
Appendix:
Unknown-Aware Domain Adversarial Learning for

Open-Set Domain Adaptation

First, Section A provides comprehensive literature reviews. Second, Section B provides the details for
the proposed model, UADAL. It consists of three parts; 1) Sequential Optimization Problem (Section
B.1), 2) Posterior Inference (Section B.2), and 3) Training Details (Section B.3). Third, Section C
provides the experimental details, including the implementation details (Section C.1) and the detailed
experimental results (Section C.2). Finally, Section D shows ‘Limitations and Potential Negative
Societal Impacts’ of this work.

Note that all references and the equation numbers are independent of the main paper. We utilize the
expression of "Eq. (XX) in the main paper", especially when referring the equations from the main
paper.

A Literature Reviews

(Closed-Set) Domain Adaptation (DA) is the task of leveraging the knowledge of the labeled source
domain to the target domain [5, 3, 2, 22, 11]. Here, DA assumes that the class sets from the source
and the target domain are identical. The typical approaches to solve DA have focused on minimizing
the discrepancy between the source and the target domain since they are assumed to be drawn from
the different distributions [31, 41, 23, 24]. The discrepancy-based approaches have been proposed to
define the metric to measure the distance between the source and the target domain in the feature space
[22, 46]. Other works are based on adversarial methods [10, 42, 25]. These approaches introduce the
domain discriminator and a feature generator in order to learn the feature space to be domain-invariant.
Self-training methods are also proposed to mitigate the DA problems by pseudo-labeling the target
instances [21, 18, 28, 32], originally tailored to semi-supervised learning [13, 38].

Open-Set Recognition (OSR) is the task to classify an instance correctly if it belongs to the known
classes or to reject outliers otherwise, during the testing phase [35]. Here, the outliers are called
‘open-set’ which is not available in the training phase. Many approaches have been proposed to
solve the OSR problem [4, 29, 39, 30, 36, 7, 8]. OpenMax [4] is the first deep learning approach
for OSR, introducing a new model layer to estimate the probability of an instance being unknown
class, based on the Extreme Value Theory (EVT). OSRCI [29], another stream of the approaches
utilizing GANs, generates the virtual images which are similar to the training instances but do not
belong to the known classes. Other approaches contain the reconstruction-based methods [39, 30]
and prototype-based methods [36, 7, 8]. Also, [43] claims that the performance of OSR is highly
correlated with its accuracy on the closed-set classes. This claim is associated with our open-set
recognizer.

Open-Set Domain Adaptation is a more realistic and challenging task of Domain Adaptation, where
the target domain includes the open-set instances which are not discovered by the source domain. In
terms of the domain adversarial learning, in addition to STA, OSBP [33] utilizes a classifier to predict
the target instances to the pre-determined threshold, and trains the feature extractor to deceive the
classifier for aligning to known classes or rejecting as unknown class. However, their recognition on
unknown class only depends on the threshold value, without considering the data instances. PGL [27]
introduces progressive graph-based learning to regularize the class-specific manifold, while jointly
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optimizing with domain adversarial learning. However, their adversarial loss includes all instances of
the target domain, which is critically weakened by the negative transfer.

In terms of the self-supervised learning, ROS [6] is rotation-based self-supervised learning to compute
the normality score for separating target known/unknown information. DANCE [34] is based on a
self-supervised clustering to move a target instance either to shared-known prototypes in the source
domain or to its neighbor in the target domain. DCC [19] is a domain consensus clustering to exploit
the intrinsic structure of the target domain. However, these approaches do not have any feature
alignments between the source and the target domain, which leads to performance degradation under
the significant domain shifts.

There is also a notable work, OSLPP [44] optimizing projection matrix toward a common subspace
to class-wisely align the source and the target domain. This class-wise matching depends on the
pseudo label for the target instances. However, inaccurate pseudo labels such as early mistakes can
result in error accumulation and domain misalignment [32]. Moreover, the optimization requires
the pair-wise distance calculation, which results in a growing complexity of O(n2) by the n data
instances. It could be limited to the large-scaled domain.

B Algorithm and Optimization Details

B.1 Sequential Optimization Problem

B.1.1 Decomposition of Domain Discrimination Loss

The domain discrimination loss for the target domain is as below, (Eq. (7) in the main paper)

Ltd(θg, θd) = Ept(x)[ −wx logDtk(G(x))− (1− wx) logDtu(G(x))],

where wx = p(known|x) is the probability of a target instance, x, belonging to a target-known class.
Then, we decompose Ltd(θg, θd) into the two terms, Ltkd (θg, θd) and Ltud (θg, θd), as follows,

Ltd(θg, θd) = Ltkd (θg, θd) + Ltud (θg, θd),

Ltkd (θg, θd) := λtk · Eptk(x) [− logDtk(G(x))] ,

Ltud (θg, θd) := λtu · Eptu(x) [− logDtu(G(x))] ,

where ptk(x) := pt(x|known) and ptu(x) := pt(x|unknown); λtk = p(known); and λtu =
p(unknown).

Proof. We start this proof from Eq. (7) in the main paper,

Ltd(θg, θd) = Ept(x)[ −wx logDtk(G(x))− (1− wx) logDtu(G(x))].

For the convenience of the derivation, we replace wx as p(known|x).

Ltd(θg, θd) = Ex∼pt(x) [ −pt(known|x) logDtk(G(x))− pt(unknown|x) logDtu(G(x))]

2



=

∫
x∼pt(x)

(
− pt(known|x) logDtk(G(x))− pt(unknown|x) logDtu(G(x))

)
dx

=

∫
x

(
− pt(x)(pt(known|x) logDtk(G(x))− pt(x)pt(unknown|x) logDtu(G(x))

)
dx

=

∫
x

(
− pt(known, x) logDtk(G(x))− pt(unknown, x) logDtu(G(x))

)
dx

=

∫
x

−pt(x|known)pt(known) logDtk(G(x)) dx+

∫
x

−pt(x|unknown)pt(unknown) logDtu(G(x)) dx

= pt(known)

∫
x

−pt(x|known) logDtk(G(x)) dx+ pt(unknown)

∫
x

−pt(x|unknown) logDtu(G(x)) dx

= pt(known)

∫
x∼ptk(x)

− logDtk(G(x)) dx+ pt(unknown)

∫
x∼ptu(x)

− logDtu(G(x)) dx

= pt(known)Ex∼ptk(x) [− logDtk(G(x))] + pt(unknown)Ex∼ptu(x) [− logDtu(G(x))]

= λtkEx∼ptk(x) [− logDtk(G(x))] + λtuEx∼ptu(x) [− logDtu(G(x))] .

Thus, we define new terms with respect to ptk(x) and ptu(x) as follow.

Ltkd (θg, θd) := λtkEx∼ptk(x) [− logDtk(G(x))]

Ltud (θg, θd) := λtuEx∼ptu(x) [− logDtu(G(x))]

Therefore, by the above derivation, we decompose Ltd(θg, θd) as follow,

Ltd(θg, θd) = Ltkd (θg, θd) + Ltud (θg, θd).

B.1.2 Optimal point of the domain discriminator D

The optimal D∗ given the fixed G is as follow (Eq. (13) in the main paper),

D∗(G(x; θg)) = D∗(z) =
[ ps(z)

2pavg(z)
,
λtkptk(z)

2pavg(z)
,
λtuptu(z)

2pavg(z)

]
,

where pavg(z) = (ps(z) + λtkptk(z) + λtuptu(z))/2. Note that z ∈ Z stands for the feature space
from G. In other words, pd(z) = {G(x; θg)|x ∼ pd(x)} where d is s, tk, or tu.

Proof. First, we fix G, and optimize the problem with respect to D.

min
θd
LD(θg, θd) = Lsd(θg, θd) + Ltkd (θg, θd) + Ltud (θg, θd)

= −
∫

x∼ps(x)

logDs(G(x)) dx− λtk
∫

x∼ptk(x)

logDtk(G(x)) dx− λtu
∫

x∼ptu(x)

logDtu(G(x)) dx

= −
∫

z∼ps(z)

logDs(z) dz − λtk
∫

z∼ptk(z)

logDtk(z) dz − λtu
∫

x∼ptu(z)

logDtu(z) dz

=

∫
z

(
− ps(z) logDs(z)− λtkptk(z) logDtk(z)− λtuptu(z) logDtu(z)

)
dz

Also, note that Ds(z) +Dtk(z) +Dtu(z) = 1 for all z. Therefore, we transform the optimization
problem as follow [12]:

min
θd

− ps(z) logDs(z)− λtkptk(z) logDtk(z)− λtuptu(z) logDtu(z)

s.t. Ds(z) +Dtk(z) +Dtu(z) = 1
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for all z. We introduce the Lagrange variable v to use Lagrange multiplier method.
min
θd
L̃D :=− ps(z) logDs(z)− λtkptk(z) logDtk(z)− λtuptu(z) logDtu(z)

+ v(Ds(z) +Dtk(z) +Dtu(z)− 1)

To find optimal D∗, we find the derivative of L̃D with respect to D and v.
∂L̃D
∂Ds(z)

=
−ps(z)
Ds(z)

+ v = 0 ⇔ Ds(z) =
ps(z)

v

∂L̃D
∂Dtk(z)

=
−λtkptk(z)

Dtk(z)
+ v = 0 ⇔ Dtk(z) =

λtkptk(z)

v

∂L̃D
∂Dtu(z)

=
−λtuptu(z)

Dtu(z)
+ v = 0 ⇔ Dtu(z) =

λtuptu(z)

v

∂L̃D
∂v

= Ds(z) +Dtk(z) +Dtu(z)− 1 = 0 ⇔ Ds(z) +Dtk(z) +Dtu(z) = 1

From the above equations, we have

Ds(z) +Dtk(z) +Dtu(z) =
ps(z)

v
+
λtkptk(z)

v
+
λtuptu(z)

v
= 1,

then,
v = ps(z) + λtkptk(z) + λtuptu(z) = 2pavg(z).

Thus, we get optimal D∗ as

D∗(z) = [D∗s(z), D∗tk(z), D∗tu(z)] =
[ ps(z)

2pavg(z)
,
λtkptk(z)

2pavg(z)
,
λtuptu(z)

2pavg(z)

]
.

B.1.3 Proof of Theorem 3.1

Theorem B.1. Let θ∗d be the optimal parameter of D by optimizing Eq. (11) in the main paper. Then,
−LG(θg, θ

∗
d) can be expressed as, with a constant C0,

−LG(θg,θ
∗
d) = DKL(ps‖pavg) + λtkDKL(ptk‖pavg)− λtuDKL(ptu‖pavg) + C0.

Proof. First, we change maximization problem into minimization problem, and substitute D∗ by
using Eq. (13) in the main paper. Note that pavg = (ps(z) + λtkptk(z) + λtuptu(z))/2.

min
θg
−LG(θg, θd) = −Lsd(θg, θd)− Ltkd (θg, θd) + Ltud (θg, θd) (1)

=

∫
z

(ps(z) logD∗s(z) + λtkptk(z) logD∗tk(z)− λtuptu(z) logD∗tu(z)) dz (2)

=

∫
z

( ps(z) log
ps(z)

2pavg(z)
+ λtkptk(z) log

λtkptk(z)

2pavg(z)
− λtuptu(z) log

λtuptu(z)

2pavg(z)
) dz (3)

= DKL(ps‖pavg) + λtkDKL(ptk‖pavg)− λtuDKL(ptu‖pavg) + C0 (4)
where C0 = −2λtk log 2 + λtk log λtk − λtu log λtu.

We use below derivation for the last equation, i.e. from Eq. (3) to Eq. (4).

DKL(ps‖pavg) =

∫
z

ps(z) log
ps(z)

(pavg(z)
dz

=

∫
z

ps(z) log
2ps(z)

ps(z) + λtkptk(z) + λtuptu(z)
dz

=

∫
z

ps(z) log
ps(z)

ps(z) + λtkptk(z) + λtuptu(z)
dz

+

∫
z

ps(z) log 2 dz

=

∫
z

ps(z) log
ps(z)

2pavg(z)
dz +

∫
z

ps(z) log 2 dz
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Thus, ∫
z

ps(z) log
ps(z)

2pavg(z)
dz = DKL(ps‖pavg)− log 2 (5)

For the second term,

DKL(ptk‖pavg)

=

∫
z

ptk(z) log
ptk(z)

pavg(z)
dz

=

∫
z

ptk(z) log
2ptk(z)

ps(z) + λtkptk(z) + λtuptu(z)
dz

=

∫
z

ptk(z) log
ptk(z)

ps(z) + λtkptk(z) + λtuptu(z)
dz +

∫
z

ptk(z) log 2 dz

=

∫
z

ptk(z) log
ptk(z)

ps(z) + λtkptk(z) + λtuptu(z)
dz + log 2

=

∫
z

ptk(z)(log
ptk(z)

ps(z) + λtkptk(z) + λtuptu(z)
+ log λtk − log λtk) dz + log 2

=

∫
z

ptk(z) log
λtkptk(z)

ps(z) + λtkptk(z) + λtuptu(z)
dz − log λtk + log 2

=

∫
z

ptk(z) log
λtkptk(z)

2pavg(z)
dz − log λtk + log 2

By multiplying λtk,

λtkDKL(ptk‖pavg) =

∫
z

λtkptk(z) log
λtkptk(z)

2pavg(z)
dz − λtk log

λtk
2

Thus, ∫
z

λtkptk(z) log
λtkptk(z)

2pavg(z)
dz = λtkDKL(ptk‖pavg) + λtk log

λtk
2

(6)

Similarly, for the third term,∫
z

λtuptu(z) log
λtuptu(z)

2pavg(z)
dz = λtuDKL(ptu‖pavg) + λtu log

λtu
2

(7)

In summary, from the Eq. (5), (6), and (7), we obtain the minimization problem with respect to G as
follows,

min
θg
−LG(θg, θd) = −Lsd(θg, θd)− Ltkd (θg, θd) + Ltud (θg, θd)

= DKL(ps‖pavg) + λtkDKL(ptk‖pavg)− λtuDKL(ptu‖pavg) + C0,
(8)

where C0 = − log 2 + λtk log λtk

2 − λtu log λtu

2 = −2λtk log 2 + λtk log λtk − λtu log λtu.

B.1.4 Proof of Proposition 3.2

Proposition B.2. The third term of the right-hand side in Eq. (14) in the main paper,DKL(ptu‖pavg),
is bounded to log 2− log λtu .
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Proof.

DKL(ptu‖pavg) =

∫
z

ptu(z) log
ptu(z)

pavg(z)
dz

=

∫
z

ptu(z) log
2ptu(z)

ps(z) + λtkptk(z) + λtuptu(z)
dz

=

∫
z

ptu(z) log 2 dz +

∫
z

ptu(z) log
ptu(z)

ps(z) + λtkptk(z) + λtuptu(z)
dz

= log 2 +

∫
z

ptu(z) log ptu(z) dz −
∫
z

ptu(z) log (ps(z) + λtkptk(z) + λtuptu(z)) dz

≤ log 2 +

∫
z

ptu(z) log ptu(z) dz −
∫
z

ptu(z) log λtuptu(z) dz

( ps(z) + λkptk(z) + λtuptu(z) ≥ λtuptu(z) for all z)

= log 2 +

∫
z

ptu(z) log ptu(z) dz −
∫
z

ptu(z) log ptu(z) dz −
∫
z

ptu(z) log λtu dz

= log 2− log λtu

Therefore,

DKL(ptu‖pavg) ≤ log 2− log λtu.

B.1.5 Proof of Proposition 3.3

Proposition B.3. Assume that supp(ps) ∩ supp(ptu) = ∅ and supp(ptk) ∩ supp(ptu) = ∅, where
supp(p) := {z ∈ Z|p(z) > 0} is the support set of probability distribution p. Then, the minimization
problem with respect to G, Eq. (14) in the main paper, is equivalent to the minimization problem of
summation on two f -divergences.

Df1(ps||ptk) + λtkDf2(ptk||ps),

where f1(u) = u log u
(1−α)u+α , and f2(u) = u log u

αu+(1−α) . Therefore, the minimum of Eq. (14)
in the main paper is achieved if and only if ps = ptk.

Proof. The minimization problem with respect to G can be expressed as below:

DKL(ps‖pavg) + λtkDKL(ptk‖pavg)− λtuDKL(ptu‖pavg) + C0 (9)

where C0 = −2λtk log 2 + λtk log λtk − λtu log λtu.

We assume that (i) supp(ps)∩ supp(ptu) = ∅ and (ii) supp(ptk)∩ supp(ptu) = ∅, where supp(p) :=
{z ∈ Z|p(z) > 0} be the support set of probability distribution p. We denote Z1 := Z \ supp(ptu)
and Z2 := supp(ptu). Then, the first and second term in Eq. (9) are written as below, respectively:

DKL(ps‖pavg) =

∫
Z
ps(z) log

ps(z)

pavg(z)
dz =

∫
Z1

ps(z) log
ps(z)

(ps(z) + λtkptk(z))/2
dz, (10)

λtkDKL(ptk‖pavg) = λtk

∫
Z
ptk(z) log

ptk(z)

pavg(z)
dz (11)

= λtk

∫
Z1

ptk(z) log
ptk(z)

(ps(z) + λtkptk(z))/2
dz. (12)

since ptu(z) = 0 for all z ∈ Z1 and ps(z) = ptk(z) = 0 for all z ∈ Z2. Also, the third term in Eq.
(9) is as follows:

λtuDKL(ptu‖pavg) = λtu

∫
Z
ptu(z) log

ptu(z)

pavg(z)
dz

= λtu

∫
Z2

ptu(z) log
ptu(z)

(λtuptu(z))/2
dz = λtu log

2

λtu
,

(13)
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With Eq. (10) to (11) and letting C2 := λtu · log 2
λtu

in Eq. (13), Eq. (9) is as below:∫
Z1

ps(z) log
ps(z)

(ps(z) + λtkptk(z))/2
dz + λtk

∫
Z1

ptk(z) log
ptk(z)

(ptk(z) + λtkptk(z))/2
dz − C2

=

∫
Z1

ps(z) log
[ ps(z)

(ps(z) + λtkptk(z))/(1 + λtk)
· 2

1 + λtk

]
dz

+ λtk

∫
Z1

ptk(z) log
[ ptk(z)

(ptk(z) + λtkptk(z))/(1 + λtk)
· 2

1 + λtk

]
dz − C2

=

∫
Z1

ps(z) log
ps(z)

(ps(z) + λtkptk(z))/(1 + λtk)
dz +

∫
Z1

ps(z) log
2

1 + λtk
dz

+ λtk

∫
Z1

ptk(z) log
ptk(z)

(ptk(z) + λtkptk(z))/(1 + λtk)
dz + λtk

∫
Z1

ptk(z) log
2

1 + λtk
dz − C2

=

∫
Z1

ps(z) log
ps(z)

(ps(z) + λtkptk(z))/(1 + λtk)
dz + log

2

1 + λtk

+ λtk

∫
Z1

ptk(z) log
ptk(z)

(ptk(z) + λtkptk(z))/(1 + λtk)
dz + λtk log

2

1 + λtk
− C2

With denoting α := λtk

1+λtk
, and C3 := log 2

1+λtk
+ λtk log 2

1+λtk
− C2, and satisfying 0 < α < 1,

=

∫
Z1

ps(z) log
ps(z)

(1− α)ps(z) + αptk(z)
dz + λtk

∫
Z1

ptk(z) log
ptk(z)

(1− α)ptk(z) + αptk(z)
dz + C3.

(14)

By the definition of the skewed α-KL Divergence (D(α)
KL) [47], Eq. (14) is written as follow:

D
(α)
KL(ps‖ptk) + λtk ·D(1−α)

KL (ptk‖ps) + C3. (15)

The skewed α-KL Divergence, D(α)
KL(p‖q), belongs to the f -divergence from p to q [47].

Df (p‖q) =

∫
q(x)f

(p(x)

q(x)

)
dx, where f(u) = u log

u

(1− α)u+ α
, (u =

p(x)

q(x)
6= 1),

where f(u) is a convex function with f(1) = 0. Therefore, Eq. (15) is equivalent to the summation
of f -divergence as below.

Df1(ps‖ptk) + λtkDf2(ptk‖ps) + C3, (16)

where f1(u) = u log u
(1−α)u+α , and f2(u) = u log u

αu+(1−α) . Therefore, the minimum of Eq. (16)
is achieved when ps = ptk.

B.2 Posterior Inference

We provide the details of the posterior inference to estimate wx = p(known|x) for a target instance,
x. Thus, we model the mixture of two Beta distributions on the entropy values of the target instances.
We estimate wx as the posterior probability by fitting the Beta mixture model through the Expectation-
Maximization (EM) algorithm. Therefore, this section starts the details of the fitting process of the
Beta mixture model.

B.2.1 Fitting Process of Beta mixture model

We follow the fitting process of Beta mixture model by [1]. First, the probability density function
(pdf) for the mixture of two Beta distributions on the entropy values is defined as follows,

p(`x) = λtkp(`x|known) + λtup(`x|unknown), (17)
with p(`x|known) ∼ Beta(α0, β0) and p(`x|unknown) ∼ Beta(α1, β1), (18)
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where λtk is p(known); λtu is p(unknown); `x is the entropy value for the target instance, x,
i.e. `x = H(E(G(x))) with entropy function H; α0 and β0 represents the parameters of the Beta
distribution for the known component; and α1 and β1 are the parameters for unknown component.
Eq. (18) represents the individual pdf for each component which is followed by the Beta distribution,

We fit the distribution through the Expectation-Maximization (EM) algorithm. We introduce the
latent variables γ0(`x) = p(known|`x) and γ1(`x) = p(unknown|`x), and use an Expectation
Maximization (EM) algorithm with a finite number of iterations (10 in ours).

In E-step, we update the latent variables using Bayes’ rule with fixing the other parameters, λtk, α0,
β0, λtu, α1, and β1, as follows:

γ0(`x) =
λtkp(`x|known)

λtkp(`x|known) + λtup(`x|unknown)
,

where p(`x|known) and p(`x|unknown) are from Eq. (18). γ1(`x) follows the same claculation.

In M-step, given the fixed γ0(`x) and γ1(`x) from the E-step, the parameters αk, βk are estimated by
using a weighted method of moments as follows,

βk =
αk(1− ¯̀

k)
¯̀
k

, αk = ¯̀
k(

¯̀
k(1− ¯̀

k)

s2k
− 1), where k ∈ {0, 1} ,

where ¯̀
0 and s20 are a weighted average and a weighted variance estimation of the entropy values, `x,

for known component, respectively. ¯̀
1 and s21 are for unknown component as follows,

¯̀
k =

∑
x∈χt

γk(`x)`x∑
x∈χt

γk(`x)
, s2k =

∑
x∈χt

γk(`x)(`x − ¯̀
k)2∑

x∈χt
γk(`x)

where k ∈ {0, 1} .

Then, the mixing coefficients, λtk and λtu, are calculated as follows,

λtk =
1

nt

∑
x∈χt

γ0(`x), λtu = 1− λtk, (19)

where nt is the number of instances in the target domain, χt.

We conduct a finite number of iteration over E-step and M-step iteratively. Finally, the probability of
a instance being known or unknown class through the posterior probability:

p(known|`x) =
λtkp(`x|known)

λtkp(`x|known) + λtup(`x|unknown)
, (20)

where p(unknown|`x) follows the same calculation.

B.3 Training Details

This subsection provides the details for the training part of UADAL. The first part enumerates the
training algorithm procedure, and the second part shows the computational complexity of UADAL
during training.

B.3.1 Training Algorithm of UADAL

We provide a training algorithm of UADAL in detail. All equations in Algorithm 1 of this script
represent the equations in the main paper. The detailed settings for niter, m, and η in Algorithm 1
are described in Section C.1.3.

B.3.2 Computational Complexity of UADAL

The computational complexity of UADAL is increased because we need to fit the mixture model,
which requires O(nk), with the number of the target instances (n) and the iterations of EM (k).
Figure 1 shows the negative log-likelihood from the fitted mixture model over EM iterations (k),
along different initializations of λtk and λtu. Here, k can be adjusted to trade the performance
(negative log-likelihood) and the time-complexity (k). Moreover, it shows that the convergence
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Algorithm 1 Training algorithm of UADAL.

Require:
χs: dataset from the source domain.
χt: dataset from the target domain.
niter: the number of epochs for main training.
m: the batch size.
η: the frequency to fit the posterior inference.

Ensure:
1: Sample few source minibatches from χs.
2: Update θe, θg following Eq. (20).
3: Fitting the posterior model through EM algorithm by Eq. (17)
4: for i = 1, . . . , niter do
5: Sample minibatch of m source samples from χs.
6: Sample minibatch of m target samples from χt.
7: Update θd by Eq. (21).
8: Update θe, θg , θc by Eq. (20, 22).
9: if (i mod η) = 0 then

10: Fitting the posterior model through EM algorithm by Eq. (17)
11: end if
12: end for

of EM algorithm of the posterior inference, which makes we set k as constant. As a measure of
the computational complexity, we provide Wall-clock-time for a whole experimental procedure
by following Algorithm 1 (under an RTX3090 GPU/i7-10700F CPU). For A→W in Office-31, the
wall-clock-time is 1,484 and 1,415 seconds, with and without posterior inference, respectively (+5%
increment). From this +5% increment, the performance of UADAL with the posterior inference has
improved than with Entropy, as shown in Figure 9b in the main paper (see the red/blue solid lines).

Figure 1: Convergence over EM iterations (k) of Posterior Inference
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C Experimental Part

C.1 Implemenation details

C.1.1 Optimization Details

We utilize the pre-trained ResNet-50 [15], DenseNet-121 [16], EfficientNet-B0 [40], and VGGNet
[37], as a backbone network. For all cases of the experiments for the backbone networks and the
datasets, we use the SGD optimizer with the cosine annealing [26] schedule for the learning rate
scheduling. For the parameters in the pre-trained network of ResNet-50, DenseNet, and EfficientNet,
we set the learning rate 0.1 times smaller than the parameters from the scratch, followed by [20, 6].
For VGGNet with VisDA dataset, we followed [33]. Therefore, we did not update the parameters of
VGGNet and constructed fully-connected layers with 100 hidden units after the FC8 layers. In terms
of the entropy loss for the target domain, we adopt a variant of the loss, FixMatch [38], in order to
utilize the confident predictions of the target instances. We run each setting three times and report
the averaged accuracy with standard deviation. We conduct all experiments on an NVIDIA RTX
3090 GPU and an i7-10700F CPU.

C.1.2 Network Configurations

Except for the feature extractor network G, the configurations of the other networks, E, C, D, are
based on the classification network. The feature dimensions from the ResNet-50, EfficientNet-B0,
and DenseNet-121 are 2048, 1280, and 1024, respectively, which are the output dimensions of G (100
for VGGNet by the construction of the fully connected layer). Given the dimension, the network C
utilizes one middle layer between the feature and classification layer with the dimension of 256. After
the middle layer, we apply a batch normalization [17] and LeakyReLU [45] with 0.2 parameter. Then,
the feature after the middle layer passes to the classification layer, in which the output dimensions are
|Cs|+ 1. The network E has the classification layer without any middle layer, in which the output
dimension is |Cs|. The network D consists of the two middle layers with applying the LeakyReLU,
where the output dimension is 3.

C.1.3 Hyperparameter Settings

For all cases of the experiments, we set the batch size, m, to 32. For the number of epochs for main
training, denoted as niter, we set 100 for Office-31 and OfficeHome datasets. For the VisDA dataset,
we set niter as 10 epochs since it is a large scale. Associated with niter, we set the frequency to fit
the posterior inference, η, as 10 epochs for Office-31 and OfficeHome, as 1 epoch for the VisDA
dataset. We set 0.001 as a default learning rate with 0.1 times smaller for the network G since we
bring the pre-trained network. For the network E of the open-set recognizer, we set 2 times larger
than the default value because the shallow network E should learn the labeled source domain quickly
during η epochs, followed by initializing the network E after fitting the posterior inference. For the
case of VGGNet with the VisDA dataset, we utilize the default learning rate for the network G as
same as the other networks since we only train the fully connected layers on the top of VGGNet.

C.1.4 Baselines

For the baselines, we implement the released codes for OSBP [33] (https://github.com/
ksaito-ut/OPDA_BP), STA [20] (https://github.com/thuml/Separate_to_Adapt), PGL
[27] (https://github.com/BUserName/PGL), ROS [6] (https://github.com/silvia1993/
ROS), DANCE [34] (https://github.com/VisionLearningGroup/DANCE), and DCC [19]
(https://github.com/Solacex/Domain-Consensus-Clustering). For OSLPP [44], we are
not able to find the released code. Thus, the reported performances of OSLPP for Office-31 and
Office-Home with ResNet-50 are only available. For the released codes, we follow their initial
experimental settings. Especially, we set all experimental settings for DenseNet and EfficientNet,
equal to the settings on their ResNet-50 experiments, since they do not conduct the experiments on
the DenseNet-121 and EfficientNet-B0. For a fair comparison, we bring the reported results for
the baselines from its papers on the datasets, i.e., Office-31 (with ResNet-50), OfficeHome (with
ResNet-50), and VisDA(with VGGNet) dataset. The officially reported performances are marked as ∗
in the tables. Except for these cases, we all re-implement the experiments three times.

10

https://github.com/ksaito-ut/OPDA_BP
https://github.com/ksaito-ut/OPDA_BP
https://github.com/thuml/Separate_to_Adapt
https://github.com/BUserName/PGL
https://github.com/silvia1993/ROS
https://github.com/silvia1993/ROS
https://github.com/VisionLearningGroup/DANCE
https://github.com/Solacex/Domain-Consensus-Clustering


C.1.5 Dataset

For the availability of the datasets, we utilize the following links; Office-31 (https://
www.cc.gatech.edu/~judy/domainadapt/#datasets_code), Office-Home (https://www.
hemanthdv.org/officeHomeDataset.html), and VisDA (http://ai.bu.edu/visda-2017/
#download). We utilize the data transformations for training the proposed model, which are 1) resize,
random horizontal flip, crop, and normalize by following [34], and 2) RandAugment [9] by following
[32].

C.2 Experimental Results

C.2.1 Computational Complexity of OSLPP on VisDA dataset

As OSLPP [44] said, their complexity is O(T (2n2dPCA + d3PCA)), which is repeated for T times.
Here, n is the number of samples with n = ns + nt, and dPCA is the dimension which is reduced by
PCA. However, regarding memory usage, when the number of samples, n, is much greater than the
dimensionality, the memory complexity is O(n2). Therefore, they claimed that it has limitation of
scaling up to the extremely large dataset (e.g., n > 100, 000). With this point, VisDA dataset consists
of the source dataset with 79,765 instances and the target dataset with 55,388 instances, where the
number of samples becomes 135,153. Therefore, OSLPP is infeasible to conduct the experiments for
VisDA dataset.

C.2.2 Low Accuracy of Baselines

HOS score is a harmonic mean of OS∗ and UNK. Therefore, HOS is higher when performing well in
both known and unknown classification. With this point, some baselines have very low HOS score in
the Table 1 and 2 of the main paper. This is because their UNK performances are worse. For example,
the reported OS and OS∗ of PGL [27] in Office-Home are 74.0 and 76.1, respectively. Here, OS is
the class-wise averaged accuracy over the classes including unknown class. With 25 known classes,
UNK then becomes (25+1)×OS−25×OS* = 25.1, which leads to HOS score as 33.5. It means that
PGL fails in the open-set scenario because their adversarial loss includes all target instances, which
is critically weakened by the negative transfer.

For DANCE, they only reported OS scores in the paper, which makes the calculation of HOS
infeasible. Also, their class set (15 knowns in OfficeHome) is different from the standard OSDA
scenario (25 knowns in OfficeHome by following [33]). It means that optimal hyper-parameters are
not available. Therefore, we re-implement based on their official code. Meanwhile, DANCE (also
DCC) is based on clustering which means that they are weak on initializations or hyperparameters,
empirically shown as higher standard deviations of the performances in the tables. The below is the
detailed answer on the lower performances of baselines, especially DANCE, with EfficientNet. As we
said, there is no reported performance of DANCE with the additional backbone choices. Therefore,
we implemented additional variants of DANCE with EfficientNet and DenseNet by following their
officially released codes. In order to compare fairly, we set all hyper-parameters with that of ResNet-
50 case as UADAL is being set. Specifically, DANCE requires a threshold value (ρ) to decide whether
a target instance belongs to “known” class or not, which is very sensitive to the performance. We
confirmed that they utilize the different values over the experimental settings. This sensitivity may
degrade the performance of DANCE. Unlike DANCE, UADAL does not require a threshold setting
because it has a posterior inference to automatically find the threshold to decide open-set instances.
Therefore, this becomes the key reason behind the performance difference.

For DCC, the experimental settings for VisDA are not available with the comments of “the clustering
on VisDA is not very stable” in their official code repository. Threfore, our re-implementation of
DCC with VisDA (with EfficientNet-B0, DenseNet-121, and ResNet50) was also unstable. For a fair
comparison with DCC, please refer to the performances which is marked as ∗ in the Table 1 and 2 of
the main paper.

C.2.3 t-SNE Visualization

Figure 2 and 3 in this script represents the t-SNE visualizations of the learned features extracted by
EfficientNet-B0 and ResNet-50, respectively. It should be noted that EfficientNet-B0 (5.3M) has only
20% of parameters than ResNet-50 (25.5M). We observe that the target-unknown (red) features from
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the baselines are not discriminated with the source (green) and the target-known (blue) features. On
the contrary, UADAL and cUADAL align the features from the source and the target-known instances
accurately with clear segregation of the target-unknown features. It means that UADAL learns the
feature spaces effectively even in the less complexity.

(a) DANN (b) STA (c) OSBP (d) DCC (e) UADAL (f) cUADAL

Figure 2: t-SNE of the features by the EfficientNet-B0 on the task D → W of Office-31. (blue:
target-known, red: target-unkonwn, green: source)

(a) DANN (b) STA (c) OSBP (d) DCC (e) UADAL (f) cUADAL

Figure 3: t-SNE of the features by the ResNet-50 on the task D→W of Office-31. (blue: target-known, red:
target-unkonwn, green: source)

C.2.4 Proxy A-Distance (PAD)

Proxy A-Distance (PAD) is an empirical measure of distance between domain distributions, which is
proposed by [11]. Given a generalization error ε of discriminating data which sampled by the domain
distributions, PAD value can be computed as d̂A = 2(1− 2ε). We compute the PAD value between
target-known and target-unknown features from the feature extractor, G. We follow the detailed
procedure in [11]. Note that high PAD value means two domain distributions are well discriminated.

C.2.5 Robust on Early Stage Iterations

We investigate the effects of the learning iterations for the early stage training to fit the posterior
inference, which is considered as a hyper-parameter of UADAL. Figure 4 represents the performance
metrics such as OS∗, UNK, and HOS over the number of the initial training iterations of UADAL. It
shows that UADAL is not sensitive to the number of iterations for the early stage. Taken together
with Figure 8a in the main paper, these results represent that our two modality assumption for the
target entropy values robustly holds.

Figure 4: Averaged performance over the tasks in Office-31 varying the number of iterations.

12



Office31 (ResNet-50)

Network A→W A→ D D→W W→ D D→ A W→ A Avg.
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

C 80.5 92.4 86.1 79.4 91.0 84.8 99.0 98.3 98.6 98.7 100.0 99.3 68.7 89.7 77.9 56.5 89.1 68.9 80.5 93.4 85.9
E 84.3 94.5 89.1 85.1 87.0 86.0 99.3 96.3 97.8 99.5 99.4 99.5 73.3 87.3 79.7 67.4 88.4 76.5 84.8 92.1 88.1

Office-Home (ResNet-50)

Network P→R P→C P→A A→P A→R A→C
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

C 68.8 83.7 75.5 39.3 79.4 52.6 47.9 84.3 61.1 65.0 76.3 70.2 78.4 75.6 77.0 46.7 77.2 58.2
E 71.6 83.1 76.9 43.4 81.5 56.6 50.5 83.7 63.0 69.1 72.5 70.8 81.3 73.7 77.4 54.9 74.7 63.2

Network R→A R→P R→C C→R C→A C→P Avg.
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

C 64.2 79.2 71.0 75.5 78.6 77.0 44.9 71.7 55.2 63.0 75.0 68.5 49.9 77.4 60.7 57.8 79.2 66.8 58.4 78.1 66.1
E 66.7 78.6 72.1 77.4 76.2 76.8 51.1 74.5 60.6 69.1 78.3 73.4 53.5 80.5 64.2 62.1 78.8 69.5 62.6 78.0 68.7

Table 1: Ablation study for the network C and E to generate the entropy value in UADAL w.r.t.
classification accuracies (%) on Office-31 and Office-Home wiht ResNet-50 (bold: best performer).

C.2.6 Ablation Studies on Using Classifier C as Entropy

This part introduces an ablation study for utilizing the classifier C to generate the entropy values
instead of an open-set recognizer E. Using the classifier C (except the last unknown dimension)
directly is also feasible, as E does. Although it is feasible, however, it leads to wrong decisions for
the target-unknown instances. As we explained, the network E learns the decision boundary over
Cs classes while the network C does over Cs + 1 including unknown class. Especially, in the case
of the target-unknown instances, the network C is enforced to classify the instances as unknown
class, which is Cs + 1-th dimension. When optimizing the network C with the target-unknown
instances, we expect that the output of the network C would have a higher value on the unknown
dimension. With this point, if we use the first Cs dimension of C to calculate the entropy value, there
is no evidence that the distribution of the C’s output is flat over Cs classes which implies to a higher
entropy value. Even though the largest predicted value except the last dimension is small, the entropy
value might be lower due to imbalance in the output. Then, it becomes to be considered as known
class, which is wrong decision for the target-unknown instances. Therefore, it gives the negative
effects on the open-set recognition, and it adversely affects when training the model.

As an ablation experiment, we conduct the experiments to compare using E or C for the entropy.
The experimental results on both cases are shown in Table 1 of this section, applied to Office-31 and
Offce-Home datasets. The network E in Table 1 is the current UADAL model and C represents
that the entropy values are generated by the classifier C without introducing the network E. As you
can see, the performances with E is better than C. It means that the network E learns the decision
boundary for the known classes, and it leads to recognize the open-set instances effectively. It should
be noted that we utilize the structure of E as an one-layered network to reduce the computation
burden.

C.2.7 Ablation Studies on Entropy Minimization

The entropy minimization is important part for the fields such as semi-supervised learning [14, 38]
and domain adaptation [24, 20, 34, 6] where the label information of the dataset is not available.
In order to show the effect of this term, we conduct the ablation study on the datasets of Office-31
and Office-Home. We provide the experimental results in Table 2. Combined with the results in the
main paper, the experimental result shows that UADAL without the entropy minimization loss still
performs better than other baselines. It represents that UADAL learns the feature space appropriately
as we intended to suit Open-Set Domain Adaptation. The properly learned feature space leads to
effectively classify the target instances without the entropy minimization.

C.2.8 Posterior Inference with Efficiency

In terms of complexity, the posterior inference increases the computational complexity because we
need to fit the mixture model. As we provided at the section B.3.2, Wall-clock-time is increased as
5% with the posterior inference in the case of full data utilization. From this +5% increment, the
performance has improved significantly than that without the posterior inference (as shown in Figure
9b in the paper). In addition, by utilizing the posterior inference, we avoid introducing any extra
hyper-parameter to recognize the unknown instances, which is also our contribution.

As an alternative, we fit the mixture model only by sampling the target instances in order to reduce the
computation time because the computational complexity is O(nk) where n is the number of samples
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Office31 (ResNet-50)
Entropy A→W A→ D D→W W→ D D→ A W→ A Avg.

Minimization OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS
X 85.9 84.4 85.1 84.7 83.6 84.2 95.6 98.9 97.2 98.7 100.0 99.3 75.2 86.0 80.3 72.6 87.4 79.3 85.4 90.0 87.5
O 84.3 94.5 89.1 85.1 87.0 86.0 99.3 96.3 97.8 99.5 99.4 99.5 73.3 87.3 79.7 67.4 88.4 76.5 84.8 92.1 88.1

Office-Home (ResNet-50)
Entropy P→R P→C P→A A→P A→R A→C

Minimization OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS
X 70.7 78.2 74.2 48.4 76.6 59.3 49.9 76.2 60.3 64.5 79.4 71.2 78.8 75.2 77.0 56.3 75.1 64.3
O 71.6 83.1 76.9 43.4 81.5 56.6 50.5 83.7 63.0 69.1 72.5 70.8 81.3 73.7 77.4 54.9 74.7 63.2

R→A R→P R→C C→R C→A C→P Avg.
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

X 62.3 76.4 68.6 71.3 81.0 75.8 57.3 65.6 61.2 68.1 75.9 71.8 54.7 70.9 61.7 60.1 72.6 65.8 61.9 75.2 67.6
O 66.7 78.6 72.1 77.4 76.2 76.8 51.1 74.5 60.6 69.1 78.3 73.4 53.5 80.5 64.2 62.1 78.8 69.5 62.6 78.0 68.7

Table 2: Ablation study for the entropy minimization loss in UADAL w.r.t. classification accuracies
(%) on Office-31 and Office-Home wiht ResNet-50 (bold: best performer).

and k is the number of fitting iterations (we fixed it as 10). Figure 5 represents the wall-clock time
and the performance measures by sampling ratio (%) for the target domain. Since the computational
complexity is linearly increased by the number of samples, the wall-clock time is also linearly
increased by increasing the sampling ratio. Interestingly, we observed that even though the sampling
ratio is small, i.e. 10%, the performances of UADAL w.r.t. HOS, OS*, and UNK does not decreased,
on both Office-31 and Office-Home datasets.

(a) Office-31 (b) Office-Home

Figure 5: Quantitative analysis for ablation study of applying sampling on the target domain with
Office-31 (a) and Office-Home (b). Each subfigure represents the Wall-Clock Time (s) increased by
fitting process of the mixture model during training and HOS (%) over the target sampling ratio. (All
records are the averaged values over the tasks in each dataset, not just single task.)

In order to investigate the robustness on the sampling ratio, we provide the qualitative analysis in
Figure 6. For each sampling ratio, the left figure represents the original target entropy distribution,
and the middle shows the sampled target entropy values and the fitted BMM densities. Finally, the
right figure represents the weight distribution by the posterior inference. As you can see, our posterior
inference takes the entropy values, and fits the mixture model without any thresholds. Therefore,
even if the sampling ratio is small, the observation that the target-unknown instances have higher
entropy values than the target-known instances still holds. Therefore, the open-set recognition on the
target domain is still informative, and it leads to maintain the performances of UADAL.

C.2.9 Full Experimental Results with All Metrics

As a reminder, HOS metric is a harmonic mean of OS* and UNK where OS* is accuracy for the
known class classification and UNK is for the unknown classification. Since Open-Set Domain
Adaptation should perform well on both tasks, we choose HOS metric as a primary metric. For
other metrics such as OS, OS*, and UNK, we provide the full experimental results including OS,
OS*, and UNK in this section. First of all, we provide the summary table of the experimental results
with the officially reported performances of the baselines, which is denoted as * for reliable and fair
comparisons. Table 3 in this appendix shows that UADAL outperforms the baselines over all datasets,
in the conventional setting of the backbone networks (such as Office-31/Office-Home with ResNet-50
and VisDA with VGGNet). The detailed results are shown in Table 4 for Office-31 and Table 5 for
Office-Home, in this appendix.
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(a) Target Sampling Ratio: 50%

(b) Target Sampling Ratio: 10%

Figure 6: Qualitative analysis for ablation study of applying sampling on the target domain (D→W
task in Office-31). The subfigure (a) and (b) represent the different sampling ratio, 50% and 10%,
respectively. Each subfigure consists of 1) left: the original target entropy distribution, 2) midde: the
sampled target entropy distribution with the fitted Beta Mixture Model (BMM), and 3) right: the
weight (ŵ) distribution (by the fitted BMM in middle) on the target domain.

Method Office31 (ResNet-50) Office-Home (ResNet-50) VisDA (VGGNet)
OS OS* UNK Avg. HOS OS OS* UNK Avg. HOS OS OS* UNK HOS

DANN 85.4 87.1 68.3 75.9±0.5 53.5 52.6 77.1 60.7±0.2 - - - -
CDAN 86.1 88.3 63.9 73.4±1.3 55.3 54.5 74.6 61.4±0.3 - - - -
OSBP∗ 86.6 87.2 80.4 83.7±0.4 64.2 64.1 66.3 64.7±0.2 62.9 59.2 85.1 69.8
STA∗ 82.5 84.3 64.8 72.5±0.8 61.9 61.8 63.3 61.1±0.3 66.8 63.9 84.2 72.7
PGL∗ 81.1 82.7 64.7 72.6±1.5 74.1 76.1 25.0 35.2 80.7 82.8 68.1 74.7
ROS∗ 86.5 86.6 85.8 85.9±0.2 62.0 61.6 72.4 66.2±0.3 - - - -

DANCE 91.0 94.0 60.2 73.1±1.0 72.8 74.4 35.0 44.2±0.6 - - - -
DCC∗ - - - 86.8 - - - 64.2 68.8 68.0 73.6 70.7
LGU∗ - - - - 71.4 72.7 38.9 50.7 70.1 69.2 75.5 72.2

OSLPP∗ 89.0 89.3 85.6 87.4 64.1 63.8 71.7 67.0 - - - -
UADAL 85.5 84.8 92.1 88.1±0.2 63.1 62.6 78.0 68.7±0.2 67.4 63.1 93.3 75.3
cUADAL 85.6 84.8 93.0 88.5±0.3 63.1 62.5 77.6 68.5±0.1 68.3 64.3 92.6 75.9

Table 3: Summary of the OSDA experimental results. The results in Office-31 and Office-Home are
the averaged accuracies over the tasks because there are the multiple domains. (bold: best performer,
underline: second-best performer, ∗: officially reported performances.)

D Limitations and Potential Negative Societal Impacts

Limitations Our domain adaptation setting assumes that we have an access to a labeled source
dataset and an unlabeled target dataset, simultaneously. Thus, we may encounter the situation
where the access for the source dataset and the target dataset is not available at the same time, i.e.
streamlined data gathering. In addition, our work solves the Open-Set Domain Adaptation problem.
It intrinsically assumes the existence of ‘unknown’ information in the target domain. Our open-set
recognition is based on this assumption, thus we fit the mixture model where each mode represents
for known/unknown information. We think that the common assumption of the high entropy value on
target-unknowns could be considered as a limitation, as well.

Potential Negative Societal Impacts Because open-set domain adaptation focuses on categories
belonging to the class of the source dataset, it is infeasible to distinguish differences between
categories that are only within the target dataset. Therefore, if the source dataset’s categories are not
sufficient, important categories within the target dataset may not be classified, which would lead to
only limited applications when we have social stratifications.
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Office31 (ResNet-50)
A→W A→ D D→W

Model OS OS* UNK HOS OS OS* UNK HOS OS OS* UNK HOS
DANN 84.5 87.4 55.7 68.1 87.9 90.8 59.2 71.5 97.3 99.3 77.0 86.7
CDAN 86.7 90.3 50.7 64.9 88.6 92.2 52.4 66.8 97.2 99.6 73.2 84.3
OSBP 86.1 86.8 79.2 82.7 89.1 90.5 75.5 82.4 97.6 97.7 96.7 97.2
STA 85.0 86.7 67.6 75.9 88.5 91.0 63.9 75.0 90.6 94.1 55.5 69.8
PGL 81.4 82.7 67.9 74.6 80.5 82.1 65.4 72.8 85.7 87.5 68.1 76.5
ROS 87.3 88.4 76.7 82.1 86.6 87.5 77.8 82.4 98.7 99.3 93.0 96.0

DANCE 94.3 98.7 50.7 66.9 92.8 96.5 55.9 70.7 97.0 100.0 66.8 80.0
DCC - - - 87.1 - - - 85.5 - - - 91.2
LGU - - - - - - - - - - - -

OSLPP 89.4 89.5 88.4 89.0 92.4 92.6 90.4 91.5 96.1 96.9 88.0 92.3
UADAL 85.3 84.3 94.5 89.1 85.2 85.1 87.0 86.0 99.0 99.3 96.3 97.8
cUADAL 86.4 85.5 95.1 90.1 86.0 85.6 90.4 87.9 98.6 98.7 97.7 98.2

W→ D D→ A W→ A AVG.
OS OS* UNK HOS OS OS* UNK HOS OS OS* UNK HOS OS OS* UNK HOS

DANN 97.3 100.0 70.2 82.5 73.0 72.9 74.5 73.7 72.2 72.1 73.1 72.6 85.4 87.1 68.3 75.9±0.5
CDAN 97.0 100.0 67.3 80.5 74.5 74.9 70.6 72.7 72.5 72.8 69.3 71.0 86.1 88.3 63.9 73.4±1.3
OSBP 97.7 99.1 84.2 91.1 75.8 76.1 72.3 75.1 73.1 73.0 74.4 73.7 86.6 87.2 80.4 83.7±0.4
STA 83.3 84.9 67.8 75.2 81.5 83.1 65.9 73.2 66.4 66.2 68.0 66.1 82.5 84.3 64.8 72.5±0.8
PGL 81.1 82.8 64.0 72.2 78.8 80.6 61.2 69.5 79.1 80.8 61.8 70.1 81.1 82.7 64.7 72.6±1.5
ROS 99.9 100.0 99.4 99.7 75.4 74.8 81.2 77.9 71.2 69.7 86.6 77.2 86.5 86.6 85.8 85.9±0.2

DANCE 97.6 100.0 73.7 84.8 82.4 85.3 53.6 65.8 81.6 83.7 60.6 70.2 91.0 94.0 60.2 73.1±1.0
DCC - - - 87.1 - - - 85.5 - - - 84.4 - - - 86.8
LGU - - - - - - - - - - - - - - - -

OSLPP 95.4 95.8 91.5 93.6 81.6 82.1 76.6 79.3 78.9 78.9 78.5 78.7 89.0 89.3 85.6 87.4
UADAL 99.5 99.5 99.4 99.5 74.5 73.3 87.3 79.7 69.3 67.4 88.4 76.5 85.5 84.8 92.1 88.1±0.2
cUADAL 99.3 99.3 99.4 99.4 75.4 74.2 87.8 80.5 67.6 65.6 87.8 75.1 85.6 84.8 93.0 88.5±0.3

Table 4: Classification accuracy (%) on Office-31 dataset using ResNet-50 as the backbone network.
(bold: best performer, underline: second-best performer)

Office-Home (ResNet-50)
P→R P→C P→A A→P

Model OS OS* UNK HOS OS OS* UNK HOS OS OS* UNK HOS OS OS* UNK HOS
DANN 67.9 67.7 72.0 69.8 32.3 30.1 86.3 44.6 44.0 42.4 83.9 56.3 60.4 60.0 71.3 65.2
CDAN 69.8 69.8 69.7 69.7 35.0 33.1 82.4 47.2 47.1 45.8 81.2 58.6 62.0 61.7 68.8 65.1
OSBP 76.0 76.2 71.7 73.9 45.3 44.5 66.3 53.2 59.4 59.1 68.1 63.2 71.3 71.8 59.8 65.2
STA 75.7 76.2 64.3 69.5 45.1 44.2 67.1 53.2 54.9 54.2 72.4 61.9 67.2 68.0 48.4 54.0
PGL 82.6 84.8 27.6 41.6 58.4 59.2 38.4 46.6 72.2 73.7 34.7 47.2 77.1 78.9 32.1 45.6
ROS 71.1 70.8 78.4 74.4 47.5 46.5 71.2 56.3 57.6 57.3 64.3 60.6 68.5 68.4 70.3 69.3

DANCE 84.2 86.5 27.1 41.2 48.9 48.2 67.4 55.7 69.7 70.7 43.9 54.2 82.2 84.0 35.4 49.8
DCC - - - 64.0 - - - 52.8 - - - 59.5 - - - 67.4
LGU 81.2 82.8 41.2 55.0 53.1 54.5 18.1 27.2 68.4 69.1 50.9 58.6 79.3 80.5 49.3 61.2

OSLPP 76.8 77.0 71.2 74.0 53.6 53.1 67.1 59.3 55.4 54.6 76.2 63.6 72.5 72.5 73.1 72.8
UADAL 72.1 71.6 83.1 76.9 44.9 43.4 81.5 56.6 51.8 50.5 83.7 63.0 69.2 69.1 72.5 70.8
cUADAL 71.7 71.2 83.4 76.8 42.7 41.2 80.7 54.6 52.1 50.9 82.4 62.9 69.6 69.4 73.9 71.6

A→R A→C R→A R→P
OS OS* UNK HOS OS OS* UNK HOS OS OS* UNK HOS OS OS* UNK HOS

DANN 74.8 75.1 67.3 71.0 38.9 37.1 82.7 51.2 57.6 56.8 77.1 65.4 69.5 69.6 67.2 68.4
CDAN 74.8 75.2 66.7 70.7 41.2 39.7 78.9 52.9 60.4 59.8 73.6 66.0 70.6 70.9 64.6 67.6
OSBP 78.8 79.3 67.5 72.9 50.6 50.2 61.1 55.1 66.1 66.1 67.3 66.7 76.0 76.3 68.6 72.3
STA 77.9 78.6 60.4 68.3 47.0 46.0 72.3 55.8 67.5 67.5 66.7 67.1 76.3 77.1 55.4 64.5
PGL 85.9 87.7 40.9 55.8 61.6 63.3 19.1 29.3 78.6 81.5 6.1 11.4 83.0 84.8 38.0 52.5
ROS 75.9 75.8 77.2 76.5 51.5 50.6 74.1 60.1 67.1 67.0 70.8 68.8 72.3 72.0 80.0 75.7

DANCE 87.4 89.8 25.3 39.4 54.4 54.4 53.7 53.1 76.8 79.2 16.7 27.5 84.1 86.2 29.6 44.0
DCC - - - 80.6 - - - 52.9 - - - 56.0 - - - 62.7
LGU 85.0 86.5 47.5 61.3 57.6 58.6 32.6 41.9 76.4 77.5 48.9 60.0 81.8 83.2 46.8 59.9

OSLPP 79.7 80.1 69.4 74.3 56.3 55.9 67.1 61.0 61.3 60.8 75.0 67.2 78.1 78.4 70.8 74.4
UADAL 81.0 81.3 73.7 77.4 55.7 54.9 74.7 63.2 67.1 66.7 78.6 72.1 77.3 77.4 76.2 76.8
cUADAL 81.8 82.2 73.3 77.5 55.8 55.0 75.6 63.6 67.3 66.8 79.6 72.6 77.7 77.8 75.6 76.7

R→C C→R C→A C→P AVG.
OS OS* UNK HOS OS OS* UNK HOS OS OS* UNK HOS OS OS* UNK HOS OS OS* UNK HOS

DANN 38.8 37.1 80.9 50.9 61.6 61.1 73.5 66.7 45.4 43.8 84.3 57.6 51.2 50.1 77.6 60.9 53.5 52.6 77.1 60.7±0.2
CDAN 41.7 40.3 75.8 52.7 62.0 61.5 73.7 67.1 46.4 44.9 82.8 58.2 52.6 51.6 76.8 61.7 55.3 54.5 74.6 61.4±0.3
OSBP 48.6 48.0 63.0 54.5 71.9 72.0 69.2 70.6 59.8 59.4 70.3 64.3 66.8 67.0 62.7 64.7 64.2 64.1 66.3 64.7±0.2
STA 50.3 49.9 61.1 54.5 67.0 67.0 66.7 66.8 51.9 51.4 65.0 57.4 61.7 61.8 59.1 60.4 61.9 61.8 63.3 61.1±0.3
PGL 66.2 68.8 0.0 0.0 68.8 70.2 33.8 45.6 82.8 85.9 5.3 10.0 72.0 73.9 24.5 36.8 74.1 76.1 25.0 35.2
ROS 52.3 51.5 73.0 60.4 65.6 65.3 72.2 68.6 54.1 53.6 65.5 58.9 60.3 59.8 71.6 65.2 62.0 61.6 72.4 66.2±0.3

DANCE 59.4 60.1 41.3 48.3 81.3 83.9 18.4 30.2 71.2 72.9 28.4 40.9 74.6 76.3 32.8 45.9 72.8 74.4 35.0 44.2±0.6
DCC - - - 76.9 - - - 67.0 - - - 49.8 - - - 66.6 - - - 64.2
LGU 62.1 63.4 29.6 40.4 76.4 77.6 46.4 58.1 65.8 67.2 30.8 42.2 69.1 71.7 4.1 7.8 71.4 72.7 38.9 50.7

OSLPP 54.8 54.4 64.3 59.0 67.5 67.2 73.9 70.4 50.7 49.6 79.0 60.9 62.1 61.6 73.3 66.9 64.1 63.8 71.7 67.0
UADAL 52.0 51.1 74.5 60.6 69.4 69.1 78.3 73.4 54.5 53.5 80.5 64.2 62.8 62.1 78.8 69.5 63.1 62.6 78.0 68.7±0.2
cUADAL 52.5 51.8 71.1 59.9 69.5 69.3 76.3 72.6 54.9 53.8 82.0 65.0 61.8 61.1 77.4 68.3 63.1 62.5 77.6 68.5±0.1

Table 5: Classification accuracy (%) on Office-Home dataset using ResNet-50 as the backbone
network. (bold: best performer, underline: second-best performer)
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