaged in the time dimension. MNO is more accurate on the near-range correlation, but
all models miss the long-range correlation.

feedforward neural network on a single trajectory with h = 0.05s on the Lorenz attractor. Figure 3227

shows that enforcing dissipativity produces predictions that isotropically point towards the attractor,228

implying that the attractive properties of the Lorenz attractor are learned in the process. Observe229

that the our network is also dissipative outside the shell in which dissipativity was enforced during230

training. We conjecture that this is a property of ReLU networks that prevents model blow-up even in231

more difficult learning problems (see Figure 1).232

We empirically find that enforcing dissipativity does not reduce the relative L2 error compared to233

the baseline neural network. Further, the invariant statistics of the dissipative model align well with234

the ground-truth data distribution. Our results suggest that dissipativity can be enforced without235

significantly affecting the model’s step-wise error and the learned statistsical properties of the attractor.236

See Appendix A.1 for more details.237

4.2 Kuramoto-Sivashinsky equation238

We consider the following one-dimensional KS equation,239

∂u

∂t
=−u

∂u

∂x
− ∂2u

∂x2
− ∂4u

∂x4
, on [0, L]× (0,∞), with initial condition: u(·, 0) = u0, on [0, L] (7)

where the spatial domain [0, L] is equipped with periodic boundary conditions. We study the impact240

the time step h has on learning. Our study shows that when the time steps are too large, the correlation241

is chaotic and hard to capture. But counter-intuitively, when the time steps are too small, the evolution242

is also hard to capture. In this case, the input and output of the learned operator will be very close,243

and the identity map will be a local minimum. We thus propose to use the MNO to also learn the244

time-derivative or residual directly. Figure 4a shows the results for varying h and when MNO is used245

to learn either the identity residual or the Markov operator itself. We observe that the residual model246

has a better per-step error and accumulated error at smaller h. When the time step is large, there is no247

difference in modeling the residual. This idea can generalize to other integrators as an extension of248

Neural ODEs to PDEs [31].249

As shown in Figure 4b and 4c, we compare the performance of the MNO model against LSTM and250

GRU that we use to model the evolution operator of the KS equation with h = 1s. We observe251

that MNO model accurately recovers the Fourier spectrum of KS equation. We also present various252

other invariant statistics of the KS equation in Appendix A.2. For other statistics, all models perform253

similarly, except on the velocity distribution where MNO outperforms the LSTM and GRU. We254

emphasize that some these statistics are very challenging to capture and most machine learning255

approaches in the literature thus far fail to do so. (see Appendix A.2 for the details).256
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(a) (b)
(c) (d)

Figure 5: The learned attractor of the Kolmogorov flow and choice of Sobolev loss for KF.
(a-c) The 10000 time steps trajectory generated by MNO projected onto the first two components of PCA. Each
point corresponds to an snapshot on the attractor. Two points are selected for further visualization of vorticity
field. (d) The velocity error in models trained on stream function, velocity and vorticity using Sobolev loss of

different orders. We observe that Sobolev norm of second order provides the best performing model across
different learning regimes.

4.3 Kolmogorov Flow257

We consider two-dimensional Kolmogorov flow (a form of the Navier-Stokes equations) for a viscous,258

incompressible fluid,259

∂u

∂t
= −u · ∇u−∇p+

1

Re
∆u+ sin(ny)x̂, ∇ · u = 0, on [0, 2π]2 × (0,∞) (8)

with initial condition u(·, 0) = u0 where u denotes the velocity, p the pressure, and Re > 0 is the260

Reynolds number. We enforce dissipativity during training with the criterion described in eq. 5, with261

λ = 0.5 and ν being a uniform probability distribution supported on a shell around the origin. We262

test the effect of enforcing dissipativity in the highly turbulent (and blow-up prone) Re = 500 setting,263

where we observe that a non-dissipative model blows up when composed with itself multiple times if264

the initial condition is perturbed slightly from the attractor (Figure 1), even though the model achieves265

relatively low L2 error. In contrast, we empirically observe that the dissipative MNO does not blow266

up and its composed predictions returns to the attractor even when the initial condition is perturbed.267

Model training loss L2 error H1 error H2 error TKE error ϵϵϵ error
MNO L2 loss 0.0166 0.0187 0.0474 0.1729 0.0136 0.0303

H1 loss 0.0184 0.0151 0.0264 0.0656 0.0256 0.0017
H2 loss 0.0202 0.0143 0.0206 0.0361 0.0226 0.0193

U-Net L2 loss 0.0269 0.0549 0.1023 0.3055 0.0958 0.0934
H1 loss 0.0377 0.0570 0.0901 0.2164 0.1688 0.1127
H2 loss 0.0565 0.0676 0.0936 0.1749 0.0482 0.0841

ConvLSTM L2 loss 0.2436 0.2537 0.3854 1.0130 0.0140 24.1119
H1 loss 0.2855 0.2577 0.3308 0.5336 0.6977 6.9167
H2 loss 0.3367 0.2727 0.3311 0.4352 0.8594 4.0976

Table 1: Benchmark on vorticity for the Kolmogorov flow with Re= 40

Accuracy with respect to various norms. We study performance of MNO along with other268

predictive architectures, U-Net [24] and LSTM-CNN [25], on modeling the vorticity w in the269

relatively non-turbulent Re = 40 case 1. The MNO achieves one order of magnitude better accuracy270

compared to this architectures. As shown in Table 1, we train each model using the balanced271

L2(= H0), H1, and H2 losses, defined as the sum of the relative L2 loss grouped by each order of272

derivative. We measure the error with respect to the standard (unbalanced) norms.273

The MNO with H2 loss consistently achieves the smallest error on vorticity for all of the L2, H1,274

and H2 norms. However, the L2 loss achieves the smallest error on the turbulence kinetic energy275

(TKE), while theH1 loss achieves the smallest error on the dissipation ϵ.276
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The KF equation with Re = 40 is shown in Figure 10. (a) shows the ground truth vorticity field277

where each column represents a snapshot at t = 100s with different initial conditions. (b), (c), and278

(d) show the predicted trajectory of MNO vorticity, using the L2, H1, and H2 losses respectively.279

The five columns represent t = 1000s, 2000s, 3000s, 4000s, 5000s respectively. The figure indicates280

that the predicted trajectories (b) (c) (d) share the same behaviors as in the ground truth (a), indicating281

that the MNO model is stable.282

Estimating the attractor and invariant statistics. We compose MNO 10000 times to obtain the283

global attractor, and we compute the PCA (POD) basis of these 10000 snapshots and project them284

onto the first two components. As shown in Figure (a), we obtain a cycle-shaped attractor. The true285

attractor has dimension on the order of O(100) [8]. If the attractor is a high-dimensional sphere, then286

most of its mass concentrates around the equator. Therefore, when projected to low-dimension, the287

attractor will have a ring shape. We see that most of the points are located on the ring, while a few288

other points are located in the center. The points in the center have high dissipation, implying they are289

intermittent states. In Figure (b) we add the time axis. While the trajectory jumps around the cycle,290

we observe there is a rough period of 2000s. We perform the same PCA analysis on the training291

data, showing the same behavior. Furthermore, in Figure 11, we present invariant statistics for the292

KF equation (Re = 40), computed from a large number of samples from our approximation of the293

invariant measure. We find that the MNO consistently outperforms all other models in accurately294

capturing these statistics.295

Derivative orders. Roughly speaking, vorticity is the derivative of velocity; velocity is the derivative296

of the stream function. Therefore we can denote the order of derivative of vorticity, velocity, and297

stream function as 2, 1, and 0 respectively. Combining vorticity, velocity, and stream function, with298

L2, H1, and H2 loss, we have in total the order of derivatives ranging from 0 to 4. We observe, in299

general, it is best practice to keep the order of derivatives in the model at a number slightly higher300

than that of the target quantity. For example, as shown in Figure 5d, when querying the velocity301

(first-order quantity), it is best to use second-order (modeling velocity plus H1 loss or modeling302

vorticity plus L2 loss). This is further illustrated in Table 3 for the Re = 500 case. In general, using303

a higher order of derivatives as the loss will increase the power of the model and capture the invariant304

statistics more accurately. However, a higher-order of derivative means higher irregularity. It in turn305

requires a higher resolution for the model to resolve and for computing the discrete Fourier transform.306

This trade-off again suggests it is best to pick a Sobolev norm not too low or too high.307

5 Discussion and future works308

In this work, we propose a machine learning framework that trains from local data and predicts the309

global attractor and invariant statistics of chaotic systems. By enforcing dissipativity, we learn a310

Markov operator that empirically does not collapse or blow up over a long or infinite time horizon.311

Experiments also show the MNO predicts the attractor which shares the same distribution and312

statistics as the true function space trajectories. The simulations achieved by our MNO model313

have the potential to further our understanding of many physical phenomena and the mathematical314

models that underline them. Furthermore, the MNO shows great potential for modeling partially315

observed systems or studying systems that exhibit bifurcations both of which are of great interest for316

engineering applications. We also expect to generalize our theoretical work to show convergence to317

the global attractor and invariant measure by adapting ideas from the standard theory of numerical318

integrators [32].319

This work provides a method for fast computation with applications to many scientific computing320

problems. Our methods have two main long-term impacts beyond the immediate interests of the321

scientific computing community. Since they are orders of magnitude faster than the traditional322

solvers currently employed in supercomputers, edge devices, and servers, the deployment of our323

methods significantly reduces the carbon footprint caused by scientific studies. Furthermore, the324

proposed methods are extremely flexible. The off-the-shelf usage of our methods allows scientists325

from a variety of disciplines, e.g. chemistry, biology, ecology, epidemiology, physics, and applied326

mathematics, to deploy them on their complex systems without the need to build elaborate numerical327

methods.328
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Figure 6: Lorenz-63 histograms of x, y, z-coordinates for the baseline network (no dissipativity
enforced) and the MNO (dissipativity enforced).

A Full Experiments468

In this section, we present the full numerical experiments on the Lorenz-63 system, the Kuramoto-469

Sivashinsky equation, and the Kolmogorov flow.470

A.1 Lorenz-63471

The Lorenz-63 system is three dimensional ODE system:472

u̇x = α(uy − ux),

u̇y = −αux − uy − uxuz,

u̇z = uxuy − buz − b(r + α).

In this paper, we use the canonical parameters (α, b, r) = (10, 8/3, 28) [30].473

Learning the Markov operator. We use a simple feedforward neural network with 6 hidden layers474

and 150 neurons per layer to learn the Markov operator for the Loren-63 system. We discretize the475

training trajectory into time-steps of 0.05 seconds.476

Enforcing dissipativity. We enforce dissipativity during training with the criterion described in eq.477

5, with λ = 0.5 and ν being a uniform probability distribution supported on a shell around the origin478

with inner radius 90 and outer radius 130.479

Evaluation metrics. We evaluate the effectiveness of our technique for enforcing dissipativity in480

three ways:481

• Relative L2 error: We evaluate the learned Markov operators on relative (i.e., normalized)482

L2 error over 1 second by composing the model 20 times to gauge their ability to predict483
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(a) xy-plane at z = 0 (b) xz-plane at y = 0 (c) yz-plane at x = 0

(d) xy-plane at z = 0 (e) xz-plane at y = 0 (f) yz-plane at x = 0

Figure 7: Predicted flow field of dissipative network on Lorenz-63. The red points are training points
on the attractor. Dissipativity is enforced uniformly within the blue shell.

Model Per-step error Per-second error Dissipativity error
No diss. enforced 0.000570 0.0300 -

Diss. enforced 0.000564 0.0264 0.000667

Table 2: Relative L2 error rates on the Lorenz-63 system. Per-step error is the error on the time-
scale used in training. Per-second error is the error of the model composed with itself 21 times.
Dissipativity error is the error of following the enforced dissipativity constraint on each step.

longer trajectories. As seen in Table 2, enforcing dissipativity does not cause a decrease in484

relative L2 error when compared to the baseline network, even though both models have the485

same number of parameters.486

• Vector field far from the attractor: We also qualitatively evaluate the learned vector487

fields far from the attractor both with and without enforced dissipativity. We observe that488

enforcing dissipativity produces predictions that isotropically point towards the attractor,489

implying that the attractive properties of the Lorenz attractor are learned in the process. See490

Figure 7. Observe that the dissipative network is also dissipative outside the shell in which491

dissipativity was enforced during training.492

• Invariant statistics of the attractor: To justify learning the Markovian map between493

time-steps, we also compare the coordinate histograms of the ground-truth and the learned494

attractors (with and without dissipativity enforced) after composing for 200000 time steps.495

Both models match the ground-truth coordinate histograms. Since the coordinate-wise496

histograms of the models matches the ground-truth, this indicates that the models are497

learning the distribution of the attractor and thus the invariant measure of the system.498
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Figure 8: Trajectory and error on the KS equation
The x-axis is the spatial domain; the y-axis is the temporal domain. The figure shows that LSTM and GRU start

to diverge at t = 20s while MNO is able to keep up with the exact trajectory until t = 50s.

A.2 Kuramoto-Sivashinsky equation499

We consider the following one-dimensional Kuramoto-Sivashinsky equation,500

∂u

∂t
= −u

∂u

∂x
− ∂2u

∂x2
− ∂4u

∂x4
, on [0, L]× (0,∞)

u(·, 0) = u0, on [0, L]

where L = 32π or 64π and the spatial domain [0, L] is equipped with periodic boundary conditions.501

We assume the initial condition u0 ∈ L̇2
per([0, L];R), where L̇2

per([0, L];R) is the space of all mean502

zero L2-functions that are periodic on [0, L]. Existence of the semigroup St : L̇2
per([0, L];R) →503

L̇2
per([0, L];R) is established in [8, Theorem 3.1]. Data is obtained by solving the equation using the504

exponential time-differencing fourth-order Runge-Kutta method from [33]. Random initial conditions505

are generated according to a mean zero Gaussian measure with covariance L−2/ατ
1
2 (2α−1)(−∆+506

(τ2/L2)I)−α where α = 2, τ = 7, and periodic boundary conditions on [0, L]; for details see [34].507

Benchmarks for Kuramoto-Sivashinsky. We compare MNO with common choices of recurrent508

neural networks including the long short-term memory network (LSTM)[35] and gated recurrent unit509

(GRU)[26]. All models use the time-discretization h = 1s. The training dataset consists of 1000510

different realizations of trajectories on the time interval t ∈ [50, 200] (the first 50s is truncated so511

the dynamics reach the ergodic state), which adds up to 1000× 150 = 150, 000 snapshots in total.512

Another 200 realizations are generated for testing. Every single snapshot has the resolution 2048. We513

use Adam optimizer to minimize the relative L2 loss with learning rate = 0.001, and step learning514

rate scheduler that decays by half every 10 epochs for 50 epochs in total. LSTM and GRU: having515

tested many different configurations, we choose the best hyper-parameters: the number of layers = 1,516

width = 1000. During the evaluation, we additionally provide 1000 snapshots as a warm-up of the517

memory. MNO: we choose 1-d Fourier neural operator as our base model with four Fourier layers518

with 20 frequencies per channel and width = 64. Experiments run on Nvidia V100 GPUs.519

Accuracy with respect to the true trajectory. In general, MNO has a smaller per-step error520

compared to RNN. As shown in Figure 8, the MNO model captures a longer period of the exact521

trajectory compared to LSTM and GRU. LSTM and GRU start to diverge at t = 20s while FNO is522

able to keep up with the exact trajectory until t = 50s.523

Invariant statistics for the KS equations As shown in Figure 9, we present enormous invariant524

statistics for the KS equation. We use 150000 snapshots to train the MNO, LSTM, and GRU to model525

the evolution operator of the KS equation with h = 1s. We compose each model for T = 1000 time526

steps to obtain a long trajectory (attractor), and estimate various invariant statistics from them.527
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• (a) Fourier spectrum: the Fourier spectrum of the predicted attractor. All models are able528

to capture the Fourier modes with magnitude larger than O(1), while MNO is more accurate529

on the tail.530

• (b) Spatial correlation: the spatial correlation of the attractor, averaged in the time di-531

mension. MNO is more accurate on the near-range correlation, but all models miss the532

long-range correlation.533

• (c) Auto-correlation of the Fourier mode: the auto-correlation of the 10th Fourier mode.534

Since the Fourier modes are nearly constant, the auto-correlation is constant too.535

• (d) Auto-correlation of the PCA mode: the auto-correlation of the first PCA mode (with536

respect to the PCA basis of the ground truth data). The PCA mode oscillates around537

[−40, 40], showing an ergodic state.538

• (e) Distribution of kinetic energy: the distribution of kinetic energy with respect to the539

time dimension. MNO captures the distribution most accurately.540

• (f) Pixelwise distribution of velocity: since the KS equation is homogeneous, we can541

compute the distribution of velocity with respect to pixels. MNO captures the pixelwise542

distribution most accurately too.543

Choice of time discretization. We further study the choice of time steps h. As shown in Figure 4a,544

when the time steps are too large, the correlation is chaotic and hard to capture. But counter-intuitively,545

when the time steps are too small, the evolution is also hard to capture. In this case, the input and546

output of the network will be very close, and the identity map will be a local minimum. An easy fix547

is to use MNO to learn the time-derivative or residual. This is shown in the figure, where the residual548

model (blue line) has a better per-step error and accumulated error at smaller h. When the time step549

is large, there is no difference in modeling the residual. This idea can generalize to other integrators550

as an extension of Neural ODEs to PDEs [31].551

A.3 Kolmogorov Flow552

We consider the two-dimensional Navier-Stokes equation for a viscous, incompressible fluid,553

∂u

∂t
= −u · ∇u−∇p+

1

Re
∆u+ sin(ny)x̂, on [0, 2π]2 × (0,∞)

∇ · u = 0 on [0, 2π]2 × [0,∞)

u(·, 0) = u0 on [0, 2π]2

where u denotes the velocity, p the pressure, and Re > 0 is the Reynolds number. The domain554

[0, 2π]2 is equipped with periodic boundary conditions. The specific choice of forcing sin(ny)x̂555

constitutes a Kolmogorov flow; we choose n = 4 in all experiments. We define U to be the closed556

subspace of L2([0, 2π]2;R2), U =
{
u ∈ L̇2

per([0, 2π]
2;R2) : ∇ · u = 0

}
and assume u0 ∈ U .557

We define the vorticity w = (∇ × u)ẑ and the stream function f as the solution to the Poisson558

equation −∆f = w. Existence of the semigroup St : U → U is established in [8, Theorem 2.1]. We559

denote turbulence kinetic energy (TKE) ⟨(u− ū)2⟩, and dissipation ϵ = ⟨w2⟩/Re. Data is obtained560

by solving the equation in vorticity form using the pseudo-spectral split step method from [13].561

Random initial conditions are generated according to a mean zero Gaussian measure with covariance562

73/2(−∆+ 49I)−2.5 with periodic boundary conditions on [0, 2π]2.563

Benchmarks for the 2d Kolmogorov flow. We compare MNO with common standard two-564

dimensional dynamic models including U-Net[24] and LSTM-CNN[25] on modeling the vorticity565

w in the relatively non-turbulent Re = 40 case. We choose the discretization h = 1s. The training566

dataset consists of 180 realizations of trajectories on time interval t ∈ [100, 500] (the first 100 seconds567

are discarded) which adds up to 180 × 400 = 72, 000 snapshots in total. Another 20 realizations568

are generated for testing. Each single snapshot has resolution 64× 64. We use the Adam optimizer569

to minimize the relative L2 loss with learning rate = 0.0005, and step learning rate scheduler that570

decays by half every 10 epochs for 50 epochs in total. U-Net: we use five layers of convolution and571

deconvolution with width from 64 to 1024. LSTM-CNN: we use one layer of LSTM with width572

= 64. MNO: we parameterize the 2-d Fourier neural operator consists of four Fourier layers with 20573

frequencies per channel and width = 64.574
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Figure 9: Invariant statistics for the KS equation
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Figure 10: visualization of the KF equation, Re40

Enforcing dissipativity. We enforce dissipativity during training with the criterion described in eq.575

5, with λ = 0.5 and ν being a uniform probability distribution supported on a shell around the origin.576

Accuracy with respect to various norms. MNO shows near one order of magnitude better accuracy577

compared to U-Net and LSTM-CNN. As shown in Table 1, we train each model using the balanced578

L2(= H0), H1, and H2 losses, defined as the sum of the relative L2 loss grouped by each order of579

derivative. And we measure the error with respect to the standard (unbalanced) norms. The MNO580

with H2 loss consistently achieves the smallest error on vorticity on all of the L2, H1, and H2581

norms. However, L2 loss achieves the smallest error on the turbulence kinetic energy (TKE); H1 loss582

achieves the smallest error on the dissipation ϵ.583

The NS equation with Re40 is shown in Figure 10. (a) show the ground truth data of vorticity584

field, each column represents a snapshot at t = 100s with a different initial condition. (b), (c),585

(d) show the predicted trajectory of MNO on vorticity, using L2, H1, and H2 losses respectively.586

We are able to generate a long trajectory with the MNO model. The five columns represent t =587

1000s, 2000s, 3000s, 4000s, 5000s respectively. As shown in the figure, the predicted trajectories588

(b) (c) (d) share the same behaviors as in the ground truth (a). It indicates the MNO model is stable.589

Visualizing the attractor generated by MNO. We compose MNO 10000 times to obtain the590

global attractor, and we compute the PCA (POD) basis of these 10000 snapshots and project them591

onto the first two components. As shown in Figure (a), we obtain a cycle-shaped attractor. The true592

attractor has a degree of freedom around O(100) [8]. If the attractor is a high-dimensional sphere,593

then most of the mass concentrates around its equator. Therefore, when projected to low-dimension,594

the attractor will have the shape of a ring. Most of the points are located on the ring, while a few595
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Model training loss (order) error on f error on u error on w
Stream function f L2 loss 0.0379 (0th order) 0.0383 0.2057 2.0154
Stream function f H1 loss 0.0512 (1st order) 0.0268 0.0769 0.3656
Stream function f H2 loss 0.0973 (2nd order) 0.0198 0.0522 0.2227
Velocity u L2 loss 0.0688 (1st order) 0.0217 0.0691 0.3217
Velocity u H1 loss 0.1246 (2nd order) 0.0170 0.0467 0.1972
Velocity u H2 loss 0.2662 (3rd order) 0.0178 0.0482 0.1852
Vorticity w L2 loss 0.1710 (2nd order) 0.0219 0.0415 0.1736
Vorticity w H1 loss 0.3383 (3rd order) 0.0268 0.0463 0.1694
Vorticity w H2 loss 0.4590 (4th order) 0.0312 0.0536 0.1854

Table 3: Vorticity, velocity, and stream function for the Kolmogorov flow with Re = 500

other points are located in the center. The points in the center have high dissipation, implying they are596

intermittent states. In Figure (b) we add the time axis. While the trajectory jumps around the cycle,597

we observe there is a rough period of 2000s. We perform the same PCA analysis on the training data,598

which shows the same behavior.599

Invariant statistics. Similarly, we present enormous invariant statistics for the NS equation (Re40),600

as shown in Figure 11,. We use 72000 snapshots to train the MNO, UNet, and ConvLSTM to model601

the evolution operator of the KS equation with h = 1s. We compose each model for T = 10000 time602

steps to obtain a long trajectory (attractor), and estimate various invariant statistics from them.603

• (a, d) Fourier spectrum of velocity and vorticity: the Fourier spectrum of the predicted604

attractor. Again, all models are able to capture the Fourier modes with magnitude larger605

than O(1), while MNO is more accurate on the tail. Using the Sobolev norm further helps606

to capture the tail.607

• (b, e) Pixelwise distribution of velocity and vorticity: All models preserve the pixelwise608

distribution.609

• (c, f) Distribution of kinetic energy and dissipation rate: the distribution of kinetic energy610

with respect to the time dimension. MNO captures the distribution most accurately.611

• (g) Auto-correlation of the Fourier mode: the auto-correlation of the 10th Fourier mode.612

Since the Fourier modes are nearly constant, the auto-correlation is constant too. Notice it is613

very expensive to generate long-time ground truth data, so the figure does not include the614

ground truth. However, it is easy to obtain the auto-correlation by MNO.615

• (h) Auto-correlation of the PCA mode: the auto-correlation of the first PCA mode (with616

respect to the PCA basis of the ground truth data). The PCA mode oscillates around617

[−1000, 1000], showing an ergodic state. The UNet oscillates around [0, 2000].618

• (i) Spatial correlation: the spatial correlation of the attractor, averaged in the time dimen-619

sion. The four columns represent the truth and MNO with different losses. As seen from the620

figure, there is a wave pattern matching the force term sin(4y).621

Order of derivatives. Roughly speaking, vorticity is the derivative of velocity; velocity is the622

derivative of the stream function. Therefore we can denote the order of derivative of vorticity, velocity,623

and stream function as 2, 1, and 0 respectively. Combining vorticity, velocity, and stream function,624

with L2, H1, and H2 loss, we have in total the order of derivatives ranging from 0 to 4. We observe,625

in general, it is best practice to keep the order of derivatives in the model at a number slightly higher626

than that of the target quantity. For example, as shown in Figure 5d, when querying the velocity627

(first-order quantity), it is best to use second-order (modeling velocity plus H1 loss or modeling628

vorticity plus L2 loss). This is further illustrated in Table 3. In general, using a higher order of629

derivatives as the loss will increase the power of the model and capture the invariant statistics more630

accurately. However, a higher-order of derivative means higher irregularity. It in turn requires a631

higher resolution for the model to resolve and for computing the discrete Fourier transform. This632

trade-off again suggests it is best to pick a Sobolev norm not too low or too high.633
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Figure 11: Invariant statistics for the NS equation
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B Theoretical background634

B.1 Markov operators and the semigroup635

Since the system (1) is autonomous, that is, F does not explicitly depend on time, under the well-636

posedness assumption, we may define, for any t ∈ [0,∞), a Markov operator St : U → U such that637

u(t) = Stu(0). This map satisfies the properties638

1. S0 = I ,639

2. St(u0) = u(t),640

3. St(Ss(u0)) = u(t+ s),641

for any s, t ∈ [0,∞) and any u0 ∈ U where I denotes the identity operator on U . In particular, the642

family {St : t ∈ [0,∞)} defines a semigroup of operators acting on U . Our goal is to approximate a643

particular element of this semigroup associated to some fixed time step h > 0 given observations of644

the trajectory from (1). We build an approximation Ŝh : U → U such that645

Ŝh ≈ Sh. (9)

B.2 Proof of Theorem 1646

Proof of Theorem 1. Since Sh is continuous and K is compact, the set647

R =

n⋃
l=0

Sl
h(K)

is compact. Therefore, there exist a set of representers φ1, φ2, · · · ∈ R such that648

lim
m→∞

sup
v∈R

inf
u∈Rm

∥u− v∥U = 0

where Rm = span{φ1, . . . , φm}. For any m ∈ N, let Pm : U → Rm denote a projection of U to649

Rm. Since R is compact, the set650

P = R
⋃( ∞⋃

m=1

Pm(R)

)
is compact [19, Lemma 14]. Since Sh is locally Lipschitz and P is compact, there exists a constant651

C = C(P ) > 0 such that652

∥Sh(u1)− Sh(u2)∥U ≤ C∥u1 − u2∥U , ∀u1, u2 ∈ P.

Without loss of generality, assume C ̸= 1 and define653

M =

(
Cn +

1− Cn

1− C

)−1

.

By the universal approximation theorem for neural operators [19, Theorem 4] or [36, Theorem 2.5],654

there exists a neural operator Ŝh : U → U such that655

sup
u0∈P

∥Sh(u0)− Ŝh(u0)∥U < ϵM.

Perusal of the proof of the universal approximation theorem for neural operators shows that Ŝh can656

be chosen so that Ŝh(P ) ⊆ Rm for some m ∈ N large enough, therefore Ŝh(P ) ⊆ P . Let u0 ∈ K,657

then the triangle inequality implies658

∥u(nh)− Ŝn
h (u0)∥U = ∥Sn

h (u0)− Ŝn
h (u0)∥U

= ∥Sh(S
n−1
h (u0))− Ŝh(Ŝ

n−1
h (u0))∥U

≤ ∥Sh(S
n−1
h (u0))− Sh(Ŝ

n−1
h (u0))∥U + ∥Sh(Ŝ

n−1
h (u0))− Ŝh(Ŝ

n−1
h (u0))∥U

≤ C∥Sn−1
h (u0)− Ŝn−1

h (u0)∥U + ϵM.
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By the discrete time Grönwall lemma,659

∥u(nh)− Ŝn
h (u0)∥U ≤ Cn∥Sh(u0)− Ŝh(u0)∥U + ϵM

(
1− Cn

1− C

)
< ϵM

(
Cn +

1− Cn

1− C

)
= ϵ

which completes the proof.660

661

C Discussion and future work662

In this work, we learn MNO from only local data and compose it to obtain the global attractor of663

chaotic systems, and by explicitly enforcing dissipativity, we empirically show that MNO predictions664

do not blow up or collapse even in the long-time horizon, while still achieving relatively low error665

running several orders of magnitude faster than traditional methods.666

MNO has two major limitations. First, it assumes the target system is approximately Markovian. If667

the system is heavily path-dependent, then the MNO framework does not directly apply. Second,668

although we develop an approximation theorem for finite period, it does not hold for infinite time669

horizon.670

As discussed previously, it is infeasible to track the exact trajectory of chaotic systems on an infinite671

time horizon. Even very small errors will accumulate in each step, and eventually cause the simulation672

to diverge from the true trajectory. However, it is possible to track the attractor of the system. An673

attractor is absorbing. If the simulated trajectory only makes a small error, the attractor will absorb674

it back, so that the simulated trajectory will never diverge from the true attractor. Therefore, it is675

possible to have the simulated trajectory capture the true attractor.676

To obtain an infinite-time approximation error bound is non-trivial. Previously, [9, 10] (cf. Theorem677

3.12) show a result for (finite-dimensional) ODE systems. If the system is Lipschitz then there exists678

a numerical simulation that forms a dissipative dynamical system that does not blow up or collapse.679

And the the simulated attractor Ah approximates the true attractor A with the time step h680

dist(Ah,A) → 0, as h → 0

To generalize such theorem to Markov neural operator (MNO), we need to overcome two difficulties681

(1) generalize the formulation from (finite-dimensional) ODE systems to (infinite-dimensional) PDE682

systems, and (2) show MNO can obtain a sufficient error rate with respect to the time step h.683

The first aspect requires extending the theory from finite dimension to infinite dimension, which684

is non-trivial since the operator F in (1) is not compact or bounded. This makes it hard to bound685

the error with respect to the attractor [37]. The second aspect requires to formulate MNO slightly686

differently. In the current formulation, the evolution operator is chosen for a fixed time step h. To687

achieve O(h) error we need to formulate the evolution operator continuously for infinitesimal h.688

Especially, for a semi-linear PDE system689

du

dt
+Au = F (u)

where A is a linear, self-adjoint operator and F is a continuous but nonlinear operator (this formulation690

includes the KS and NS equations). The evolution can be written as691

u(t+ h) = e−Ahu(t) +

∫ h

0

e−A(h−s)F (u(t+ s))ds

Where Φ(u(t), A, t) :=
∫ h

0
e−A(h−s)F (u(s))ds is bounded despite F is not. If one can approximate692

Φ(u(t), A, h) by a neural operator, then MNO can potentially achieve the needed error rate. This693

shows hope to obtain an approximation error bound for infinite time zero. We leave this as a promising694

future direction.695
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