
A Background on the Schrödinger bridge problem

The following facts can be found for instance in the lecture notes [33, Sec. 4]. Consider µ, ν ∈ P(X)
and the entropy-regularized optimal transport problem defining Tτ (µ, ν) in Eq. (6) with a cost
function c ∈ C∞(X× X). This problem admits a unique solution γ∗ and admits a dual formulation

Tτ (µ, ν) = max
ϕ∈L1(µ),ψ∈L1(ν)

∫
ϕdµ+

∫
ψdν + τ

(
1−

∫
e(ϕ(x)+ψ(y)−c(x,y))/τdµ(x)dν(y)

)
.

(15)

The dual problem admits a unique solution in L1(µ)×L1(ν) up to the transformation (ϕ+κ, ψ−κ)
for κ ∈ R. Moreover, we have that Tτ (µ, ν) =

∫
ϕdµ+

∫
ψdν and the primal-dual relation

dγ∗

dµ⊗ ν
(x, y) = g(x, y) := e(ϕ(x)+ψ(y)−c(x,y))/τ , µ⊗ ν a.e.

Also, the potentials satisfy the following equations, which are the first-order optimality conditions:
ϕ(x) = −τ log

(∫
e(ψ(y)−c(x,y))/τdν(y)

)
ψ(y) = −τ log

(∫
e(ϕ(x)−c(x,y))/τdµ(x)

) (16)

These equations are a priori only satisfied µ (resp. ν) almost everywhere, but they can be used
to extend ϕ and ψ as continuous (in fact infinitely differentiable) functions over X, which satisfy
these equations everywhere and are unique in C∞(X), up to the additive invariance mentioned above.
Throughout the paper, we refer to such functions (ϕ,ψ) as the Schrödinger potentials (they are also
referred as EOT potentials in [33]). Let us conclude this section with two observations.

(i) One can bound the oscillation of ϕ as follows

osc(ϕ) := sup
x
ϕ(x)− inf

x
ϕ(x) ≤ sup

x,y
c(x, y)− inf

x,y
c(x, y) = osc(c). (17)

This is obtained by upper bounding c inside the integral which leads to ϕ(x) ≤
supx,y c(x, y) − τ log

( ∫
e(ψ(y))/τdν(y)

)
. Subtracting the analogous lower bound, we

observe that the log terms cancel and we get the bound on the oscillation.

(ii) One can differentiate (16) to see that we have for x ∈ X

∇ϕ(x) =

∫
∇xc(x, y)dγ∗(y|x) = E[∇xc(X,Y )|X = x] (18)

with Law(X,Y ) = γ∗ and γ∗(dy|x) =
∫
g(x, y)ν(dy) is the conditional distribution of Y

given X .

B Proof of Theorem 3.1

Let us first recall the statement of Thm. 3.1.

Theorem B.1 (Representer Theorem). Let Fit : P(X)T → R be any function.

(i) If F (Eq.(5)) admits a minimizer R∗ then (R∗t1 , . . . , R
∗
tT ) is a minimizer for F (Eq.(8)).

(ii) Conversely, if F admits a minimizer µ∗ ∈ P(X)T then a minimizer for F is built as

R(·) =

∫
XT

W τ (·|x1, . . . , xT )dRt1,...,tT (x1, . . . , xT )

where W τ (·|x1, . . . , xT ) is the law of W τ conditioned on passing through x1, . . . , xT at
times t1, . . . , tT respectively and Rt1,...,tT is the composition of the transport plans γi,i+1

which are optimal in the definition of Tτi(µ
∗(i),µ∗(i+1)), for i = 1, . . . , T .
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This theorem is a direct consequence of the following lemma, which is similar in spirit to [1,
Prop. B.1], but the terms involved are different.
Lemma B.2. There exists C > 0 such that, for any R ∈ P(Ω) and t1, . . . , tT a collection of instants,
it holds

H(R |W τ )
(†)
≥ H(Rt1,...,tT |W τ

t1,...,tT )

(?)

≥
T−1∑
i=1

H(Rti,ti+1
|pτi(Rti ⊗Rti+1

)) +

T∑
i=1

H(Rti) + C.

The first inequality (†) becomes an equality if and only if

R(·) =

∫
XT

W (·|x1, . . . , xT )dRt1,...,tT (x1, . . . , xT )

where W τ (·|x1, . . . , xT ) is the law of W τ conditioned on passing through x1, . . . , xT at times
t1, . . . , tT respectively. In addition, the second inequality (?) becomes an equality if and only if R is
Markovian.

Proof. The first inequality (†) and the equality case follows from the additivity property of the
relative entropy under conditioning [16, Eq. (A9)], namely that it holds

H(R|W τ ) = H(Rt1,...,tT |W τ
t1,...,tT )+

∫
H
(
R(·|x1, . . . , xT )|W τ (·|x1, . . . , xT )

)
dRt1,...,tT (x1, . . . , xT )

where the second term vanishes if and only if the conditional distributions R(·|x1, . . . , xT ) are
Brownian bridges, for Rt1,...,tT almost every (x1, . . . , xT ). For the second inequality (?), [20,
Sec. 3.4] states that

H(Rt1,...,tT |W τ
t1,...,tT ) ≥

T−1∑
i=1

H(Rti,ti+1
|W τ

ti,ti+1
)−

T−1∑
i=2

H(Rti |W τ
ti) =: E

with equality if and only if Rt1,...,tT is Markovian. This is the formula of [1, Prop. B.1], but this
expression is unsuitable for our purposes and we need to further reorganise the terms in E.

Without loss of generality, let us assume that Rti are absolutely continuous with density dRti
dx (x) =

ri(x) (if this is not the case, both sides of the inequality are infinite) and let VX be the Lebesgue
volume of X. On the one hand, since W τ

ti is the normalized volume measure on X, it holds

H(Rti |W τ
ti) = H(Rti) + log(VX).

On the other hand, letting τi = τ(ti+1 − ti) it holds

W τ
ti,tt+1

(dx,dy) = V −1
X pτi(x, y)dxdy

by definition of the transition probability density p of the Brownian motion on X. It follows that for
any µ, ν ∈ P(X) with finite differential entropy and γ ∈ Π(µ, ν) it holds

H(γ|W τ
ti,ti+1

) =

∫
log
( dγ

dx⊗ dy

VX
pτi

)
dγ(x, y)

= log(VX) +

∫
log
( dγ

pτidµ⊗ ν
dµ

dx

dν

dy

)
dγ

= log(VX) +H(γ|pτiµ⊗ ν) +H(µ) +H(ν)

where we used the fact that γ ∈ Π(µ, ν) to simplify the two last terms (see [34, Lem. 1.6] for more
details on the change of reference measure in regularized optimal transport). Putting everything
together, and using the fact that Rti,ti+1 ∈ Π(Rti , Rti+1) we get

E = log(VX) +

T−1∑
i=1

H(Rti,ti+1
|pτiRti ⊗Rti+1

) +

T−1∑
i=1

H(Rti) +

T∑
i=2

H(Rti)−
T−1∑
i=2

H(Rti)

= log(VX) +

T−1∑
i=1

H(Rti,ti+1
|pτiRti ⊗Rti+1

) +

T∑
i=1

H(Rti).

which proves the formula.
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Proof of Thm. 3.1. Clearly, a minimizer R∗ ∈ P(Ω) of F(R) = Fit(R1, . . . , RT ) + τH(R|W τ ) is
of the form given by Lem. B.2. Let µ(i) = R∗ti be its marginals and γ(i) = R∗ti,ti+1

which clearly
satisfies γ(i) ∈ Π(µ(i),µ(i+1)). It holds, with C = log(VX),

F(R∗) = Fit(µ(1), . . . ,µ(T )) + τ

T−1∑
i=1

H(γ(i)|pτiµ(i) ⊗ µ(i+1)) + τH(µ) + C

≥ Fit(µ(1), . . . ,µ(T )) +
τ

τi

T−1∑
i=1

Tτi(µ
(i),µ(i+1) + τH(µ) + C

where the last equality holds if and only if R∗ti,ti+1
= γ(i) is optimal in the definition of

Tτi(µ
(i),µ(i+1). The claim follows.

C Proof of Theorem 3.3

Let us recall the statement of Theorem 3.3 and prove it, by an application of a convergence result
proved independently in [14] and [15].

Theorem C.1 (Convergence). Let µ0 ∈ P(X)T be such that F (µ0) < ∞. Then for ε ≥ 0, there
exists a unique solution (µs)s≥0 to the MFL dynamics (11). For ε > 0, X the d-torus and moreover
assuming that µ0 has a bounded absolute log-density, it holds

Fε(µs)−minFε ≤ e−Cs
(
Fε(µ0)−minFε

)
.

where C = βe−α/ε for some α, β > 0 independent of µ0 and ε. Moreover, taking a smooth time-
dependent εs that decays asymptotically as α̃/ log(s) for some α̃ > α, it holds F0(µs)− F0(µ∗) .
log(log(s))/ log(s) and µs converges weakly to µ∗.

Proof. We verify the assumptions of [15], noticing that their proof can be adapted without difficulty
to our context of families of T probability measures with T ≥ 1. In that reference, the objective
function is assumed of the form G + aH for some a > 0 where H is the entropy and G satisfies
certain properties. Here we will split the objective function differently between the well-posedness
and the convergence result, so that G satisfies the required properties for each result.

For the well-posedness of the dynamics, we split the objective function Fε as G + (τ + ε)H . [15,
Assumption 1], about the stability and regularity of the first-variation V , is guaranteed Prop. C.2
below (the stability and regularity of the component δFit/δµ is immediate) and leads to the well-
posedness of the dynamics without requiring ε > 0 (in fact we could even take ε ∈ [−τ,+∞[ and
have well-posedness).

For the global convergence guarantee we split the objective function Fε as (G+ τH) + εH because
we need the fact that F0 = G+ τH is convex. [15, Assumption 2], which requires convexity of F0

and existence of a minimizer for Fε, is satisfied thanks to Prop. 3.2. For the uniform Log-Sobolev
Inequality (LSI) ([15, Assumption 3]), we first remark that [35, Thm. 7.3] states that the uniform
distribution over X satisfies LSI with a constant ρ0 that only depends on D the diameter of X.

Now, the i-th component of the first-variation of F0 is given by V (i)[µ]+τ log(µi). By the expression
of Prop. 3.2, the oscillation osc(V (i)[µ]) of V (i)[µ] (i.e. the difference between its maximum and
minimum value over X) is bounded (independently of ε and µ0). Indeed, the gradient formula for
δFitσ/δµ

(i) is nonnegative and bounded by eD
2/(2σ2) and by App A Eq. (17), the Schrödinger

potential ϕi,i+1 has an oscillation bounded by supx,y cτi(x, y) − infx,y cτi(x, y) which is D2/2

when c(x, y) = 1
2‖y − x‖

2 or a less explicit constant that depends only on the domain X for the cost
cτi . Combining these estimates with Lemma C.3 (which requires X to be the d-torus), we get that the
oscillation of V (i)[µ] + τ log(µ(i)) is bounded by some κ > 0 independent of ε and µ0 (under the
assumption that the log-density of µ0 is absolutely bounded by A > 0).

It follows, by Holley and Strook perturbation criterion [36] that the density proportional to
e−(V (i)[µ]+τ log(µ(i)))/ε satisfies a LSI with constant ρ ≥ αe−β/ε for some α, β independent of
s, ε,µ0. Then [15, Thm. 3.2] guarantees the exponential convergence with rate e−Cs with C = 2ερ.
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Finally, the convergence result with simulated annealing is a direct application of [15, Thm. 4.1]
which proves the convergence rate in log(log s)/ log s. Since in addition the sublevel sets of F0 are
weakly compact and the minimizer µ∗ is unique, standard considerations imply that µs converges
weakly to µ∗.

Let us report a stability result concerning the Schrödinger potentials, which is a consequence of a
more general result in [25] and is used in the proof above.

Proposition C.2. Assume that c ∈ C2(X × X). There exists C > 0 such that for all µ, µ′, ν, ν′ ∈
P(X), it holds

‖∇ϕ−∇ϕ′‖∞ + ‖∇ψ −∇ψ′‖∞ ≤ C
(
W2(µ, µ′) +W2(ν, ν′)

)
.

where (ϕ,ψ) (resp. (ϕ′, ψ′)) are the Schrödinger potentials (see App. A) associated to the pair of
measures (µ, ν) (resp. (µ′, ν′)) and W2 is the 2-Wasserstein distance.

Lemma C.3. Let (µs)s≥0 be the solution of the Mean-Field Langevin Dynamics for ε ≥ 0 and
assume that the absolute log-density of µ(i)

0 is bounded by A > 0 for each i ∈ {1, . . . , T}. Let X be
the d-torus. Then there exists A′ > 0 (independent of ε) such that the absolute log-density of µ(i)

s is
bounded by A′, for all s ≥ 0 and i ∈ {1, . . . , T}.

Proof. The i-th component of the stochastic process associated to the Mean-field Langevin dynamics
solves dX

(i)
s = −∇V (i)[µs](X

(i)
s )ds+

√
2(τ + ε)dB

(i)
s where (B

(i)
s ) is a Brownian motion inde-

pendent for each i and µs = (Law(X
(1)
s ), . . . ,Law(X

(T )
s )) (the boundary reflection term is absent

since we are considering the torus). Let S > 0 be an arbitrary time and let P (i) ∈ P(C([0, S];X)) be
the law of X(i) over the time interval [0, S]. By Girsanov’s formula (see e.g. [1, Sec. 4.2]), it holds

dP (i)

dW (τ+ε)
(X) =

dP
(i)
0

d vol
(X0) exp

(
2

τ + ε

(∫ S

0

−∇V (i)[µs](Xs)dXs −
1

2

∫ S

0

‖∇V (i)[µs](Xs)‖2ds
))

where vol is the uniform distribution over X, and by Ito’s formula∫ S

0

−∇V (i)[µs](Xs)dXs

= V (i)[µ0](X0)− V (i)[µS ](XS) +

∫ S

0

(
(∂sV

(i)[µs])(Xs) + (τ + ε)∆V (i)[µs](Xs)
)

ds.

Since, for S fixed, all the quantities in the exponential are uniformly bounded (in particular, for
the term involving ∂sV (i)[µs] this follows from Prop. C.2 which implies

∫ S
0
‖∂sV (i)[µs]‖∞ds ≤

C
∑T
i=1

∫ S
0

(
∫
X
‖vs(x)‖2dµ

(i)
s (x))1/2ds ≤ C

√
ST (

∑T
i=1

∫ S
0

∫
X
‖vs(x)‖2dµ

(i)
s (x))1/2 ≤

C
√
ST (Fε(µ0) − Fε(µS))1/2 where vs is the Wasserstein derivative of (µ

(i)
s )s and using facts

from gradient flows theory [37]). This shows that the transition kernel of the process X(i) is upper
and lower bounded by the heat kernel over X. In particular, the density of µ(i)

s is upper and lower
bounded by positive constants over [0, S]. For times S′ larger than S, we similarly have that X(i)

S′ is
obtained from X

(i)
S′−S by a Markov process which is comparable to the heat diffusion on X and thus

its log-density is absolutely bounded. We conclude that the upper and lower bounds on logµ
(i)
s are

uniform in time.

D Proof of Proposition 3.2

Proposition D.1. The function G is convex separately in each of its input (but not jointly), weakly
continuous and its first-variation is given for µ ∈ P(X)T and i ∈ [T ] by

V (i)[µ] =
δFit

δµ(i)
[µ] +

ϕi,i+1

ti+1 − ti
+

ψi,i−1

ti − ti−1
,

δFit

δµ(i)
[µ] : x 7→ −∆ti

λ

∫
gσ(x− y)

(gσ ∗ µ(i))(y)
dµ̂ti(y)
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where (ϕi,j , ψi,j) ∈ C∞(X) are the Schrödinger potentials for Tτi(µ
(i),µ(j)), with the convention

that the corresponding term vanishes when it involves ψ1,0 or ϕT,T+1. The function F is jointly
convex and admits a unique minimizer µ∗, which has an absolutely continuous density (again denoted
by µ∗) characterized by

(µ∗)(i) ∝ e−V
(i)[µ∗]/τ , for i ∈ [T ].

Proof. The properties and formulas for G and its first-variation follow from those for Tτ which are
well-known (see [38, Prop. 2]) and for Fit which are immediate. In particular, Tτ is convex separately
in each of its variables as a supremum of linear forms but not jointly because of the product measure
in Eq. (15). The joint convexity of F can be seen by a change of variable in Eq. (15): if µ admits a
density ρµ with respect to Lebesgue, letting ϕ̃ = ϕ+ τ log(ρµ) it holds

Tτ (µ, ν) = max
ϕ∈L1(µ),ψ∈L1(ν)

∫
ϕdµ+

∫
ψdν + τ

(
1−

∫
e(ϕ(x)+ψ(y)−c(x,y))/τdµ(x)dν(y)

)
.

= max
ϕ̃∈L1(µ),ψ∈L1(ν)

∫
ϕ̃dµ+

∫
ψdν + τ

(
1−

∫
e(ϕ̃(x)+ψ(y)−c(x,y))/τdxdν(y)

)
− τH(µ)

Thus, as a supremum of linear forms (µ, ν) 7→ Tτ (µ, ν) + τH(µ) is a convex function. Now F is a
sum of T − 1 terms of this form and convex functions, and is thus convex. For the uniqueness of
the minimizer of F , note that F is strictly convex and thus admits at most one minimizer. Since by
Thm. 3.1, any minimizer of F can be mapped to a unique minimizer of F, it follows that F has at
most one minimizer. Its existence is guaranteed by the direct method in the calculus of variation,
because F is weakly lower-semicontinuous and the set P(X)T is weakly compact. Finally, the
characterization of the minimizer can be formally deduced by writing the first order optimality
condition V (i)[µ∗] + τ log(µ∗(i)) = 0. The rigorous argument, which is standard, can be found in a
similar context e.g. in [13, Lem. 10.4].]

E Solving the Schrödinger Bridge Problems with Sinkhorn’s algorithm

At each iteration, in order to compute V [µ̂[k]], one needs to compute the Schrödinger potentials
(ϕi,i+1, ψi,i+1) associated to the T−1 Schrödinger bridges problems Tτ (µ̂(i), µ̂(i+1)) (see Prop. 3.2).
Among the various algorithms that can solve this problem [39], let us focus our discussion on the
well-studied Sinkhorn’s algorithm, which is alternate block maximization on the dual of Eq. (6).

Given two discrete probability measures µ̂m =
∑m
i=1 piδxi and ν̂m =

∑m
i=1 qiδyi we define the

cost matrix with entries ci,j = c(xi, yj) (which we approximate with 1
2‖xi − yj‖

2 using Varadhan’s
formula). The iterates u[`], v[`] ∈ Rm, ` ≥ 1 of Sinkhorn’s algorithm are defined as :

ui[`] = −τ log
( m∑
j=1

e(vj [`−1]−ci,j)/τqj

)
and vj [`] = −τ log

( m∑
i=1

e(ui[`]−ci,j)/τpi

)
.

This algorithm converges in value at a rate O(1/(τk)), see [40, 41]. In practice, Sinkhorn’s iterations
could be further sped up with non-linear acceleration methods [42]. Upon convergence, one can
recover the Schrödinger potential ϕ,ψ ∈ C∞(X) via the formula

ϕ(x) = −τ log
( m∑
j=1

e(v∗j−c(x,yj))/τqj

)
, ψ(y) = −τ log

( m∑
j=1

e(u∗i−c(xi,y))/τpi

)
. (19)

Moreover the minimizer in Eq. (6), needed to recover P ∗ by Thm. 3.1, is given by γ =∑
i,j e

(u∗i+v∗j−ci,j)/τpiqjδ(xi,yj). Those consideration suggest two methods to implement Eq. (13):

(i) estimate ∇Gm with automatic differentiation by backpropagating through a fixed number
of Sinkhorn’s iterations, or

(ii) use the formula for∇V given in Prop. 3.2 and plug-in the potentials of Eq. (19).

These alternatives are discussed in [43, Sec. 5.3] where (ϕ,ψ) are computed as a subroutine. There,
the conclusion is that option (ii) is slightly more efficient, and this is the method we implemented.
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F Simulated Annealing

A standard heuristic to accelerate diffusion-based algorithms with a temperature parameter τ is the
so-called simulated annealing method [44], which consists in starting from a large value τ0 and
slowly decreasing it towards the desired value while the algorithm runs. In our context, a larger value
for τ accelerates the convergence of both Sinkhorn’s algorithm and the MFL dynamics.

While Theorem 3.3 guarantees convergence for a temperature that decays sufficiently slowly, for
practical purposes we opt for a faster rate. We used simulated annealing with geometric decay
τt = max{crt, τf} for r ∈ ]0, 1[ and c > 0 in order to quickly reach the desired temperature τf > 0.
Empirically, we find that also allowing the step size η and the (squared) data-fitting bandwidth σ2 to
scale with the temperature leads to further acceleration of the MFL dynamics, especially early on in
the optimisation. We illustrate this for the example of Section 4.1 in Figure 5. In this experiment,
particles of the MFL are started from N(0, 1.0). Consequently, some particles are distant from
the data and require MFL to be run for an large number of iterations to converge. On the other
hand, simulated annealing in (τ, σ, η) for the first 500 iterations with τ0 = 5τ , followed by 2,000
iterations without annealing allows for the MFL dynamics to reach convergence much faster. The
brief annealing phase allows for particles to quickly move away from their initial distribution towards
what is a refined initial condition for a subsequent optimisation without annealing.

As can be seen in Figure 5(b), the result of MFL with annealing is slightly less noisy. To prevent
noise at high temperature from causing particles in the MFL dynamics to stray far away from the
observed data, we add a confining potential to the objective (7)

Confineσ(R, µ̂) = −
∫

dR(y) log

[∫
e
−1

2σ2
‖x−y‖22dµ̂(x)

]
,

where we have written R = T−1
∑T
i=1Rti and µ̂ = T−1

∑T
i=1 µ̂ti to be the mixtures (over time)

respectively of the reconstructed and observed marginals. This has the effect of penalizing particles
in the MFL dynamics which are far away from any observation. In the annealing examples, we used
σ = 5.0 for the confining potential bandwidth.

We also investigated the setting where the temperature τ was fixed but annealing was carried out in
the additional entropy term ε→ 0, as is analyzed in Theorem 3.3. As we can see in Figure 5, this
actually results in a MFL dynamics that converges slower than MFL without annealing due to the
additional level of noise injected. Interestingly, these results suggest that the lack of strong convexity
when ε = 0 may not affect convergence in practice.

G Simulation details

All numerical experiments were run using a CPU-based implementation of MFL dynamics. A copy of
the code to reproduce the figures in this article is available at https://github.com/zsteve/mfl.

In practice, we observed that the particles of the discretized MFL dynamics remain at a small bounded
distance from the support of the observations throughout; we thus did not explicitly enforce the
reflecting or periodic boundary.

G.1 Additional details for Section 4.1

We consider a bifurcating stochastic process (see Figure 1) in ambient space X ⊂ R10, following
(1) with τ = 1/4 and time-dependent potential Ψ(t, x) = 1

2 (x1 − 1.5)2(x1 + 1.5)2 + 10(x2 + t)2 +

10
∑10
k=3 x

2
k. Starting from an initial distribution X0 ∼ N(0, 0.12), particles are simulated over

t ∈ [0, 1.25] and were independently sampled at 10 evenly spaced timepoints ti, 1 ≤ i ≤ 10.

The discretized MFL dynamics described in Section 3.4 was applied to each simulated dataset with
m = 100 particles per timepoint and using the data fitting functional (3) with bandwidth σ = 0.5.
Particles in the MFL dynamics were started from N(0, 0.12) and evolved following (13) with η = 0.1
for 2, 500 iterations. We repeated this for the following parameter values:

• λ (MFL): 0.0125, 0.025, 0.05, 0.1, 0.2,
• λ (gWOT): 0.000625, 0.00125, 0.0025, 0.005, 0.01,
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• εDF (gWOT): 0.01,
• N (both): 1, 2, 4, 8, 16, 32, 64.

The approximate ground truth is taken to be a simulated dataset with 500 particles per timepoint. That
is, we computed (T−1

∑T
i=1D

2(µti , Rti))
1/2 where µti and Rti are respectively the ground truth

and reconstructed marginals at time ti, and the squared Energy Distance [29] between two measures
(α, β) is defined to be

D2(α, β) = 2EX∼α,Y∼β‖X − Y ‖ − EX,X′∼α‖X −X ′‖ − EY,Y ′∼β‖Y − Y ′‖. (20)

G.2 Additional details for Section 4.2

The ambient space X is taken as in [1], and dynamics follow (1) with τ = 1 and Ψ(t, x) = 1.25‖x−
x(0)‖22‖x−x(1)‖22 +10

∑10
k=3 x

2
k, where x(0) = [1.4, 1.4, 0, . . . , 0], x(1) = [−1.25,−1.25, 0, . . . , 0].

We prescribe a growth rate g(t, x) = 10(tanh(2x0) + 1)/2 so that particles grow faster in the region
x0 > 0. Particles are started from X0 ∼ N(0, 0.12), and 10 timepoints with 50 particles each were
sampled on the interval t ∈ [0, 0.5]. We fit MFL dynamics both with and without the modification for
branching described in Section 4.2 with λ = 0.025 and ρ = +∞ (since the growth rate is known
exactly). Other hyperparameters were taken to be the same as in Section 4.1.

H Reprogramming dataset pre-processing details

For each set of subsampled snapshots, expression matrices were first centered and projected into 10
PCA dimensions. Similarly as in [1], a set of scaling factors were computed:

• Pairwise scaling factors: σ2
scale = Eµ̂ti ,µ̂ti+1

[
‖Xti+1

−Xti‖
2
2

2

]
.

• Per-timepoint scaling factors: η2
scale = Eµ̂ti ,µ̂ti

[
‖Xti−Yti‖

2
2

2

]
.

The cost function for each transport term in (6) was divided by σ2
scale so as to be of order one.

Similarly, the pairwise squared distances in the data-fitting functional (3) were divided by η2
scale. The

timepoints were mapped to 0 = t1 ≤ . . . ≤ tT = 1 and the value of τ was chosen such that the
effective transport regularization level (τi in (6)) was 0.1 for transport over 0.5-day interval. We
applied MFL dynamics for λ ∈ {0.0125, 0.025, 0.05, 0.1, 0.2} and other parameters as in Section 4.1,
and gWOT for λ ∈ {0.000625, 0.00125, 0.0025, 0.005, 0.01}. Of these parameter values, we found
that λ = 0.025 performed best for MFL in terms of Energy Distance to the full dataset (projected
onto the previously calculated principal components) and similarly λ = 0.01 for gWOT.
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Figure 5: (a) Plot of the (i) reduced objective F (8) (compared to Fig. 2 the y-axis is zoomed in),
and (ii) energy distance to final iterate, over 2500 iterations for MFL dynamics without annealing,
with annealing in ε in the first 1000 iterations, and with annealing jointly in τ, σ, η over the first 500
iterations. (b, c, d) MFL iterates shown in the first 2 dimensions, without annealing, with annealing
in ε, and with annealing in τ, σ, η.

20


