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A Comparisons with conventional methods

We compare the proposed Min-AM method with other related methods, including Newton’s method,
the (nonlinear) conjugate gradient method, BFGS method, momentum-based method, and some other
variants of Anderson mixing.

A.1 Relationship between AM-I, Min-AM, and Newton’s method

We first give a new interpretation of the AM-I method here, which reveals the relationship between
AM-I and Newton’s method.

Recall that the historical information is stored in Xk, Rk ∈ Rd×m. We have the decomposition of the
solution space by Rd = range(Xk)

⊕
range(Xk)⊥. Define Vk ∈ Rd×(d−m) whose columns form

an orthonormal basis of range(Xk)⊥. Then for any x ∈ Rd, we have x = xk −Xkγ − Vkη, where
γ ∈ Rm, η ∈ Rd−m. As a result,

min
x∈Rd

f(x) = min
γ∈Rm,η∈Rd−m

f(xk −Xkγ − Vkη). (29)

Suppose that f is twice differentiable and XT
k ∇2f(xk)Xk is nonsingular. We apply Newton’s

method in the low dimensional subspace range(Xk) followed by a gradient descent with stepsize βk
in the complementary subspace range(Xk)⊥. Then

x̄k = xk −Xkγk, xk+1 = x̄k − Vkηk, (30)

where γk = (XT
k ∇2f(xk)Xk)−1XT

k ∇f(xk), and ηk = βkV
T
k ∇f(x̄k). When m� d, the scheme

(30) is more economical than applying the Newton’s method in the whole solution space Rd.

Now, consider the simple case that f is a quadratic function: f(x) = 1
2x

TAx− bTx. The residual
rk = −∇f(xk) = b − Axk. Then rk − rk−1 = −A(xk − xk−1), which implies Rk = −AXk. It
follows that γk = (XT

k Rk)−1XT
k rk. Also, r̄k := rk −Rkγk = −∇f(x̄k). So r̄k ⊥ range(Xk) due

to the choice of γk, i.e., a kind of the Galerkin’s projection condition [53]. Let Uk be the matrix
whose columns form an orthonormal basis of range(Xk). Then VkV T

k = I − UkUT
k and UT

k r̄k = 0.
For the gradient descent step, we have ηk = −βkV T

k r̄k, which implies

xk+1 = x̄k − Vkηk = x̄k + βkVkV
T
k r̄k = x̄k + βk

(
I − UkUT

k

)
r̄k = x̄k + βkr̄k,

namely a mixing step. Therefore, the AM-I method coincides with the scheme (30) for minimizing
a quadratic function. Since Min-AM is essentially equivalent to the full-memory AM-I when
minimizing a strongly convex quadratic function, we know Min-AM is also closely related to the
scheme (30). In the general case, if the objective function f can be well approximated by a quadratic
function in a local region around the optima, it is expected that AM-I and Min-AM can behave
similarly to the scheme (30) when the iterates enter this local region.

A.2 Comparison with the conjugate gradient/residual method

The conjugate gradient (CG) method [32] and the conjugate residual (CR) method [53, Algo-
rithm 6.20] are classical methods for solving SPD linear systems, where the CG method is extended
to solving unconstrained optimization [45]. We first discuss the connection between the proposed
Min-AM method and the CG/CR method.

Connection between Min-AM and CG/CR. For solving linear systems, it has been established
in [60] that the full-memory AM-I and AM are essentially equivalent to the full orthogonalization
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method (FOM) [52] and GMRES [51], respectively. If the linear system is SPD, both FOM and
GMRES methods can be simplified to have short-term recurrences: FOM is equivalent to CG, and
GMRES is equivalent to CR. Thus, the full-memory AM-I and AM are essentially equivalent to
CG and CR respectively, for solving SPD linear systems. However, CG and CR are much more
efficient in terms of memory and per-step computational cost, which motivates the development of
the proposed Min-AM method that also has short-term recurrences. From Theorem 1, for solving
SPD linear systems, Min-AM is essentially equivalent to CG, FOM, and the full-memory AM-I.
Compared to CG, Min-AM has the advantage that it does not need explicit matrix-vector products to
determine the step size. The update scheme of Min-AM only depends on the historical iterations,
which makes it easier to extend to the nonlinear case. Min-AM can also have a similar convergence
behaviour to CR for solving SPD linear systems, due to the close relationship between FOM and
GMRES [53, Section 6.5.7].

Now, we consider the unconstrained optimization problem

min
x∈Rd

f(x),

where f : Rd → R is continuously differentiable and bounded from below. The nonlinear CG (NCG)
generates {xk} by the update scheme

xk+1 = xk + αkpk, (31)

where the step size αk is usually obtained by a line search, and the searching direction pk is
constructed by

pk+1 = rk + βkpk, p0 = r0. (32)

Here, rk := −∇f(xk) and the βk is the momentum term. There are several choices of βk, for ex-

ample, the Fletcher-Reeves variant βk =
‖rk+1‖22
‖rk‖22

and the Polak-Ribière variant βk =
rTk+1(rk+1−rk)

‖rk‖22
.

(See [45].) However, the step size αk is not easy to obtain. If f is a quadratic function, let A be the
Hessian of f . The computation of αk involves a matrix-vector product, e.g.,

αk =
rT
k pk

pT
kApk

,

which ensures rk+1 ⊥ pk. If finite difference is used to compute Apk, it requires two gradient
evaluations. If f is a general nonlinear function, a line search is necessary to ensure the convergence
of NCG: αk is chosen as an approximate solution to the problem

min
α≥0

f(xk + αpk), (33)

where pk is supposed to be a descent direction. The d-step quadratic convergence proved in [17],
which is similar to our result of the restarted Min-AM, was only established under the assumption
of an exact line search, namely, (33) is exactly solved. More practical choices of αk require some
conditions to be satisfied. For example, the strong Wolfe conditions are

f(xk + αkpk) ≤ f(xk) + c1αk∇f(xk)Tpk,

|∇f(xk + αkpk)Tpk| ≤ c2|∇f(xk)Tpk|,

where 0 < c1 < c2 < 1. Since the line search can incur many times of the backtracking procedure,
the total number of gradient evaluations for NCG can be large.

In contrast, our proposed Min-AM method does not need explicit Hessian-vector products or line
search to determine the step size, while the convergence results (cf. Theorem 2) match those of
NCG with exact line search. Therefore, Min-AM is more economical than NCG, and can have better
convergence than the NCG with inexact line search. Also, it should be pointed out that even in
strongly convex quadratic optimization, Min-AM generally does not generate the same sequence of
iterates as CG: They are equivalent in the sense that x(1)

k = xCG
k , where x(1)

k is the intermediate step
in (8a).
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A.3 Comparison with the BFGS method

The BFGS constructs the approximate inverse Hessian by solving

Hk = arg min
H
‖H −Hk−1‖F (W ), s.t. Hyk = sk, H = HT, (34)

where sk := xk−xk−1, yk := ∇f(xk)−∇f(xk−1). The norm ‖ · ‖F (W ) is the weighted Frobenius
norm (i.e., ‖X‖2F (W ) := ‖W 1/2XW 1/2‖F for a matrix X ∈ Rd×d) and the weight matrix W
satisfies Wsk = yk. The solution is

Hk =

(
I − sky

T
k

yT
k sk

)
Hk−1

(
I − yks

T
k

yT
k sk

)
+
sks

T
k

yT
k sk

. (35)

Note that the Hk ∈ Rd×d is recursively constructed and can be dense during the later iterations. To
reduce memory overhead, the limited-memory BFGS [39] is often used. In memoryless BFGS, the
previous approximate Hessian is always reset to Id, i.e.,

Hk =

(
I − sky

T
k

yT
k sk

)(
I − yks

T
k

yT
k sk

)
+
sks

T
k

yT
k sk

. (36)

Memoryless BFGS has minimal memory size in L-BFGS, but has no equivalence to BFGS. It is
pointed in [45] that for the update xk+1 = xk −αkHk∇f(xk) of memoryless BFGS, if αk is chosen
by an exact line search, then memoryless BFGS is equivalent to CG for quadratic function. However,
an exact line search can incur prohibitive cost in practice.

The Min-AM method has a similar form to that of memoryless BFGS, but uses a recursively
constructed vector pair. Min-AM is essentially equivalent to the full-memory AM-I and CG for
minimizing strongly convex quadratic functions. In fact, let Pk = (p1, . . . , pk), Qk = (q1, . . . , qk),
and define

HA
k = −Pk(PT

k Qk)−1PT
k + βk(I − Pk(PT

k Qk)−1QT
k )(I −Qk(PT

k Qk)−1PT
k ), (37)

assuming PT
k Qk is nonsingular. We call the iterations defined by xk+1 = xk +HA

k rk as Scheme A.
Clearly, HA

k Qk = −Pk holds. Moreover, it can be proved by direct computation (using the properties
in Theorem 1) that for strongly convex quadratic optimization, if fixed βk is used, i.e., βk ≡ β, where
β is a constant, we have

HA
k = −pkp

T
k

pT
k qk

+

(
I − pkq

T
k

pT
k qk

)
HA
k−1

(
I − qkp

T
k

pT
k qk

)
, (38)

starting from HA
0 := βI . Hence, the HA

k in (37) solves

HA
k = arg min

H
‖H −HA

k−1‖F (W ), s.t. Hqk = −pk, H = HT, (39)

where the weight matrix satisfies Wpk = −qk. The (39) is similar to (34), but based on modified
vector pairs. (Note that we use rk − rk−1 = −(∇f(xk) − ∇f(xk−1)) to construct qk, so there
is a difference of sign.) It can also be verified that for strongly convex quadratic optimization,
Hkrk = HA

k rk, where Hk is defined in (10). So the iterations of Min-AM are identical to those of
Scheme A in this case. In this sense, though only using one vector pair, Min-AM implicitly constructs
HA
k which can well approximate the inverse Hessian.

A.4 Comparison with the momentum-based method

The momentum-based method is similar to the scheme defined in (31) and (32), but the momentum
βk is different from that in CG. We take the Nesterov’s accelerated gradient (NAG) method as an
example. The update scheme of NAG is defined as

yk+1 = xk −
1

L
∇f(xk), (40a)

xk+1 = yk+1 +

√
L−√µ√
L+
√
µ

(yk+1 − yk), (40b)

18



where L and µ are the Lipschitz constant and the strong convexity constant of ∇f , respectively.
Unlike Min-AM, NAG generally does not form a symmetric approximation to the Hessian. In
Figure 3, we show the convergence behaviours of NAG with different settings of µ and L. It is found
that the setting of L and µ can have a large effect on the convergence. On the contrary, Min-AM forms
symmetric Hessian approximations and can give useful information of L and µ via an economical
eigenvalue estimation procedure.
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Figure 3: Convergence behaviours of NAG with different settings of L and µ, for the regularized
logistic regression on the madelon dataset.

A.5 Comparison with related variants of Anderson mixing

Compared with the original AM, AM-I, the regularized nonlinear acceleration scheme [55], and
the stochastic AM [62], the proposed Min-AM has the minimal memory size, the same as that of
AM(1). Nonetheless, Min-AM incorporates more historical information than AM(1) and AM-I(1),
and is equivalent to the full-memory AM-I in solving strongly convex quadratic optimization. The
convergence analysis in Section 3.4 also shows that the stochastic Min-AM has similar convergence
to that of the stochastic AM in theory.

The short-term recurrence AM (ST-AM) [63] stores two vector pairs and is equivalent to the full-
memory AM in solving strongly convex quadratic optimization, but the approximated Hessian from
ST-AM is generally not symmetric. It is also worth pointing out that for AM and ST-AM, their
existing theoretical results do not show the significantly better convergence rate than the simple
gradient descent method for unconstrained optimization.

Our proposed Min-AM further reduces the memory size of ST-AM and the faster convergence than
gradient descent for general nonlinear optimization is rigorously justified in theory.

B Details of the basic Min-AM

The procedure of the basic Min-AM is described in Algorithm 2. Next, we give the derivation of the
basic Min-AM, and prove the related theoretical properties.

B.1 Derivation of the basic Min-AM

We give the derivation of the update scheme (10) for solving the quadratic optimization
minx∈Rd f(x) = 1

2x
TAx− bTx here. Recall that the steps in one iteration of the basic Min-AM are:

x
(1)
k = xk − pkΓ

(1)
k , x

(2)
k = x

(1)
k + βkr

(1)
k , xk+1 = x

(2)
k − pkΓ

(2)
k , (41)

where r(1)
k = rk − qkΓ

(1)
k and βk > 0. Define r(2)

k = r
(1)
k − βkAr

(1)
k and r(3)

k = r
(2)
k − qkΓ

(2)
k . The

Γ
(1)
k and Γ

(2)
k are determined by imposing the projection conditions:

r
(1)
k ⊥ pk, r

(3)
k ⊥ pk.

Here, we define p1 = ∆x0, q1 = ∆r0, and for k ≥ 2, the construction of pk, qk at the beginning of
the k-th iteration is

pk = ∆xk−1 − pk−1ζk, qk = ∆rk−1 − qk−1ζk,

where ζk = (pT
k−1qk−1)−1pT

k−1∆rk−1, assuming pT
k−1qk−1 6= 0.
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Algorithm 2 Min-AM for strongly convex quadratic optimization
Input: x0 ∈ Rd, βk > 0, 0 < max_iter ≤ d

1: p0, q0 = 0 ∈ Rd
2: for k = 0, 1, . . . ,max_iter do
3: rk = −∇f(xk)
4: if k > 0 then
5: p = xk − xk−1, q = rk − rk−1 (Compute ∆xk−1,∆rk−1)
6: ζk = (pT

k−1qk−1)†pT
k−1q

7: pk = p− pk−1ζk, qk = q − qk−1ζk (pk ⊥ qk−1, qk ⊥ pk−1)
8: end if
9: Γ

(1)
k = (pT

k qk)†pT
k rk

10: x
(1)
k = xk − pkΓ

(1)
k , r

(1)
k = rk − qkΓ

(1)
k (Projection step: r(1)

k ⊥ pk)
11: x

(2)
k = x

(1)
k + βkr

(1)
k (Mixing step)

12: Γ
(2)
k = βk(pT

k qk)†qT
k r

(1)
k

13: xk+1 = x
(2)
k − pkΓ

(2)
k (Projection step: rk+1 ⊥ pk)

14: if ‖r(1)
k ‖2 = 0 then

15: break
16: end if
17: end for
18: return xk

We first prove that
qk = −Apk (42)

by induction. By the definition of f and rk = −∇f(xk), it is clear that rk−rk−1 = −A(xk−xk−1).
So (42) holds for k = 1. For k ≥ 2, suppose that (42) holds for k−1. Then qk = ∆rk−1−qk−1ζk =
−A∆xk−1 +Apk−1ζk = −Apk, which completes the induction.

Suppose that pT
k qk 6= 0. We have Γ

(1)
k = (pT

k qk)−1pT
k rk. For Γ

(2)
k , the exact solution is

Γ
(2)
k = (pT

k qk)−1pT
k r

(2)
k = (pT

k qk)−1pT
k (r

(1)
k − βkAr

(1)
k )

= −βk(pT
k qk)−1pT

kAr
(1)
k = −βk(pT

k qk)−1(Apk)Tr
(1)
k = βk(pT

k qk)−1qT
k r

(1)
k (43)

due to pT
k r

(1)
k = 0, the symmetry of A, and (42). As a result,

xk+1 = x
(2)
k − pkΓ

(2)
k = x

(1)
k + βkr

(1)
k − pkΓ

(2)
k

= xk − pkΓ
(1)
k + βkr

(1)
k − pkΓ

(2)
k

= xk − pkΓ
(1)
k + βkr

(1)
k − pk · βk(pT

k qk)−1qT
k r

(1)
k

= xk − pk(pT
k qk)−1pT

k rk + βk
(
I − pk(pT

k qk)−1qT
k

)
r

(1)
k

= xk − pk(pT
k qk)−1pT

k rk + βk(I − pk(pT
k qk)−1qT

k )(I − qk(pT
k qk)−1pT

k )rk. (44)

The corresponding inverse Hessian approximation is

Hk = −pk(pT
k qk)−1pT

k + βk(I − pk(pT
k qk)−1qT

k )(I − qk(pT
k qk)−1pT

k ). (45)

The reason to use the projection condition of AM-I. Note that the Galerkin’s projection condition
of AM-I is used to determine Γ

(1)
k and Γ

(2)
k . On the other side, if the Galerkin’s condition of the

original AM is used to determine Γ
(1)
k and Γ

(2)
k , the scheme (41) leads to

xk+1 = xk − pk(qT
k qk)−1qT

k rk + βk(I + pk(qT
k qk)−1qT

k A)(I − qk(qT
k qk)−1qT

k )rk, (46)

which is not a practical method since Aqk needs to be explicitly computed.
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B.2 Proof of Theorem 1

Recall that the strongly convex quadratic optimization is formulated as

min
x∈Rd

f(x) :=
1

2
xTAx− bTx, (47)

where A ∈ Rd×d is SPD, b ∈ Rd. Solving (47) is equivalent to solving the SPD linear system

Ax = b. (48)

We first state the relationship of the AM-I with the full orthogonalization method [52] (FOM) in the
following propositions. Let xFOM

k and rFOM
k := b−AxFOM

k denote the k-th FOM iterate and residual,
respectively. Define ej := (1, 1, . . . , 1)T ∈ Rj for j ≥ 1. The main results of the full-memory AM-I
are stated in Proposition 1 and Proposition 2. (Proposition 1 is a known result in [60].)
Proposition 1 (General linear system). For solving a general linear system Ax = b with the full-
memory AM-I, suppose that βk > 0 and the fixed-point map is g(x) = (I − A)x+ b. If the initial
point of AM-I is x0 = xFOM

0 , and XT
j Rj is nonsingular for j = 1, . . . , k, then the intermediate

iterate x̄k satisfies x̄k = xFOM
k .

We give the proof here, which is similar to [63, Proof of Proposition 1], but applies to the Type-I AM.

Proof. The definition of the fixed-point map suggests that the residual rk = g(xk)− xk = b−Axk.
From (5), for j = 1, . . . , k, the nonsingularity of XT

j Rj ensures that each Γj is uniquely determined.
Thus the updates of AM-I are well defined.

Since XT
k Rk is nonsingular, we have rank(Xk) = rank(Rk) = k. We first show

range(Xk) = Kk(A, rFOM
0 ) (49)

by induction. We abbreviate Kk(A, rFOM
0 ) as Kk in this proof.

First, ∆x0 = β0r0 = β0r
FOM
0 since x1 = x0 + β0r0. If k = 1, then the proof is complete. Then,

suppose that k > 1 and, as an inductive hypothesis, that range(Xk−1) = Kk−1. From (3), we have
xk+1 = xk + βkrk − (Xk + βkRk)Γk. Noting that Rk = −AXk, it follows that

∆xk−1 = xk − xk−1

= βk−1rk−1 − (Xk−1 + βk−1Rk−1)Γk−1

= βk−1(b−Axk−1)− (Xk−1 − βk−1AXk−1)Γk−1

= βk−1b− βk−1A(x0 + ∆x0 + · · ·+ ∆xk−2)− (Xk−1 − βk−1AXk−1)Γk−1

= βk−1r0 − βk−1AXk−1e
k−1 − (Xk−1 − βk−1AXk−1)Γk−1. (50)

Since r0 ∈ Kk−1, and by the inductive hypothesis range(Xk−1) = Kk−1 which also implies
range(AXk−1) ⊆ Kk, we know ∆xk−1 ∈ Kk. Thus, range(Xk) ⊆ Kk. Since rank(Xk) = k,
namely dim(range(Xk)) = dim(Kk), we have range(Xk) = Kk, thus completing the induction.
As a result, we also have

range(Rk) = range(AXk) = AKk(A, r0). (51)

Recalling that to determine Γk, we solve the projection condition:

r̄k = rk −RkΓk ⊥ range(Xk). (52)

The nonsingluarity of XT
k Rk ensures that Γk is uniquely determined by

Γk = (XT
k Rk)−1XT

k rk. (53)

Also, since rk = b−Axk = b−A(x0 +Xke
k) = r0−AXke

k, we have rk−RkΓ = rk+AXkΓ =

r0 − AXke
k + AXkΓ = r0 − AXkΓ̃, where Γ̃ = ek − Γ, for ∀ Γ ∈ Rk. So Γk solves (52) if and

only if Γ̃k = ek − Γk solves

r0 −AXkΓ̃k ⊥ range(Xk). (54)
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According to (49), the condition (54) is equivalent to

r0 −Az ⊥ range(Xk) s.t. z ∈ Kk, (55)

where range(Xk) = Kk. Since the initializations are identical, the condition (55) for AM-I is the
Petrov-Galerkin condition for FOM. Due to the nonsingularity of XT

k Rk, the solution of (54) is also
unique. Therefore, we have

x̄k = xk −XkΓk = xk −Xk(ek − Γ̃k) = x0 +XkΓ̃k = xFOM
k .

In Proposition 1, the assumption thatXT
k Rk is nonsingular is critical to ensure no stagnation occurs at

the k-th iteration for solving a general linear system. In fact, for SPD linear systems (48) or strongly
convex quadratic optimization (47), when AM-I breaks down, i.e. XT

k Rk is singular, AM-I obtains
the exact solution, as shown in the next proposition.

Proposition 2 (SPD). For applying the AM-I to minimize a strongly convex quadratic problem (47),
or equivalently, solve an SPD linear system (48), suppose that βk > 0 and the fixed-point map is
g(x) = (I − A)x+ b. If the condition XT

k Rk is nonsingular holds for 1 ≤ k < s while failing to
hold for k = s, where s ≥ 1, then the residual of AM-I satisfies rs = r̄s−1 = 0.

We give the proof here, which is similar to [63, Proof of Proposition 2], but applies to the Type-I AM.

Proof. The definition of g suggests that the residual rk = g(xk) − xk = b − Axk. The relation
Rk = −AXk holds during the iterations and the nonsingularity of A implies rank(Xk) = rank(Rk).
Since A is SPD and XT

k Rk = −XT
k AXk, it follows that XT

k Rk being nonsingular⇔ rank(Xk) =
rank(Rk) = k. Hence rank(Xk) = k holds for 1 ≤ k < s while failing to hold for k = s.

For s = 1, since the first step of AM is x1 = x0 + β0r0, the assumption rank(X1) = 0 implies that
rank(r0) = rank(X1) = 0, then r1 = r̄0 := 0.

For s > 1, ∆xs−1 = xs − xs−1 = −Xs−1Γs−1 + βs−1r̄s−1. The rank deficiency of Xs implies
∆xs−1 ∈ range(Xs−1), which further implies r̄s−1 ∈ range(Xs−1). So there exists ζ ∈ Rs−1, such
that r̄s−1 = Xs−1ζ. Due to r̄s−1 ⊥ Xs−1, we have

0 = (r̄s−1)TXs−1 = (Xs−1ζ)TXs−1 = ζTXT
s−1Xs−1. (56)

Because rank(Xs−1) = s − 1, we have ζ = 0, which implies r̄s−1 = 0. Hence xs = x̄s−1 and
rs = r̄s−1 = 0.

It is also known that FOM method can be simplified to the conjugate gradient (CG) method [53] in
this case. Now we prove Theorem 1, following a similar procedure of [63, Proof of Theorem 1].

Proof of Theorem 1. The A-norm minimization problem in the property (iii) is equivalent to the
Galerkin condition [53], i.e. zk = arg minz∈Kk(A,r0) ‖x0 + z − x∗‖A ⇔ r0 − Azk ⊥ Kk(A, r0).
Also, r(3)

k = rk+1 = r
(2)
k − qkΓ

(2)
k .

Besides relations (i)-(iii), we add an auxiliary relation here:
(iv) rk = r0 +QkΓ̄k ∈ Kk+1(A, r0), where Γ̄k ∈ Rk.
We prove the relations (i)-(iv) by induction.

For k = 1, since r0 = r
(1)
0 6= 0, we have rank(∆x0) = rank(X1) = 1 and rank(∆r0) =

rank(R1) = 1. So pk 6= 0 and pT
k qk = −pT

kApk < 0. The relation (i) holds. Since p1 = ∆x0, q1 =
∆r0, and ∆r0 = −A∆x0, the equality Q1 = −AP1 also holds. Since r1 = r0 − β0Ar0 and
range(Q1) = span{Ar0}, it is clear that r1 = r0 −Q1Γ̄1 ∈ K2(A, r0), namely relation (iv). Due
to the projection step (Line 10 in Algorithm 2), r(1)

1 ⊥ range(P1) and r(1)
1 is unique, which is

guaranteed by pT
1 q1 6= 0. Also, r(1)

1 = r1 − q1Γ
(1)
1 = r0 − β0Ar0 − q1Γ

(1)
1 = r0 −Q1η1, where the

last equality is due to span{Ar0} = range(Q1). For rFOM
1 = r0 − Az1, where z1 ∈ K1(A, r0), it

holds rFOM
1 ⊥ K1(A, r0) = range(P1). As a result, both r(1)

1 and rFOM
1 are the oblique projections

of r0 onto the subspace range(P1)⊥ along range(Q1). Since pT
1 q1 6= 0, the projection exists and is
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unique, which implies r(1)
1 = rFOM

1 . So x(1)
1 = xFOM

1 = x0 + z1 because their residuals are equal
and A is nonsingular. Hence the relation (iii) holds.

Suppose that k > 1, and as an inductive hypothesis, the relations (i)-(iv) hold for j = 1, . . . , k − 1.
Consider the k-th iteration. From Line 7 in Algorithm 2, qk ∈ span{∆rk−1, qk−1}, and pk ∈
span{∆xk−1, pk−1}. Due to pT

k−1qk−1 = −pT
k−1Apk−1 6= 0, we have qT

k pk−1 = 0. We first prove
that pk 6= 0 by contradiction.

If pk = 0, then from Line 7 in Algorithm 2, ∆xk−1 ∈ span{pk−1}. From Line 10, Line 11, and
Line 13, we have

∆xk−1 = xk − xk−1 = βk−1r
(1)
k−1 − pk−1(Γ

(1)
k−1 + Γ

(2)
k−1). (57)

So r(1)
k−1 ∈ span{pk−1} since ∆xk−1 ∈ span{pk−1}. Hence there exists ζ ∈ R, such that r(1)

k−1 =

pk−1ζ. From the Line 10, we know r
(1)
k−1 ⊥ span{pk−1}, so we have

0 = (r
(1)
k−1)Tpk−1 = (pk−1ζ)Tpk−1 = ζTpT

k−1pk−1.

Since pk−1 6= 0, it follows that ζ = 0 which implies r(1)
k−1 = 0. It is impossible otherwise Algorithm 2

has terminated in the (k − 1)-th iteration. So pk 6= 0. Moreover pT
k qk = −pT

kApk 6= 0 since A is
SPD.

Since r(1)
k−1 = rk−1 − qk−1Γ

(1)
k−1, and rk−1 ∈ Kk(A, r0), qk−1 ∈ range(Qk−1) = AKk−1(A, r0)

due to the inductive hypothesis, we have r(1)
k−1 ∈ Kk(A, r0), which together with (57) and pk−1 ∈

range(Pk−1) = Kk−1(A, r0) infers ∆xk−1 ∈ Kk(A, r0). As a result, pk ∈ span{∆xk−1, pk−1} ⊆
Kk(A, r0). So range(Pk) = range(Pk−1, pk) ⊆ Kk(A, r0). Moreover, pk /∈ range(Pk−1). We
prove it by contradiction.

If pk ∈ range(Pk−1), then from Line 7 in Algorithm 2, ∆xk−1 ∈ span{pk−1, pk} ⊆ range(Pk−1),
which together with (57) leads to r(1)

k−1 ∈ range(Pk−1). Hence there exists ξ ∈ Rk−1 such that

r
(1)
k−1 = Pk−1ξ. From the inductive hypothesis, we know r

(1)
k−1 ⊥ range(Pk−1). So we have

0 = (r
(1)
k−1)TPk−1 = (Pk−1ξ)

TPk−1 = ξTPT
k−1Pk−1.

Since −PT
k−1APk−1 = PT

k−1Qk−1 is nonsingular due to the inductive hypothesis pi ⊥ qj(1 ≤ i 6=
j ≤ k− 1) and pT

i qi = −pT
i Api 6= 0(1 ≤ i ≤ k− 1) as pi 6= 0, it follows that rank(Pk−1) = k− 1.

So PT
k−1Pk−1 is nonsingular which implies that ξ = 0. Then r(1)

k−1 = Pk−1ξ = 0. But it is impossible
otherwise Algorithm 2 has terminated in the (k − 1)-th iteration. Hence pk /∈ range(Pk−1). As a
result, range(Pk) = Kk(A, r0).

Because ∆rk−1 = −A∆xk−1 and qk−1 = −Apk−1, Line 7 in Algorithm 2 infers qk = −Apk. So
Qk = −APk. Hence range(Qk) = AKk(A, r0).

To prove pi ⊥ qj for 1 ≤ i 6= j ≤ k, it suffices to show qk ⊥ Pk−1. From the construction of qk in
Line 7 in Algorithm 2 and pT

k−1qk−1 6= 0, we know qT
k pk−1 = 0. To further prove qk ⊥ range(Pk−2)

(k ≥ 3), note that

∆rk−1 = −A∆xk−1 = Apk−1(Γ
(1)
k−1 + Γ

(2)
k−1)− βk−1Ar

(1)
k−1

= −qk−1(Γ
(1)
k−1 + Γ

(2)
k−1)− βk−1Ar

(1)
k−1,

where the second equality is a direct substitution with (57). Therefore,

PT
k−2∆rk−1 = −PT

k−2qk−1(Γ
(1)
k−1 + Γ

(2)
k−1)− βk−1P

T
k−2Ar

(1)
k−1 = 0− βk−1(APk−2)Tr

(1)
k−1 = 0,

(58)

where the second equality is due to qk−1 ⊥ range(Pk−2) and A is SPD, and the third equality is due
to r(1)

k−1 ⊥ range(Pk−1) = Kk−1(A, r0) and range(APk−2) = AKk−2(A, r0) ⊆ Kk−1(A, r0). As
a result, we obtain

PT
k−2qk = PT

k−2(∆rk−1 − qk−1ζk) = 0,
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which is due to (58) and qk−1 ⊥ range(Pk−2). Therefore, qk ⊥ range(Pk−1). Since A is SPD, we
also have pT

kQk−1 = −pT
kAPk−1 = −(Apk)TPk−1 = qT

k Pk−1 = 0. Hence relation (ii) holds in
the k-th iteration.

Next, we prove the relation (iv). We have

rk = r
(2)
k−1 − qk−1Γ

(2)
k−1

= r
(1)
k−1 − βk−1Ar

(1)
k−1 − qk−1Γ

(2)
k−1

= rk−1 − qk−1Γ
(1)
k−1 − βk−1A(rk−1 − qk−1Γ

(1)
k−1)− qk−1Γ

(2)
k−1

= r0 +Qk−1Γ̄k−1 − qk−1Γ
(1)
k−1 − βk−1A(r0 +Qk−1Γ̄k−1) + βk−1Aqk−1Γ

(1)
k−1 − qk−1Γ

(2)
k−1,

where the last equality is due to rk−1 = r0 + Qk−1Γ̄k−1 by the inductive hypothesis. Since
range(Qk−1) = AKk−1(A, r0) ⊆ AKk(A, r0), qk−1 ∈ range(Qk−1), Ar0 ∈ AKk(A, r0),
range(AQk−1) ⊆ A2Kk−1(A, r0) ⊆ AKk(A, r0), and Aqk−1 ∈ range(AQk−1), it is clear that
rk = r0 +QkΓ̄k ∈ Kk+1(A, r0) for some Γ̄k ∈ Rk. The relation (iv) is proved.

Finally, we prove the relation (iii). For proving r(1)
k ⊥ range(Pk), note that r(1)

k ⊥ span{pk}
already holds due to the projection step (Line 9 and Line 10 in Algorithm 2) and pT

k qk 6= 0. It
suffices to prove r(1)

k ⊥ range(Pk−1). We first prove rk ⊥ range(Pk−1). The projection step
(Line 12 and Line 13 in Algorithm 2) at the (k − 1)-iteration ensures rk ⊥ pk−1. It remains to
prove rk ⊥ range(Pk−2). Because rk = r

(2)
k−1 − qk−1Γ

(2)
k−1 = r

(1)
k−1 − βk−1Ar

(1)
k−1 − qk−1Γ

(2)
k−1,

and r
(1)
k−1 ⊥ range(Pk−2), qk−1 ⊥ range(Pk−2), (Ar

(1)
k−1)TPk−2 = (r

(1)
k−1)T(APk−2) = 0 as

range(APk−2) ⊆ Kk−1(A, r0) = range(Pk−1), it follows that rk ⊥ range(Pk−2). Therefore, rk ⊥
range(Pk−1). Also noting that qk ⊥ range(Pk−1), we have r(1)

k = rk − qkΓ
(1)
k ⊥ range(Pk−1). So

r
(1)
k ⊥ range(Pk).

To prove x(1)
k = xFOM

k := x0 + zk, where zk ∈ Kk(A, r0) should satisfy r0 − Azk ⊥ Kk(A, r0),
first we have rk = r0 +QkΓ̄k, where Γ̄k ∈ Rk. Hence r(1)

k = rk− qkΓ
(1)
k = r0 +QkΓ̄k− qkΓ

(1)
k =

r0 − Qkηk, where ηk ∈ Rk. Since PT
k Qk is nonsingular, there exists a unique ηk ∈ Rk such that

r
(1)
k ⊥ range(Pk), i.e., r(1)

k is the oblique projection of r0 onto the subspace range(Pk)⊥ along
range(Qk). On the other side, for FOM, rFOM

k = r0 − Azk ⊥ Kk(A, r0) = range(Pk), so rFOM
k is

also the oblique projection of r0 onto the subspace range(Pk)⊥ along range(Qk). So r(1)
k = rFOM

k ,
which further indicates x(1)

k = xFOM
k . Hence, the relation (iii) holds.

With relations (i)-(iv) being proved in the k-th iteration, we complete the induction.

B.3 Convergence analysis

Since the basic Min-AM is equivalent to FOM (or CG) method in the sense that x̄(1)
k = xFOM

k = xCG
k

for strongly convex quadratic optimization, where xCG
k is the k-th iterate of CG, we can obtain the

convergence result as a corollary of Theorem 1.
Corollary 1. For solving the strongly convex quadratic problem (47), let x∗ be the exact solution,
and {xk} is the sequence generated by the basic Min-AM described in Algorithm 2. Define θk =
‖I − βkA‖2. Then

‖xk+1 − x∗‖A ≤ θk min
p∈Pk,p(0)=1

‖p(A)(x0 − x∗)‖A, (59)

where Pk denotes the space of polynomials of degree not exceeding k. Moreover, the algorithm finds
the exact solution in at most (d+ 1) iterations.

Proof. From Theorem 1, the classical convergence analysis of the CG method [28, 53], and assuming
that CG and Min-AM are initialized from the same starting point, i.e., xCG

0 = x0, we have

‖x(1)
k − x∗‖A = ‖xCG

k − x∗‖A = min
p∈Pk,p(0)=1

‖p(A)(x0 − x∗)‖A. (60)
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Since x(2)
k = x

(1)
k + βkr

(1)
k , it follows that

x
(2)
k − x∗ = x

(1)
k − x∗ + βk(b−Ax(1)

k ) = x
(1)
k − x∗ − βkA(x

(1)
k − x∗) = (I − βkA)(x

(1)
k − x∗).

Hence,

‖x(2)
k − x∗‖A ≤ ‖I − βkA‖A‖x

(1)
k − x∗‖A = θk‖x(1)

k − x∗‖A, (61)

where we use the fact that

‖I − βkA‖A = max
‖x‖A=1

‖(I − βkA)x‖A = max
‖A1/2x‖2=1

‖A1/2(I − βkA)x‖2 (62)

= max
‖y‖2=1

‖A1/2(I − βkA)A−1/2y‖2 = ‖A1/2(I − βkA)A−1/2‖2 = ‖I − βkA‖2.
(63)

Noting that xk+1 = x
(2)
k − pkΓ

(2)
k , rk+1 = r

(2)
k +ApkΓ

(2)
k ⊥ pk, it follows that

Γ
(2)
k = arg min

Γ∈R
‖x(2)

k − pkΓ− x∗‖A.

So
‖xk+1 − x∗‖A ≤ ‖x(2)

k − x∗‖A. (64)
Combining (60), (61), and (64) yields (59).

Since CG iterates at most d steps to obtain x∗, the Min-AM will obtain the same solution in at most
(d+ 1) steps.

C Details of the restarted Min-AM

C.1 Proof of Theorem 2

For the proof of Theorem 2 about the restarted Min-AM, we use a local quadratic model inspired by
the techniques in [17, 18]. The second-order Taylor expansion f̂ of f around x∗ is

f̂(x) = f(x∗) +
1

2
(x− x∗)TA(x− x∗), (65)

where A := ∇2f(x∗).

We compare the iterates {xk} generated by Min-AM to the iterates {x̂k} generated by applying
Min-AM to minimizing the quadratic model (65). More precisely, we give the following definition.
Definition 1. Let the mixing parameter {βk} be chosen to satisfy β ≤ |βk| ≤ β′, where β and β′ are
two positive constants. The sequences {xk} and {x̂k} are generated by the following two processes:

(1) Process I: Solve the optimization problem (1) with the restarted Min-AM (see Algorithm 1), and
the resulting sequence is {xk}.
(2) Process II: Apply the basic Min-AM to minimize f̂(x) in each interval between two successive
restarts in Process I. Specifically, letmk, βk be the same as those in Process I. Define r̂k = −∇f̂(x̂k).
Then, x̂k = xk, and p̂k = q̂k = 0 ∈ Rd, if mk = 0. For mk ≥ 1,

∆x̂k−1 = x̂k − x̂k−1, ∆r̂k−1 = r̂k − r̂k−1,

p̂k = ∆x̂k−1 − p̂k−1ζ̂k, q̂k = ∆r̂k−1 − q̂k−1ζ̂k, where ζ̂k = (p̂T
k−1q̂k−1)†p̂T

k−1∆r̂k−1;

defining r̂(1)
k = r̂k − q̂kΓ̂

(1)
k , the update of x̂k is

x̂
(1)
k = x̂k − p̂kΓ̂

(1)
k , where Γ̂

(1)
k = (p̂T

k q̂k)†p̂T
k r̂k,

x̂
(2)
k = x̂

(1)
k + βkr̂

(1)
k ,

x̂k+1 = x̂
(2)
k − p̂kΓ̂

(2)
k , where Γ̂

(2)
k = βk(p̂T

k q̂k)†q̂T
k r̂

(1)
k .

(66)

By comparing {xk} and {x̂k}, we first have the following lemma.

25



Lemma 1. Suppose that Assumption 1 holds for the optimization problem (1). For the sequences
{xk} and {x̂k} defined in Definition 1, if ‖x0 − x∗‖2 is sufficiently small and there exists a positive
constant η0 such that ‖∇f(xj)‖2 ≤ η0‖∇f(x0)‖2 for j = 0, . . . , k, then

‖rk − r̂k‖2 = κ̂O(‖xk−mk
− x∗‖22), (67)

‖xk+1 − x̂k+1‖2 = κ̂O(‖xk−mk
− x∗‖22). (68)

Proof. Besides (67) and (68), we will also prove the following relations.

xk ∈ Bρ̂(x∗), (69)

|ζk| = O(1), |ζ̂k − ζk| = κ̂O(‖xk−mk
− x∗‖2), (70)

‖pk‖2 = O(‖xk−mk
− x∗‖2), ‖qk‖2 = O(‖xk−mk

− x∗‖2) (71)

‖pk − p̂k‖2 = κ̂O(‖xk−mk
− x∗‖22), ‖qk − q̂k‖2 = κ̂O(‖xk−mk

− x∗‖22), (72)

|Γ(1)
k | = O(1), |Γ̂(1)

k − Γ
(1)
k | = κ̂O(‖xk−mk

− x∗‖2), (73)

‖x(1)
k − x̂

(1)
k ‖2 = κ̂O(‖xk−mk

− x∗‖22), ‖r(1)
k − r̂

(1)
k ‖2 = κ̂O(‖xk−mk

− x∗‖22), (74)

‖x(2)
k − x̂

(2)
k ‖2 = κ̂O(‖xk−mk

− x∗‖22), (75)

|Γ(2)
k | = O(1), |Γ̂(2)

k − Γ
(2)
k | = κ̂O(‖xk−mk

− x∗‖2). (76)

Here, for convenience, we define ζk = ζ̂k = 0 if mk = 0.

We first prove (69). Recall that rk = −∇f(xk). Due to (12a), we have

µ‖xk − x∗‖2 ≤ ‖rk‖2 = ‖∇f(xk)−∇f(x∗)‖2 ≤ L‖xk − x∗‖2. (77)

Note that ‖rk‖2 ≤ η0‖r0‖2. By choosing ‖x0 − x∗‖2 ≤ µρ̂
η0L

, we can ensure

‖xk − x∗‖2 ≤
1

µ
‖rk‖2 ≤

η0

µ
‖r0‖2 ≤

η0L

µ
‖x0 − x∗‖2 ≤

η0L

µ
· µρ̂
η0L

= ρ̂. (78)

Then (69) holds. Since ‖rj‖2 ≤ η0‖r0‖2 holds for j = 0, . . . , k, (78) implies that a sufficiently small
‖x0 − x∗‖2 ensures ‖xk−mk

− x∗‖2 ≤ η0L
µ ‖x0 − x∗‖2 is sufficiently small. Next, we prove (67),

(68), and (70)-(76) by induction.

For k = 0, we have Γ
(1)
k = Γ̂

(1)
k = 0,Γ

(2)
k = Γ̂

(2)
k = 0. The relations (70)-(74), and (76) clearly

hold. Also, due to (12b),

‖r0 − r̂0‖2 = ‖∇f(x0)−∇f̂(x̂0)‖2 = ‖∇f(x0)−∇2f(x∗)(x0 − x∗)‖2 ≤
1

2
κ̂‖x0 − x∗‖22,

namely (67). Note that xk+1 = x
(2)
k = xk + βkrk and x̂k+1 = x̂

(2)
k = x̂k + βkr̂k in this case. Then

(68) and (75) follow from

‖x1 − x̂1‖2 = ‖x0 + β0r0 − (x̂0 + β0r̂0)‖2 = β0‖r0 − r̂0‖2 ≤
β0κ̂

2
‖x0 − x∗‖22.

Suppose that k ≥ 1, and as an inductive hypothesis, the relations (67), (68), and (70)-(76) hold for
j = 0, . . . , k − 1. Consider the k-th iteration.

If mk = 0, i.e., a condition in (11a)-(11c) is violated at the beginning of the k-th iteration, then
x̂k = xk. The same as the case that k = 0, (67), (68), and (70)-(76) hold.

Consider the nontrivial case that mk ≥ 1. From (11c), it follows that

‖xj − x∗‖2 ≤
1

µ
‖rj‖2 ≤

η

µ
‖rk−mk

‖2 ≤
ηL

µ
‖xk−mk

− x∗‖2, j = k −mk + 1, . . . , k.

Therefore,
‖xj − x∗‖2 = O(‖xk−mk

− x∗‖2), j = k −mk, . . . , k. (79)
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Since xk ∈ Bρ̂(x∗), we have

‖rk − r̂k‖2 = ‖∇f(xk)−∇f̂(x̂k)‖2
≤ ‖∇f(xk)−∇f̂(xk)‖2 + ‖∇f̂(xk)−∇f̂(x̂k)‖2
= ‖∇f(xk)−∇2f(x∗)(xk − x∗)‖2 + ‖∇2f(x∗)(xk − x̂k)‖2
≤ 1

2
κ̂‖xk − x∗‖22 + L‖xk − x̂k‖2

= κ̂O(‖xk−mk
− x∗‖22),

where the second inequality is due to (12b) and (12a), and the last inequality is due to (79) and the
inductive hypothesis (68). Hence, the relation (67) holds. Next, we prove the relation (70).

Due to the check (11b), with κ := τµ3β2, we have

|pT
j qj | ≥ τ |pT

k−mk+1qk−mk+1| = τ |∆xT
k−mk

∆rk−mk
|

≥ τ
∣∣∣∣∆xT

k−mk

∫ 1

0

∇2f(xk−mk
+ t∆xk−mk

)∆xk−mk
dt

∣∣∣∣
≥ τµ‖∆xk−mk

‖22 = τµβ2
k−mk

‖rk−mk
‖22

≥ τµ3β2‖xk−mk
− x∗‖22 = κ‖xk−mk

− x∗‖22, (80)

for j = k −mk + 1, . . . , k.

If mk = 1, then ζk = ζ̂k = 0, and (70) holds. For mk > 1, we have

|ζk| =
∣∣∣∣∣pT
k−1∆rk−1

pT
k−1qk−1

∣∣∣∣∣ ≤ ‖pk−1‖2 · ‖∆rk−1‖2
κ‖xk−mk

− x∗‖22
=
O(‖xk−mk

− x∗‖22)

κ‖xk−mk
− x∗‖22

= O(1), (81)

due to (71) and ‖∆rk−1‖2 ≤ ‖rk‖2 + ‖rk−1‖2 ≤ 2η‖rk−mk
‖2 = O(‖xk−mk

− x∗‖2).

Next, if pT
k−1∆rk−1 6= 0, then

|ζk − ζ̂k| = |ζk| ·
∣∣∣∣∣1− ζ̂k

ζk

∣∣∣∣∣ = |ζk| ·
∣∣∣∣∣1− p̂T

k−1∆r̂k−1

p̂T
k−1q̂k−1

· p
T
k−1qk−1

pT
k−1∆rk−1

∣∣∣∣∣
= |ζk| ·

∣∣∣∣∣1− p̂T
k−1∆r̂k−1

pT
k−1∆rk−1

· p
T
k−1qk−1

p̂T
k−1q̂k−1

∣∣∣∣∣
= |ζk| · |a(1− b) + b| ≤ |ζk| · (|a|+ |b|+ |ab|), (82)

where a := 1− p̂Tk−1∆r̂k−1

pTk−1∆rk−1
, b := 1− pTk−1qk−1

p̂Tk−1q̂k−1
. We have

|ζk| · |a| =
∣∣∣∣∣pT
k−1∆rk−1

pT
k−1qk−1

∣∣∣∣∣ ·
∣∣∣∣∣pT
k−1∆rk−1 − p̂T

k−1∆r̂k−1

pT
k−1∆rk−1

∣∣∣∣∣ =

∣∣∣∣∣pT
k−1∆rk−1 − p̂T

k−1∆r̂k−1

pT
k−1qk−1

∣∣∣∣∣ . (83)

From (67) and (71),

|pT
k−1(∆rk−1 −∆r̂k−1)| ≤ ‖pk−1‖2 · ‖rk − rk−1 − r̂k + r̂k−1‖2 = κ̂O(‖xk−mk

− x∗‖32).

We also have

|(pk−1 − p̂k−1)T∆r̂k−1| = |(pk−1 − p̂k−1)TA∆x̂k−1|
= |(pk−1 − p̂k−1)TA∆xk−1 − (pk−1 − p̂k−1)TA(∆xk−1 −∆x̂k−1)|
≤ |(pk−1 − p̂k−1)TA∆xk−1|+ |(pk−1 − p̂k−1)TA(∆xk−1 −∆x̂k−1)|
= κ̂O(‖xk−mk

− x∗‖32) + κ̂2O(‖xk−mk
− x∗‖42)

= κ̂O(‖xk−mk
− x∗‖32).
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Hence,

|pT
k−1∆rk−1 − p̂T

k−1∆r̂k−1| = |pT
k−1(∆rk−1 −∆r̂k−1) + (pk−1 − p̂k−1)T∆r̂k−1|

≤ |pT
k−1(∆rk−1 −∆r̂k−1)|+ |(pk−1 − p̂k−1)T∆r̂k−1|

= κ̂O(‖xk−mk
− x∗‖32). (84)

Combining (83) and (84), we have

|ζk| · |a| ≤
κ̂O(‖xk−mk

− x∗‖32)

κ‖xk−mk
− x∗‖22

= κ̂O(‖xk−mk
− x∗‖2). (85)

Note that

|p̂T
k−1q̂k−1 − pT

k−1qk−1| = |p̂T
k−1(q̂k−1 − qk−1) + (p̂k−1 − pk−1)Tqk−1|

= |(p̂k−1 − pk−1)T(q̂k−1 − qk−1) + pT
k−1(q̂k−1 − qk−1) + (p̂k−1 − pk−1)Tqk−1|

≤ |(p̂k−1 − pk−1)T(q̂k−1 − qk−1)|+ |pT
k−1(q̂k−1 − qk−1)|+ |(p̂k−1 − pk−1)Tqk−1|

= κ̂2O(‖xk−mk
− x∗‖42) + κ̂O(‖xk−mk

− x∗‖32) + κ̂O(‖xk−mk
− x∗‖32)

= κ̂O(‖xk−mk
− x∗‖32), (86)

and

|p̂T
k−1q̂k−1| ≥ |pT

k−1qk−1| − |p̂T
k−1q̂k−1 − pT

k−1qk−1|

≥ κ‖xk−mk
− x∗‖22 − κ̂c1‖xk−mk

− x∗‖32 ≥
1

2
κ‖xk−mk

− x∗‖22, (87)

where the existence of the constant c1 is guaranteed by (86), and the last inequality holds by choosing
‖x0 − x∗‖2 ≤ µκ

2η0Lκ̂c1
, which ensures κ̂c1‖xk−mk

− x∗‖2 ≤ κ̂c1 η0Lµ ‖x0 − x∗‖2 ≤ 1
2κ.

Then, we have

|b| =
∣∣∣∣∣1− pT

k−1qk−1

p̂T
k−1q̂k−1

∣∣∣∣∣ =

∣∣∣∣∣ p̂T
k−1q̂k−1 − pT

k−1qk−1

p̂T
k−1q̂k−1

∣∣∣∣∣ = κ̂O(‖xk−mk
− x∗‖2). (88)

As a result, by (85), (88), (81), and (82), we have

|ζk − ζ̂k| ≤ |ζk||a|+ |ζk||b|+ |ζk|||a||b| = κ̂O(‖xk−mk
− x∗‖2). (89)

Now consider the case that pT
k−1∆rk−1 = 0. It is clear that ζk = 0. Then

|ζk − ζ̂k| =
∣∣∣∣∣ p̂T
k−1∆r̂k−1

p̂T
k−1q̂k−1

∣∣∣∣∣ ≤ κ̂O(‖xk−mk
− x∗‖32)

1
2κ‖xk−mk

− x∗‖22
= κ̂O(‖xk−mk

− x∗‖2),

where the inequality is due to (84) and (87).

Hence the (70) holds.

For the relation (71), it holds since

‖pk‖2 = ‖∆xk−1 − pk−1ζk‖2 ≤ ‖xk − x∗‖2 + ‖xk−1 − x∗‖2 + ‖pk−1‖2|ζk|
= O(‖xk−mk

− x∗‖2),

‖qk‖2 = ‖∆rk−1 − qk−1ζk‖2 ≤ L‖xk − xk−1‖2 + ‖qk−1‖2|ζk|
≤ L‖xk − x∗‖2 + L‖xk−1 − x∗‖2 + ‖qk−1‖2|ζk|
= O(‖xk−mk

− x∗‖2).

Next, we prove (72). We have

|pk−1ζk − p̂k−1ζ̂k‖2 = ‖pk−1ζk − p̂k−1(ζ̂k − ζk)− p̂k−1ζk‖2
≤ ‖(pk−1 − p̂k−1)ζk‖2 + ‖p̂k−1(ζ̂k − ζk)‖2
≤ ‖(pk−1 − p̂k−1)ζk‖2 + ‖(p̂k−1 − pk−1)(ζ̂k − ζk)‖2 + ‖pk−1(ζ̂k − ζk)‖2
= κ̂O(‖xk−mk

− x∗‖22), (90)
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|qk−1ζk − q̂k−1ζ̂k‖2 = ‖qk−1ζk − q̂k−1(ζ̂k − ζk)− q̂k−1ζk‖2
≤ ‖(qk−1 − q̂k−1)ζk‖2 + ‖(q̂k−1 − qk−1)(ζ̂k − ζk)‖2 + ‖qk−1(ζ̂k − ζk)‖2
= κ̂O(‖xk−mk

− x∗‖22). (91)
Therefore,

‖pk − p̂k‖2 = ‖∆xk−1 − pk−1ζk − (∆x̂k−1 − p̂k−1ζ̂k)‖2
≤ ‖∆xk−1 −∆x̂k−1‖2 + ‖pk−1ζk − p̂k−1ζ̂k‖2 = κ̂O(‖xk−mk

− x∗‖22), (92)

‖qk − q̂k‖2 = ‖∆rk−1 − qk−1ζk − (∆r̂k−1 − q̂k−1ζ̂k)‖2
≤ ‖∆rk−1 −∆r̂k−1‖2 + ‖qk−1ζk − q̂k−1ζ̂k‖2 = κ̂O(‖xk−mk

− x∗‖22). (93)
The (72) is proved.

Now, we prove (73), which follows a very similar procedure in proving (70). For the completeness,
we still give the proof.

We have

|Γ(1)
k | =

∣∣∣∣pT
k rk
pT
k qk

∣∣∣∣ ≤ ‖pk‖2 · ‖rk‖2
κ‖xk−mk

− x∗‖22
=
O(‖xk−mk

− x∗‖22)

κ‖xk−mk
− x∗‖22

= O(1), (94)

due to (71) and ‖rk‖2 ≤ η‖rk−mk
‖2 = O(‖xk−mk

− x∗‖2).

Next, if pT
k rk 6= 0, then

|Γ(1)
k − Γ̂

(1)
k | = |Γ

(1)
k | ·

∣∣∣∣∣1− Γ̂
(1)
k

Γ
(1)
k

∣∣∣∣∣ = |Γ(1)
k | ·

∣∣∣∣1− p̂T
k r̂k
p̂T
k q̂k
· p

T
k qk
pT
k rk

∣∣∣∣ = |Γ(1)
k | ·

∣∣∣∣1− p̂T
k r̂k
pT
k rk
· p

T
k qk
p̂T
k q̂k

∣∣∣∣
= |Γ(1)

k | · |a1(1− b1) + b1| ≤ |Γ(1)
k | · (|a1|+ |b1|+ |a1b1|), (95)

where a1 := 1− p̂Tk r̂k
pTk rk

, b1 := 1− pTk qk
p̂Tk q̂k

. We have

|Γ(1)
k | · |a1| =

∣∣∣∣pT
k rk
pT
k qk

∣∣∣∣ · ∣∣∣∣pT
k rk − p̂T

k r̂k
pT
k rk

∣∣∣∣ =

∣∣∣∣pT
k rk − p̂T

k r̂k
pT
k qk

∣∣∣∣ . (96)

From (67) and (71) which have been proved,

|pT
k (rk − r̂k)| ≤ κ̂O(‖xk−mk

− x∗‖32).

We also have
|(pk − p̂k)Tr̂k| = |(pk − p̂k)TA(x̂k − x∗)|

= |(pk − p̂k)TA(xk − x∗)− (pk − p̂k)TA(xk − x̂k)|
≤ |(pk − p̂k)TA(xk − x∗)|+ |(pk − p̂k)TA(xk − x̂k)|
= κ̂O(‖xk−mk

− x∗‖32) + κ̂2O(‖xk−mk
− x∗‖42) = κ̂O(‖xk−mk

− x∗‖32).

Hence,
|pT
k rk − p̂T

k r̂k| = |pT
k (rk − r̂k) + (pk − p̂k)Tr̂k|

≤ |pT
k (rk − r̂k)|+ |(pk − p̂k)Tr̂k| = κ̂O(‖xk−mk

− x∗‖32). (97)
Combining (96) and (97), we have

|Γ(1)
k | · |a1| ≤

κ̂O(‖xk−mk
− x∗‖32)

κ‖xk−mk
− x∗‖22

= κ̂O(‖xk−mk
− x∗‖2). (98)

Note that
|p̂T
k q̂k − pT

k qk| = |p̂T
k (q̂k − qk) + (p̂k − pk)Tqk|

= |(p̂k − pk)T(q̂k − qk) + pT
k (q̂k − qk) + (p̂k − pk)Tqk|

≤ |(p̂k − pk)T(q̂k − qk)|+ |pT
k (q̂k − qk)|+ |(p̂k − pk)Tqk|

= κ̂2O(‖xk−mk
− x∗‖42) + κ̂O(‖xk−mk

− x∗‖32) + κ̂O(‖xk−mk
− x∗‖32)

= κ̂O(‖xk−mk
− x∗‖32), (99)
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and

|p̂T
k q̂k| ≥ |pT

k qk| − |p̂T
k q̂k − pT

k qk|

≥ κ‖xk−mk
− x∗‖22 − κ̂c2‖xk−mk

− x∗‖32 ≥
1

2
κ‖xk−mk

− x∗‖22, (100)

where the existence of the constant c2 is guaranteed by (99), and the last inequality holds by choosing
‖x0 − x∗‖2 ≤ µκ

2η0Lκ̂c2
which ensures κ̂c2‖xk−mk

− x∗‖2 ≤ κ̂c2 η0Lµ ‖x0 − x∗‖2 ≤ 1
2κ.

Then, we have

|b1| =
∣∣∣∣1− pT

k qk
p̂T
k q̂k

∣∣∣∣ =

∣∣∣∣ p̂T
k q̂k − pT

k qk
p̂T
k q̂k

∣∣∣∣ = κ̂O(‖xk−mk
− x∗‖2). (101)

As a result, by (98), (101), (94), and (95), we have

|Γ(1)
k − Γ̂

(1)
k | ≤ |Γ

(1)
k ||a1|+ |Γ(1)

k ||b1|+ |Γ
(1)
k |||a1||b1| = κ̂O(‖xk−mk

− x∗‖2). (102)

Now consider the case that pT
k rk = 0. It is clear that Γ

(1)
k = 0. Then

|Γ(1)
k − Γ̂

(1)
k | =

∣∣∣∣ p̂T
k r̂k
p̂T
k q̂k

∣∣∣∣ ≤ κ̂O(‖xk−mk
− x∗‖32)

1
2κ‖xk−mk

− x∗‖22
= κ̂O(‖xk−mk

− x∗‖2),

where the inequality is due to (97) and (100).

Hence the (73) holds.

Now, we prove (74). We have

‖x(1)
k − x̂

(1)
k ‖2 = ‖xk − pkΓ

(1)
k − (x̂k − p̂kΓ̂

(1)
k )‖2 ≤ ‖xk − x̂k‖2 + ‖pkΓ

(1)
k − p̂kΓ̂

(1)
k ‖2

≤ ‖xk − x̂k‖2 + ‖pk(Γ
(1)
k − Γ̂

(1)
k )‖2 + ‖(pk − p̂k)Γ̂

(1)
k ‖2

≤ ‖xk − x̂k‖2 + ‖pk(Γ
(1)
k − Γ̂

(1)
k )‖2 + ‖(pk − p̂k)Γ

(1)
k ‖2

+ ‖(pk − p̂k)(Γ
(1)
k − Γ̂

(1)
k )‖2

= κ̂O(‖xk−mk
− x∗‖22), (103)

‖r(1)
k − r̂

(1)
k ‖2 = ‖rk − qkΓ

(1)
k − (r̂k − q̂kΓ̂

(1)
k )‖2 ≤ ‖rk − r̂k‖2 + ‖qkΓ

(1)
k − q̂kΓ̂

(1)
k ‖2

≤ ‖rk − r̂k‖2 + ‖qk(Γ
(1)
k − Γ̂

(1)
k )‖2 + ‖(qk − q̂k)Γ̂

(1)
k ‖2

≤ ‖rk − r̂k‖2 + ‖qk(Γ
(1)
k − Γ̂

(1)
k )‖2 + ‖(qk − q̂k)Γ

(1)
k ‖2

+ ‖(qk − q̂k)(Γ
(1)
k − Γ̂

(1)
k )‖2

= κ̂O(‖xk−mk
− x∗‖22). (104)

Then, (75) holds as

‖x(2)
k − x̂

(2)
k ‖2 = ‖x(1)

k + βkr
(1)
k − (x̂

(1)
k + βkr̂

(1)
k )‖2

≤ ‖x(1)
k − x̂

(1)
k ‖2 + βk‖r(1)

k − r̂
(1)
k ‖2 = κ̂O(‖xk−mk

− x∗‖22)

is a consequence of (103) and (104).

Next, we prove (76), which follows a very similar procedure in proving (73). For the completeness,
we still give the proof.

We have

|Γ(2)
k | =

∣∣∣∣∣βk qT
k r

(1)
k

pT
k qk

∣∣∣∣∣ ≤ βk‖qk‖2 · ‖r(1)
k ‖2

κ‖xk−mk
− x∗‖22

=
O(‖xk−mk

− x∗‖22)

κ‖xk−mk
− x∗‖22

= O(1), (105)

due to (71) and ‖r(1)
k ‖2 = ‖rk − qkΓ

(1)
k ‖2 ≤ ‖rk‖2 + ‖qk‖2|Γ(1)

k | ≤ η‖rk−mk
‖2 +O(‖xk−mk

−
x∗‖2) = O(‖xk−mk

− x∗‖2).
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Next, if qT
k r

(1)
k 6= 0, then

|Γ(2)
k − Γ̂

(2)
k | = |Γ

(2)
k | ·

∣∣∣∣∣1− Γ̂
(2)
k

Γ
(2)
k

∣∣∣∣∣ = |Γ(2)
k | ·

∣∣∣∣∣1− q̂T
k r̂

(1)
k

p̂T
k q̂k

· p
T
k qk

qT
k r

(1)
k

∣∣∣∣∣ = |Γ(2)
k | ·

∣∣∣∣∣1− q̂T
k r̂

(1)
k

qT
k r

(1)
k

· p
T
k qk
p̂T
k q̂k

∣∣∣∣∣
= |Γ(2)

k | · |a2(1− b2) + b2| ≤ |Γ(2)
k | · (|a2|+ |b2|+ |a2b2|), (106)

where a2 := 1− q̂Tk r̂
(1)
k

qTk r
(1)
k

, b2 := 1− pTk qk
p̂Tk q̂k

. We have

|Γ(2)
k | · |a2| =

∣∣∣∣∣βk qT
k r

(1)
k

pT
k qk

∣∣∣∣∣ ·
∣∣∣∣∣qT
k r

(1)
k − q̂T

k r̂
(1)
k

qT
k r

(1)
k

∣∣∣∣∣ =

∣∣∣∣∣βk qT
k r

(1)
k − q̂T

k r̂
(1)
k

pT
k qk

∣∣∣∣∣ . (107)

From (71) and (74) which have been proved,

|qT
k (r

(1)
k − r̂

(1)
k )| ≤ κ̂O(‖xk−mk

− x∗‖32).

We also have
|(qk − q̂k)Tr̂

(1)
k | = |(qk − q̂k)TA(x̂

(1)
k − x∗)|

= |(qk − q̂k)TA(x
(1)
k − x∗)− (qk − q̂k)TA(x

(1)
k − x̂

(1)
k )|

≤ |(qk − q̂k)TA(xk − pkΓ
(1)
k − x∗)|+ |(qk − q̂k)TA(x

(1)
k − x̂

(1)
k )|

= κ̂O(‖xk−mk
− x∗‖32) + κ̂2O(‖xk−mk

− x∗‖42) = κ̂O(‖xk−mk
− x∗‖32).

Hence,

|qT
k r

(1)
k − q̂T

k r̂
(1)
k | = |qT

k (r
(1)
k − r̂

(1)
k ) + (qk − q̂k)Tr̂

(1)
k |

≤ |qT
k (r

(1)
k − r̂

(1)
k )|+ |(qk − q̂k)Tr

(1)
k |+ |(qk − q̂k)T(r

(1)
k − r̂

(1)
k )|

= κ̂O(‖xk−mk
− x∗‖32). (108)

Combining (107) and (108), we have

|Γ(2)
k | · |a2| ≤

κ̂O(‖xk−mk
− x∗‖32)

κ‖xk−mk
− x∗‖22

= κ̂O(‖xk−mk
− x∗‖2). (109)

From (101),
|b2| = |b1| = κ̂O(‖xk−mk

− x∗‖2). (110)
As a result, by (109), (110), (105), and (106), we have

|Γ(2)
k − Γ̂

(2)
k | ≤ |Γ

(2)
k ||a2|+ |Γ(2)

k ||b2|+ |Γ
(2)
k |||a2||b2| = κ̂O(‖xk−mk

− x∗‖2). (111)

Now consider the case that qT
k r

(1)
k = 0. It is clear that Γ

(2)
k = 0. Then

|Γ(2)
k − Γ̂

(2)
k | =

∣∣∣∣∣ q̂T
k r̂

(1)
k

p̂T
k q̂k

∣∣∣∣∣ ≤ κ̂O(‖xk−mk
− x∗‖32)

1
2κ‖xk−mk

− x∗‖22
= κ̂O(‖xk−mk

− x∗‖2),

where the inequality is due to (108) and (100).

Hence the (76) holds.

Finally, we prove ‖xk+1 − x̂k+1‖2 = κ̂O(‖xk−mk
− x∗‖22). It follows from (8c) that

‖xk+1 − x̂k+1‖2 = ‖x(2)
k − pkΓ

(2)
k − (x̂

(2)
k − p̂kΓ̂

(2)
k )‖2

≤ ‖x(2)
k − x̂

(2)
k ‖2 + ‖pkΓ

(2)
k − p̂kΓ̂

(2)
k ‖2

≤ ‖x(2)
k − x̂

(2)
k ‖2 + ‖(pk − p̂k)Γ

(2)
k ‖2 + ‖pk(Γ

(2)
k − Γ̂

(2)
k )‖2

+ ‖(p̂k − pk)(Γ
(2)
k − Γ̂

(2)
k )‖2

= κ̂O(‖xk−mk
− x∗‖22),

where the last equality is due to (75), (71), (72), and (76) that have been proved. Therefore, the
relation (68) holds.

As a result, we complete the induction. The relations (67) and (68) are proved.
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Based on Lemma 1 and Corollary 1, we can obtain the convergence theorem of the restarted Min-AM.
Theorem 6. Suppose that Assumption 1 holds for the optimization problem (1). Let {xk} denote the
sequence of iterates generated by the restarted Min-AM, and define θk = ‖I − βkA‖2. Assume βj ∈
[β, β′] (j ≥ 0) for some positive constants β and β′. If ‖∇f(xj)‖2 ≤ η0‖∇f(x0)‖2 (0 ≤ j ≤ k)
for a constant η0 > 0, and x0 is sufficiently close to x∗, then

‖xk+1 − x∗‖A ≤ θk min
p∈Pmk

,p(0)=1
‖p(A)(xk−mk

− x∗)‖A + κ̂O(‖xk−mk
− x∗‖22), (112)

where Pmk
is the space of polynomials of degree not exceeding mk. As a result,

‖xk+1 − x∗‖A ≤ 2θk

(√
L/µ− 1√
L/µ+ 1

)mk

‖xk−mk
− x∗‖A + κ̂O(‖xk−mk

− x∗‖22). (113)

Proof. From Corollary 1, the auxiliary sequence {x̂k} in Definition 1 satisfies

‖x̂k+1 − x∗‖A ≤ θk min
p∈Pmk

,p(0)=1
‖p(A)(xk−mk

− x∗)‖A. (114)

Then (112) follows from (114), (68), and the fact that ‖xk+1 − x̂k+1‖A ≤
√
L‖xk+1 − x̂k+1‖2.

Since A is SPD, we can choose the Chebyshev polynomial for p ∈ Pmk
to obtain (e.g., see

Section 6.11.3 in [53])

min
p∈Pmk

,p(0)=1
‖p(A)‖2 ≤ min

p∈Pmk
,p(0)=1

max
λ∈[µ,L]

|p(λ)| ≤ 2

(√
L/µ− 1√
L/µ+ 1

)mk

. (115)

Like (63) in the proof of Corollary 1, we also have ‖p(A)‖A = ‖p(A)‖2. Then ‖p(A)(xk−mk
−

x∗)‖A ≤ ‖p(A)‖A‖xk−mk
− x∗‖A = ‖p(A)‖2‖xk−mk

− x∗‖A. With (115) and (112), the bound
(113) holds.

Remark 8. In Theorem 6, we do not assume each βk is chosen such that θk = ‖I − βkA‖2 < 1. It
is expected that when θk is not too large, and mk is sufficiently large, the minimization problem on
the right-hand side of (112) can dominate the convergence rate, thus leading to fast convergence.
However, in the case that an improper choice of βk causes θk � 1, the restarted Min-AM may have
an erratic convergence behaviour or even diverge if mk is too small.
Remark 9. From (112), a large mk can make the first-order term diminish significantly. However,
the high-order terms of errors κ̂O(‖xk−mk

− x∗‖22) can be large since they are accumulated from
the last restart. In practice, we can first choose large m, small τ , and large η in (11a)-(11c) so that
the restarts do not occur too frequently. When the restarted Min-AM has a problematic convergence
behaviour due to the high nonlinearity of∇f , more frequent restarts are necessary.

Now, we give the proof of Theorem 2, which can be obtained from Theorem 6.

Proof of Theorem 2. Under the assumptions of Theorem 2, we prove that

‖xj − x∗‖A ≤ ‖x0 − x∗‖A, j = 0, . . . , k, (116)

and there exists a constant η0 > 0 such that

‖∇f(xj)‖2 ≤ η0‖∇f(x0)‖2, j = 0, . . . , k. (117)

We prove (116) and (117) by induction. For k = 0, (116) and (117) hold. Suppose that k ≥ 0, and
the results hold for k. We establish the results for k + 1. From (114) in the proof of Theorem 6, it
follows that

‖x̂k+1 − x∗‖A ≤ θk‖xk−mk
− x∗‖A ≤ θ‖xk−mk

− x∗‖A. (118)

Since θk ≤ θ, we know βk ∈ [ 1−θ
µ , 1+θ

L ]. With the inductive hypothesis (117), for sufficiently
small ‖x0 − x∗‖2, the relations (67) and (68) hold. From (68), it follows that ‖xk+1 − x̂k+1‖A =
κ̂O(‖xk−mk

− x∗‖2A). Then, there exists a constant c1 such that ‖xk+1 − x̂k+1‖A ≤ κ̂c1‖xk−mk
−

x∗‖2A. With (118), we have

‖xk+1 − x∗‖A ≤ θ‖xk−mk
− x∗‖A + κ̂c1‖xk−mk

− x∗‖2A.
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Hence, by choosing ‖x0 − x∗‖2 ≤ 1−θ
2
√
Lκ̂c1

, which ensures ‖xk−mk
− x∗‖A ≤ ‖x0 − x∗‖A ≤√

L‖x0 − x∗‖2 ≤ 1−θ
2κ̂c1

due to the inductive hypothesis (116), it follows that

‖xk+1 − x∗‖A ≤
1 + θ

2
‖xk−mk

− x∗‖A < ‖xk−mk
− x∗‖A ≤ ‖x0 − x∗‖A,

namely (116) for k+1. Also, ‖xk+1−x∗‖2 ≤ 1√
µ‖xk+1−x∗‖A ≤ 1√

µ‖x0−x∗‖A ≤
√
L√
µ ‖x0−x∗‖2.

So we can impose ‖x0−x∗‖2 ≤
√
µρ̂√
L

to ensure xk+1 ∈ Bρ̂(x∗), which further yields that ‖rk+1‖2 ≤
L‖xk+1 − x∗‖2 ≤ L

√
L√
µ ‖x0 − x∗‖2 ≤ L

√
L

µ
√
µ ‖r0‖2, namely (117) for k + 1, and η0 = L

√
L

µ
√
µ . Hence,

we complete the induction. The convergence result (13) follows from (113) in Theorem 6.

Ifmk = d, then x̂k+1 = x∗ from Corollary 1. Therefore, ‖xk+1−x∗‖2 = κ̂O(‖xk−mk
−x∗‖22).

D Details of the eigenvalue estimation procedure

D.1 Analysis of the quadratic case

The procedure of the basic Min-AM leads to three-term recurrences for Pk and Qk.
Proposition 3. Under the same assumptions of Theorem 1 for solving strongly convex quadratic
optimization (47), we have

Apk = t
(k−1)
k pk−1 + t

(k)
k pk + t

(k+1)
k pk+1, (119)

Aqk = t
(k−1)
k qk−1 + t

(k)
k qk + t

(k+1)
k qk+1, (120)

where the coefficients are given by

t
(k−1)
k =

φk−1

βk−1(1− Γ
(1)
k )

, t
(k)
k =

1

1− Γ
(1)
k

(
1

βk−1
− φk
βk

)
, t

(k+1)
k = − 1

βk(1− Γ
(1)
k )

,

(121)
and φk := Γ

(1)
k + Γ

(2)
k + ζk+1. Then φk = Γ

(2)
k and there exists a tridiagonal matrix T̄k ∈ R(k+1)×k,

such that
APk = Pk+1T̄k, AQk = Qk+1T̄k. (122)

Proof. The relations can be verified by direct computation. In the (k + 1)-th iteration, since

xk+1 = x
(2)
k − pkΓ

(2)
k = x

(1)
k + βkr

(1)
k − pkΓ

(2)
k = xk + βkr

(1)
k − pk(Γ

(1)
k + Γ

(2)
k ), (123)

we have
pk+1 = ∆xk − pkζk+1 = βkr

(1)
k − pk(Γ

(1)
k + Γ

(2)
k + ζk+1)

= βk(rk − qkΓ
(1)
k )− pkφk = βk(r

(2)
k−1 − qk−1Γ

(2)
k−1 − qkΓ

(1)
k )− pkφk

= βk(I − βk−1A)r
(1)
k−1 − βkqk−1Γ

(2)
k−1 − βkqkΓ

(1)
k − pkφk

= βk(I − βk−1A)
pk + pk−1φk−1

βk−1
− βkqk−1Γ

(2)
k−1 − βkqkΓ

(1)
k − pkφk

=
βk
βk−1

(pk + pk−1φk−1)− βkA(pk + pk−1φk−1) + βkApk−1Γ
(2)
k−1 + βkApkΓ

(1)
k − pkφk

=

(
βk
βk−1

− φk
)
pk +

(
βk
βk−1

φk−1

)
pk−1 + (βkΓ

(1)
k − βk)Apk

+ (βkΓ
(2)
k−1 − βkφk−1)Apk−1

=

(
βk
βk−1

− φk
)
pk +

(
βk
βk−1

φk−1

)
pk−1 + (βkΓ

(1)
k − βk)Apk, (124)

where the last term vanishes due to
Γ

(2)
k−1 − φk−1 = Γ

(2)
k−1 − Γ

(1)
k−1 − Γ

(2)
k−1 − ζk

= −p
T
k−1rk−1

pT
k−1qk−1

− pT
k−1∆rk−1

pT
k−1qk−1

= − pT
k−1rk

pT
k−1qk−1

= 0, (125)
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since rk ⊥ pk−1. It also indicates that

φk = Γ
(1)
k + Γ

(2)
k + ζk+1 = Γ

(2)
k +

pT
k rk
pT
k qk

+
pT
k∆rk
pT
k qk

= Γ
(2)
k +

pT
k rk+1

pT
k qk

= Γ
(2)
k . (126)

Now, it follows from Equation (124) that

Apk =
1

1− Γ
(1)
k

φk−1

βk−1
pk−1 +

1

1− Γ
(1)
k

(
1

βk−1
− φk
βk

)
pk +

−1

βk(1− Γ
(1)
k )

pk+1. (127)

The second relation about Aqk can be obtained by noticing that qk = −Apk. The tridiagonal matrix
T̄k is

T̄k =



t
(1)
1 t

(1)
2

t
(2)
1 t

(2)
2 t

(2)
3

t
(3)
2 t

(3)
3 t

(3)
4

· · ·
t
(k−1)
k−2 t

(k−1)
k−1 t

(k−1)
k

t
(k)
k−1 t

(k)
k

t
(k+1)
k


∈ R(k+1)×k. (128)

Algorithm 3 k-step A-norm based Lanczos Algorithm for Ax = λx, where A is SPD.
Input: Starting vector v ∈ Rd
Output: Approximate eigenvalues {θi}ki=1

1: r = v, v0 = 0
2: β0 = ‖r‖A
3: for j = 1, 2, . . . , until convergence do
4: vj = r/βj−1

5: r = Avj
6: r = r − vj−1βj−1

7: αj = vT
j Ar

8: r = r − vjαj
9: βj = ‖r‖A

10: if j = k then
11: break
12: end if
13: end for
14: Construct tridiagonal Tk ∈ Rk×k: The main diagonal is {αi}ki=1; the subdiagonals are {βi}k−1

i=1

15: Compute the eigenvalue decomposition Tk = SkΘ(k)ST
k

16: return Θ(k)

D.2 Proof of Theorem 3

For solving general nonlinear optimization, the iterations between two successive restarts in the
restarted Min-AM are the basic Min-AM iterations. Hence, at the (k + 1)-th iteration, a tridiagonal
matrix Tk ∈ Rmk×mk can be constructed based on the coefficients starting from the (k −mk)-th
iteration. We formulate it in the following definition.
Definition 2. For solving optimization problem (1) with the restarted Min-AM (see Algorithm 1), sup-
pose that mk ≥ 1, and t(k−1)

k , t
(k)
k , t

(k+1)
k are obtained by (121). Then Tk ∈ Rmk×mk is defined as

Tk = tk if mk = 1, and Tk = (T̄k−1, tk) if mk ≥ 2. Here, T̄k = (TT
k , t

(k+1)
k emk

)T ∈ R(mk+1)×mk ,
where emk

is the last column of Imk
; tk = t

(k)
k if mk = 1, and tk = (0, . . . , 0, t

(k−1)
k , t

(k)
k )T ∈ Rmk

if mk ≥ 2.

Now, we prove Theorem 3.
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Proof of Theorem 3. Without loss of generality, we consider the case that no restart happens during
the iterations, i.e. mk = k. Let A := ∇2f(x∗).

The A-norm based Lanczos algorithm with a starting vector v for computing eigenvalues of an SPD
matrix A is described in Algorithm 3, which is a modification of the Algorithm 4.6 in [6] with
A-norm. It forms an A-orthonormal basis Vk of the Krylov subspace Kk(A, r̂0) by the Lanczos
A-orthogonalization, i.e. V T

k AVk = I , where r̂0 = A(x∗ − x0). Then the A-norm based Lanczos
algorithm seeks to find λ̃ ∈ R and z ∈ Rk such that

(A− λ̃I)Vkz ⊥ AVk.
Then we have

V T
k AAVkz = (AVk)TAVkz = λ̃(AVk)TVkz = λ̃z. (129)

The eigenvalues of (AVk)TAVk are the approximations to the true eigenvalues of A.

For Min-AM, we still use an auxiliary solving procedure of Min-AM on the local quadratic approxi-
mation (65), i.e. Process II in Definition 1. The same as Pk, Tk, T̄k, t

(k−1)
k , t

(k)
k , t

(k+1)
k in Process I,

the notations P̂k, T̂k,
¯̂
Tk, t̂

(k−1)
k , t̂

(k)
k , t̂

(k+1)
k are defined for Process II, correspondingly. Then the

Min-AM in Process II seeks λ̂ ∈ R and y ∈ Rk, such that

(A− λ̂I)P̂ky ⊥ AP̂k,
namely,

(AP̂k)TAP̂ky = λ̂(AP̂k)TP̂ky.

According to Proposition 3, we have AP̂k = P̂k+1
¯̂
Tk. Then

(AP̂k)TAP̂k = P̂T
k AP̂k+1

¯̂
Tk = P̂T

k AP̂kT̂k.

Then the eigenvalues of
T̂k = (P̂T

k AP̂k)−1(AP̂k)TAP̂k

are the approximations of the true eigenvalues of A. T̂k is tridiagonal but generally not symmetric.
However, it is clear that T̂k is similar to

(P̂T
k AP̂k)1/2T̂k(P̂T

k AP̂k)−1/2 = (P̂T
k AP̂k)−1/2P̂T

k AAP̂k(P̂T
k AP̂k)−1/2, (130)

which is symmetric. The columns of Uk := P̂k(P̂T
k AP̂k)−1/2 are A-orthonormal and also span the

same Krylov subspace Kk(A, r̂0), which implies that there exists an orthonormal matrix S ∈ Rk×k,
such that Vk = UkS. Therefore,

V T
k AAVk = STUT

k AAUkS. (131)

Since STS = I , the eigenvalues of (129) and (130) are identical.

Recall that we have the explicit forms of Tk, T̂k by (121), and we restate it here for convenience.

t
(k−1)
k =

φk−1

βk−1(1− Γ
(1)
k )

, t
(k)
k =

1

1− Γ
(1)
k

(
1

βk−1
− φk
βk

)
, t

(k+1)
k = − 1

βk(1− Γ
(1)
k )

,

(132a)

t̂
(k−1)
k =

φ̂k−1

βk−1(1− Γ̂
(1)
k )

, t̂
(k)
k =

1

1− Γ̂
(1)
k

(
1

βk−1
− φ̂k
βk

)
, t̂

(k+1)
k = − 1

βk(1− Γ̂
(1)
k )

,

(132b)

and φk := Γ
(1)
k +Γ

(2)
k +ζk+1, φ̂k := Γ̂

(1)
k +Γ̂

(2)
k + ζ̂k+1. With the already proved relations (69)-(76),

we can compute the bounds of t(j)k − t̂
(j)
k , j = k− 1, k, k+ 1. Let ε := κ̂O(‖x0 − x∗‖2) to simplify

the notation. Then
1

1− Γ
(1)
k

− 1

1− Γ̂
(1)
k

=
1

1− Γ
(1)
k

− 1

1− Γ
(1)
k + ε

=
ε

(1− Γ
(1)
k )(1− Γ

(1)
k + ε)

= κ̂O(‖x0−x∗‖2),

(133)
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where we use the fact that |Γ(1)
k − Γ̂

(1)
k | = κ̂O(‖x0− x∗‖2), and the assumption that |1−Γ

(1)
k | ≥ τ0.

We also have |φk| = O(1) and |φ̂k − φk| = κ̂O(‖xk−mk
− x∗‖2). Hence,

|t(k−1)
k − t̂(k−1)

k | ≤
∣∣∣∣∣ φk−1 − φ̂k−1

βk−1(1− Γ
(1)
k )

∣∣∣∣∣+

∣∣∣∣∣ φ̂k−1

βk−1

(
1

1− Γ
(1)
k

− 1

1− Γ̂
(1)
k

)∣∣∣∣∣ = κ̂O(‖x0 − x∗‖2),

(134)

|t(k)
k − t̂

(k)
k | ≤

∣∣∣∣∣ 1

βk−1

(
1

1− Γ
(1)
k

− 1

1− Γ̂
(1)
k

)∣∣∣∣∣+

∣∣∣∣∣ φk − φ̂k
βk(1− Γ

(1)
k )

∣∣∣∣∣
+

∣∣∣∣∣ φ̂kβk
(

1

1− Γ
(1)
k

− 1

1− Γ̂
(1)
k

)∣∣∣∣∣
= κ̂O(‖x0 − x∗‖2), (135)

|t(k+1)
k − t̂(k+1)

k | = κ̂O(‖x0 − x∗‖2). (136)

With mk ≤ m, we have that

‖Tk − T̂k‖2 = κ̂O(‖x0 − x∗‖2). (137)

Define D̂k = P̂T
k AP̂k. It is clear that D̂k is a diagonal matrix, and the i-th diagonal element is

−p̂T
i q̂i. From (100), (71), and (72), it follows that

‖D̂k‖2‖D̂−1
k ‖2 =

maxi{|p̂T
i q̂i|}

minj{|p̂T
j q̂j |}

= O(1). (138)

By (130), we know that D̂1/2
k T̂kD̂

−1/2
k can be diagonalized. There exists orthonormal matrix

Wk ∈ Rk×k and diagonal matrix ∧k ∈ Rk×k, such that

D̂
1/2
k T̂kD̂

−1/2
k = Wk ∧k WT

k . (139)

Therefore, T̂k = D̂
−1/2
k Wk ∧k WT

k D̂
1/2
k can be diagonalized. Then with (137), (138), and applying

the Bauer-Fike Theorem [33], we know that for an eigenvalue λ of Tk, the following result holds:

min
λ̂∈σ(T̂k)

|λ̂− λ| ≤ ‖D̂−1/2
k Wk‖2‖WT

k D̂
1/2
k ‖2‖Tk − T̂k‖2

≤ ‖D̂−1/2
k ‖2‖D̂1/2

k ‖2‖Tk − T̂k‖2 = κ̂O(‖x0 − x∗‖2), (140)

where σ(T̂k) denotes the spectrum of T̂k.

E Details of the stochastic Min-AM

Now, we prove the theorems about the stochastic Min-AM (sMin-AM) in Section 3.4. The algorithm
is given in Algorithm 4. For brevity, we use δk to denote δ(2)

k , i.e. δk ≡ δ(2)
k . Our proofs follow those

of SAM [62] and ST-AM [63].

From Assumption 3, for the mini-batch gradient fSk
(xk) = 1

nk

∑
i∈Sk

fi(xk), where nk = |Sk|, we
have

E[∇fSk
(x)|xk] = ∇f(xk), (141a)

E[‖∇fSk
(xk)−∇f(xk)‖22|xk] ≤ σ2

nk
. (141b)

Note that the update of sMin-AM (Lines 10-12 in Algorithm 4) can be written as xk+1 = xk +Hkrk,
where rk = −∇fSk

(xk), and for k ≥ 0,

Hk = (1− αk)βkI + αkH
A
k = βkI + αk(HA

k − βkI). (142)

To prove the theorems, we need Hk to be positive definite, and show that the noise in gradient
estimates is suppressed during iterations.

We first state some useful results about sMin-AM, then we prove Theorem 4 and Theorem 5.
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Algorithm 4 Stochastic Min-AM

Input: x0 ∈ Rd, βk > 0, αk ∈ [0, 1], δ
(1)
k ≥ 0, δ

(2)
k ≥ 0

1: p0, q0 = 0 ∈ Rd
2: for k = 0, 1, . . . , until convergence, do
3: rk = −∇fSk

(xk)
4: if k > 0 then
5: p = xk − xk−1, q = rk − rk−1

6: ζk = Φ(pk−1, qk−1, δ
(1)
k )†pT

k−1q
7: qk = q − qk−1ζk, pk = p− pk−1ζk
8: end if
9: ρk = Φ(pk, qk, δ

(2)
k )†

10: xAk = xk +
(
−ρkpkpT

k + βk(I − ρkpkqT
k )(I − ρkqkpT

k )
)
rk

11: xGk = xk + βkrk
12: xk+1 = (1− αk)xGk + αkx

A
k

13: Apply learning rate schedule of αk, βk
14: end for
15: return xk

E.1 Some useful results

Lemma 2. Suppose that the sequence {xk} is generated by sMin-AM. If there are constants
µ ∈ (0, 1), C2 > 0 such that αk ∈ [0, 1 − µ], ρk ≤ 0 and −ρk‖pk‖22 − 2βkρk‖pk‖2‖qk‖2 +
βkρ

2
k‖pk‖22‖qk‖22 ≤ βkC2, then we have that

‖HA
k − βkI‖2 ≤ C2βk, (143)

‖Hk‖2 ≤ βk(1 + C2), (144)
Hk � βkµI. (145)

Proof. Since

HA
k = −ρkpkpT

k + βk(1− ρkpkqT
k )(1− ρkqkpT

k )

= −ρkpkpT
k + βkI − βkρkqkpT

k − βkρkpkqT
k + βkρ

2
kpkq

T
k qkp

T
k ,

we have

HA
k − βkI = −ρkpkpT

k − βkρkqkpT
k − βkρkpkqT

k + βkρ
2
kpkq

T
k qkp

T
k . (146)

Hence,

‖HA
k − βkI‖2 ≤ |ρk|‖pkpT

k ‖2 + βk|ρk|‖qkpT
k ‖2 + βk|ρk|‖pkqT

k ‖2 + βkρ
2
k‖pkqT

k qkp
T
k ‖2

≤ |ρk|‖pk‖22 + βk|ρk|‖qk‖2‖pk‖2 + βk|ρk|‖pk‖2‖qk‖2 + βkρ
2
k‖qk‖22‖pk‖22

≤ βkC2. (147)

It follows that

‖Hk‖2 ≤ ‖βkI‖2 + αk‖HA
k − βkI‖2 ≤ βk + C2βk = (1 + C2)βk. (148)

Because ρk ≤ 0, it follows that HA
k � 0. Hence Hk � (1− αk)βkI � µβkI .

Remark 10. The conditions that ρk ≤ 0 and−ρk‖pk‖22− 2βkρk‖pk‖2‖qk‖2 +βkρ
2
k‖pk‖22‖qk‖22 ≤

βkC2 for a positive constant C2 can be fulfilled with some proper choice of δk. For example, if C2

satisfies (1 + 1
2βk)2 ≤ C2 and we choose δk ≥ 1

2 + β−1
k , then it can be proved that the conditions

hold. Moreover, in practice, δk can be chosen as a constant, as shown in our experiments.

With Lemma 2, we can prove the convergence of sMin-AM for full-batch training.

Theorem 7. Suppose that Assumption 2 holds and {xk} is the sequence generated by full-batch
sMin-AM, i.e. nk = T . Given constants µ ∈ (0, 1), C2 > 0, let βk = β ∈ (0, µ

L(1+C2)2 ] be a
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constant, αk ∈ [0, 1−µ]. The δ(2)
k is chosen such that ρk ≤ 0 and −ρk‖pk‖22− 2βkρk‖pk‖2‖qk‖2 +

βkρ
2
k‖pk‖22‖qk‖22 ≤ βkC2. Then

1

N

N−1∑
k=0

‖∇f(xk)‖22 ≤
2(f(x0)− f low)

Nµβ
, (149)

in the N -th iterations. To ensure 1
N

∑N−1
k=0 ‖∇f(xk)‖22 < ε, the number of iterations is O(1/ε) .

Proof of Theorem 7. With Lemma 2, we have

‖Hkrk‖22 ≤ β2(1 + C2)2‖rk‖22,
and

rT
kHkrk ≥ βµ‖rk‖22.

Then, under Assumption 2, we have

f(xk+1) ≤ f(xk) +∇f(xk)T(xk+1 − xk) +
L

2
‖xk+1 − xk‖22

= f(xk)− rT
kHkrk +

L

2
‖Hkrk‖22

≤ f(xk)− βµ‖rk‖22 +
L

2
β2(1 + C2)2‖rk‖22

= f(xk)− β
(
µ− L

2
β(1 + C2)2

)
‖rk‖22

≤ f(xk)− 1

2
βµ · ‖∇f(xk)‖22, (150)

where the last inequality is due to 0 < β ≤ µ
L(1+C2)2 . Thus, f(xk+1)− f(xk) ≤ − 1

2βµ‖∇f(xk)‖22.

Summing both sides of this inequality for k ∈ {0, . . . , N − 1} and recalling f(x) > f low in
Assumption 2 gives

f low − f(x0) ≤ f(xN )− f(x0) ≤ −1

2
βµ

N−1∑
k=0

‖∇f(xk)‖22.

Rearranging and dividing further by N yields (149).

The next lemmas are about the stochastic case.
Lemma 3. Suppose that Assumption 3 and Assumption 4 hold and {xk} is the sequence generated
by sMin-AM with βk > 0. Then

ESk
[‖Hkrk‖22] ≤ β2

k(1 + C2)2 ·
(
‖∇f(xk)‖22 +

σ2

nk

)
, (151a)

∇f(xk)TESk
[Hkrk] ≤ −1

2
βkµ‖∇f(xk)‖22 +

1

2
β2
k · µ−1C2

1C
2
2

σ2

nk
. (151b)

Proof. (i) From Lemma 2, we have

ESk
[‖Hkrk‖22] ≤ β2

k(1 + C2)2ESk
[‖rk‖22]. (152)

From Assumption 3, we have

ESk
[‖rk‖22] = ESk

[‖rk − ESk
[rk]‖22] + ‖ESk

[rk]‖22 ≤ ‖∇f(xk)‖22 + σ2/nk. (153)

With (152) and (153), we obtain (151a).

(ii) Recalling that H0 = β0I , the result holds for k = 0. Define εk = ∇fSk
(xk) − ∇f(xk) =

−rk −∇f(xk), then Hkrk = Hk (−εk −∇f(xk)) . First, we have

∇f(xk)THk∇f(xk) ≥ βkµ‖∇f(xk)‖22,
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which implies
ESk

[∇f(xk)THk∇f(xk)] ≥ βkµ‖∇f(xk)‖22. (154)

Let Mk := αk(HA
k − βI), then Hk = βkI +Mk. With the assumption (141a), i.e. ESk

[εk] = 0, we
have

ESk
[∇f(xk)THkεk] = ESk

[∇f(xk)T (βkεk +Mkεk)]

= βk∇f(xk)TESk
[εk] + ESk

[∇f(xk)TMkεk] = ESk
[∇f(xk)TMkεk].

Using the Cauchy-Schwarz inequality with expectations, we obtain

|ESk
[∇f(xk)THkεk]| = |ESk

[∇f(xk)TMkεk]| ≤
√
ESk

[‖∇f(xk)‖22]
√
ESk

[‖Mkεk‖22]

= ‖∇f(xk)‖2
√

ESk
[‖Mkεk‖22]. (155)

We now bound ‖Mkεk‖22.

‖Mk‖2 = αk‖HA
k − βkI‖2 ≤ C2αkβk. (156)

With (156), we have ‖Mkεk‖2 ≤ C2αkβk‖εk‖2, which implies

ESk
[‖Mkεk‖22] ≤ C2

2α
2
kβ

2
kESk

[‖εk‖22] ≤ C2
2α

2
kβ

2
k

σ2

nk
, (157)

where the last inequality is due to (141b). Now we can obtain the bound of |ESk
[∇f(xk)THkεk]| as

follows (cf. (155)):

|ESk
[∇f(xk)THkεk]| ≤ ‖∇f(xk)‖2

√
ESk

[‖Mkεk‖22]

≤ C2αkβk‖∇f(xk)‖2
√

ESk
[‖εk‖22]

≤ C2αkβk
σ√
nk
‖∇f(xk)‖2

=
√
βkµ‖∇f(xk)‖2 ·

C2αkβk√
βkµ

σ√
nk

≤ 1

2
βkµ‖∇f(xk)‖22 +

1

2

C2
2α

2
kβ

2
k

βkµ
· σ

2

nk
. (158)

With the inequality (154) and (158), we obtain

∇f(xk)TESk
[Hkrk]

= −∇f(xk)TESk
[Hk (εk +∇f(xk))]

= −ESk
[∇f(xk)THk∇f(xk)]− ESk

[∇f(xk)THkεk]

≤ −ESk
[∇f(xk)THk∇f(xk)] + |ESk

[∇f(xk)THkεk]|

≤ −βkµ‖∇f(xk)‖22 +
1

2
βkµ‖∇f(xk)‖22 +

1

2

C2
2α

2
kβ

2
k

βkµ
· σ

2

nk

= −1

2
βkµ‖∇f(xk)‖22 +

1

2

C2
2α

2
kβ

2
k

βkµ
· σ

2

nk
≤ −1

2
βkµ‖∇f(xk)‖22 +

1

2
β2
kµ
−1C2

1C
2
2 ·

σ2

nk
, (159)

where the last inequality is due to αk ≤ C1β
1/2
k .

Using Lemma 3 we obtain the descent property of sMin-AM:
Lemma 4. Suppose that Assumptions 2-4 hold, βk ∈ (0, µ

2L(1+C2)2 ], and {xk} is the sequence
generated by sMin-AM. Then

ESk
[f(xk+1)] ≤ f(xk)− 1

4
βkµ‖∇f(xk)‖22 +

β2
k

2
(µ−1C2

1C
2
2 + L(1 + C2)2)

σ2

nk
. (160)
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Proof. Due to Assumption 2, we have

f(xk+1) ≤ f(xk) +∇f(xk)T(xk+1 − xk) +
L

2
‖xk+1 − xk‖22

= f(xk) +∇f(xk)THkrk +
L

2
‖Hkrk‖22. (161)

Taking expectation with respect to the mini-batch Sk on both sides of (161) and using Lemma 3, we
obtain

ESk
[f(xk+1)]

≤ f(xk) +∇f(xk)TESk
[Hkrk] +

L

2
ESk
‖Hkrk‖22

≤ f(xk)− 1

2
βkµ‖∇f(xk)‖22 +

1

2
β2
k · µ−1C2

1C
2
2

σ2

nk
+
L

2
β2
k(1 + C2)2

(
‖∇f(xk)‖22 +

σ2

nk

)
= f(xk)− βk

(
1

2
µ− L

2
βk(1 + C2)2

)
‖∇f(xk)‖22 +

β2
k

2
(µ−1C2

1C
2
2 + L(1 + C2)2)

σ2

nk
. (162)

Then (162) combined with the assumption βk ≤ µ
2L(1+C2)2 implies (160).

E.2 Proof of Theorem 4

Following the proofs in [61, 62, 63], we introduce the definition of a supermartingale.
Definition 3. Let {Fk} be an increasing sequence of σ-algebras. If {Xk} is a stochastic process
satisfying (i) E[|Xk|] <∞, (ii) Xk ∈ Fk for all k, and (iii) E[Xk+1|Fk] ≤ Xk for all k, then {Xk}
is called a supermartingale.
Proposition 4 (Supermartingale convergence theorem, see, e.g., Theorem 4.2.12 in [20]). If {Xk} is
a nonnegative supermartingale, then limk→∞Xk → X almost surely and E[X] ≤ E[X0].

Now, we prove Theorem 4 of sMin-AM.

Proof of Theorem 4. (i) Define φk = βkµ
4 ‖∇f(xk)‖22 and L̃ = 1

2

(
µ−1C2

1C
2
2 + L(1 + C2)2

)
,

γk = f(xk) + L̃σ
2

n

∑∞
i=k β

2
i . Let Fk be the σ-algebra measuring φk, γk, and xk. From (160) we

know that for any k,

E[γk+1|Fk] = E[f(xk+1)|Fk] + L̃
σ2

n

∞∑
i=k+1

β2
i

≤ f(xk)− 1

4
βkµ‖∇f(xk)‖22 + L̃

σ2

n

∞∑
i=k

β2
i = γk − φk, (163)

which implies that E[γk+1−f low|Fk] ≤ γk−f low−φk. Since φk ≥ 0, we have 0 ≤ E[γk−f low] ≤
γ0 − f low < +∞. As the diminishing condition (25) holds, we obtain E[f(xk)] ≤ Mf for
some constant Mf > 0. According to Definition 3, {γk − f low} is a supermartingale. Therefore,
Proposition 4 indicates that there exists a constant γ such that limk→∞ γk = γ with probability 1,
and E[γ] ≤ E[γ0]. Note that from (163) we have E[φk] ≤ E[γk]− E[γk+1]. Thus,

E

[ ∞∑
k=0

φk

]
≤
∞∑
k=0

(E[γk]− E[γk+1]) < +∞,

which further yields that
∞∑
k=0

φk =
µ

4

∞∑
k=0

βk‖∇f(xk)‖22 < +∞ with probability 1. (164)

Since
∑∞
k=0 βk = +∞, it follows that (26) holds.

(ii) If the noisy gradient is bounded, i.e.,

Eξk [‖∇fξk(xk)‖22] ≤Mg, (165)
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where Mg > 0 is a constant, then a stronger result can be obtained.

For any given ε > 0, according to (26), there exist infinitely many iterates xk such that ‖∇f(xk)‖2 ≤
ε. Then if (27) does not hold, there must exist two infinite sequences of indices {si}, {ti} with
ti > si, such that for i = 0, 1, . . ., k = si + 1, . . . , ti − 1,

‖∇f(xsi)‖2 ≥ 2ε, ‖∇f(xti)‖2 < ε, ‖∇f(xk)‖2 ≥ ε. (166)

Then from (164) it follows that

+∞ >

∞∑
k=0

βk‖∇f(xk)‖22 ≥
+∞∑
i=0

ti−1∑
k=si

βk‖∇f(xk)‖22 ≥ ε2
+∞∑
i=0

ti−1∑
k=si

βk with probability 1,

which implies that
ti−1∑
k=si

βk → 0 with probability 1, as i→ +∞. (167)

According to (144), we have

E[‖xk+1 − xk‖2|xk]

= E[‖Hkrk‖2|xk] ≤ βk(1 + C2)E[‖rk‖2|xk] ≤ βk(1 + C2)(E[‖rk‖22|xk])
1
2 ≤ βk(1 + C2)M

1
2
g ,

(168)

where the last inequalities are due to Cauchy-Schwarz inequality and (165). Then it follows from
(168) that

E[‖xti − xsi‖2] ≤ (1 + C2)M
1
2
g

ti−1∑
k=si

βk,

which together with (167) implies that ‖xti − xsi‖2 → 0 with probability 1, as i → +∞. Hence,
from the Lipschitz continuity of ∇f , it follows that ‖∇f(xti)−∇f(xsi)‖2 → 0 with probability 1
as i→ +∞. However, this contradicts (166). Therefore, the assumption that (27) does not hold is
not true.

E.3 Proof of Theorem 5

Proof of Theorem 5. According to (162) in Lemma 4, we have

N−1∑
k=0

βk

(
1

2
µ− L

2
βk(1 + C2)2

)
E‖∇f(xk)‖22

≤ f(x0)− f low +

N−1∑
k=0

β2
k

2
(µ−1C2

1C
2
2 + L(1 + C2)2)

σ2

nk
, (169)

where the expectation is taken with respect to {Sj}N−1
j=0 . Define

PR(k) = Prob{R = k} =
βk
(

1
2µ− L

2 βk(1 + C2)2
)∑N−1

j=0 βj
(

1
2µ− L

2 βj(1 + C2)2
) , k = 0, . . . , N − 1, (170)

then

E
[
‖∇f(xR)‖22

]
=

∑N−1
k=0 βk

(
1
2µ− L

2 βk(1 + C2)2
)
E
[
‖∇f(xk)‖22

]∑N−1
j=0 βj

(
1
2µ− L

2 βj(1 + C2)2
)

≤ Df + σ2

2 (µ−1C2
1C

2
2 + L(1 + C2)2)

∑N−1
k=0 β2

k/nk∑N−1
j=0 βj

(
1
2µ− L

2 βj(1 + C2)2
) . (171)
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Let D̃ be a problem-independent constant. If we choose βk = β := min{ µ
2L(1+C2)2 ,

D̃
σ
√
N
}, and

nk ≡ n, then the definition of PR simplifies to PR(k) = 1/N . From (171) we have

E[‖∇f(xR)‖22] ≤ Df + σ2

2 (µ−1C2
1C

2
2 + L(1 + C2)2)Nβ

2

n∑N−1
j=0 β( 1

2µ−
µ
4 )

=
Df + σ2

2 (µ−1C2
1C

2
2 + L(1 + C2)2)Nβ

2

n

Nβ · 1
4µ

=
4Df

Nβµ
+

σ2

2 (µ−1C2
1C

2
2 + L(1 + C2)2) · β

1
4nµ

≤ 4Df

Nµ
max

{
2L(1 + C2)2

µ
,
σ
√
N

D̃

}
+

2σ2(µ−1C2
1C

2
2 + L(1 + C2)2)

nµ
· D̃

σ
√
N

≤ 4Df

Nµ

(
2L(1 + C2)2

µ
+
σ
√
N

D̃

)
+

2σ(µ−1C2
1C

2
2 + L(1 + C2)2)D̃

nµ
√
N

=
8DfL(1 + C2)2

Nµ2
+

σ

µ
√
N

(
4Df

D̃
+

2(µ−1C2
1C

2
2 + L(1 + C2)2)D̃

n

)
.

Therefore, to ensure E[‖∇f(xR)‖22] ≤ ε, the number of iterations is O(1/ε2).

F Experimental details

We implemented the algorithms based on PyTorch 2 and used one GeForce RTX 2080 Ti GPU for
training neural networks (except that four GPUs were used for training ResNet50 on ImageNet). We
tested the basic Min-AM on solving strongly convex quadratic optimization, the restarted Min-AM
on solving regularized logistic regression, and the stochastic Min-AM on training neural networks.

F.1 Strongly convex quadratic problem

The experiments on solving strongly convex quadratic optimization were conducted to verify Theo-
rem 1 about the basic Min-AM. The problem is

min
x∈Rd

f(x) :=
1

2
‖Ax− b‖22, (172)

where A ∈ R`×d, b ∈ R`. For the test, we first generated a random matrix A ∈ R500×100 and a
random vector v ∈ R100 following Gaussian distribution, then b ∈ R500 was obtained as b = Av.

The fixed step size β for the gradient descent (GD) was chosen by a grid search in
{0.001, 0.002, . . . , 0.01}. We set β = 0.001 that guarantees the convergence of GD. The AM-I(1)
and the full-memory AM-I (i.e. AM-I(∞)) also used the same mixing parameter setting βk = 0.001.
For Min-AM, we set the initial mixing parameter β0 = 1, and the later mixing parameters {βk} were
adaptively determined based on the eigenvalue estimates (see Section 3.3).

Figure 4(a) compares the convergence behaviours of different methods in terms of relative residual
norm. It can be observed that due to the improper initial setting of β0 for Min-AM, Min-AM does
not perform well in the beginning. Nonetheless, as shown in Figure 4(b), the βk of Min-AM can be
quickly adapted to the optimal value 2/(µ+ L) = 1.67× 10−3 based on the eigenvalue estimates.

In Figure 4(c), we show the effects of βk on the full-memory AM-I and Min-AM, where both
methods used fixed βk chosen from {0.01, 0.1, 1}. (For Min-AM, we disable the adaptive choice of
βk.) It should be noted that the GD method diverges when choosing the step size in {0.01, 0.1, 1},
which suggests that θk > 1 for the Min-AM in these settings. Nevertheless, we find that Min-AM
still converges to the tolerance of ‖rk‖2/‖r0‖2 ≤ 10−11, which validates the convergence property
(59) in Corollary 1, i.e., the minimization problem in (59) dominates the convergence when k is

2 https://pytorch.org.
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Figure 4: (a) ‖rk‖2/‖r0‖2 of each method; (b) the mixing parameter βk of Min-AM and the optimal
choice 2/(µ+ L); (c) ‖rk‖2/‖r0‖2 of AM-I and Min-AM with different βk.

large. Note that AM-I fails to coincide with Min-AM in the later iterations. It is due to the fact that
AM-I needs to solve (XT

k Rk)−1XT
k rk to determine Γk, where the matrix inverse operation can have

numerical weakness when k is large.
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(e) L
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= 108: eigenvalue estimates
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Figure 5: (a)(b)(c): relative residual norm, eigenvalue estimates, and βk of Min-AM, when L/µ =
102. (d)(e)(f): relative residual norm, eigenvalue estimates, and βk of Min-AM, when L/µ = 108.
In (b) and (c), “eigenvalue” denotes the exact eigenvalues, and “Min-AM” denotes the eigenvalue
estimates computed by Min-AM.

Results about the problem with different condition numbers. In Figure 5, we show the conver-
gence of each method, the eigenvalue estimates from Min-AM, and the βk of Min-AM, in the tests
with different condition numbers characterized by L/µ. The eigenvalues of A ∈ R100×100 were
chosen to be in (0, 1] with equal interval. The results show that Min-AM is competitive with CG and
the full-memory AM-I. Min-AM also gives accurate enough estimates of the largest and the smallest
eigenvalues, and the βk is quickly adapted to approximate the optimal value 2/(µ+ L).

Cost of the eigenvalue estimation procedure. In our implementation of the eigenvalue estimation
procedure in the Min-AM, we used the function “numpy.linalg.eigvals” in NumPy to compute the
eigenvalues of Tk constructed by (18), which needs O(k3) flops. Hence, the cost of the eigenvalue
estimation increases with increasing k, and at the k-th iteration, the ratio of this cost to the total
cost is O(k3)/(O(k3) +O(d2)), where O(d2) is due to the gradient evaluation. To investigate the
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Figure 6: (a) The ratio of the time of eigenvalue estimations to the total running time during iterations;
(b) the mixing parameter βk of Min-AM and the optimal choice 2/(µ + L) when the problem
dimension d = 4000; (c) exact eigenvalues of the Hessian and eigenvalue estimates computed by
Min-AM when the problem dimension d = 4000.

practical performance of the eigenvalue estimation, we applied the basic Min-AM to solve problem
(172) of dimension d = 1000, 2000, 4000, where each A ∈ Rd×d was generated following Gaussian
distribution, and the maximal iteration number is max_iter = 1001 for Min-AM. As can be found
in Figure 6(a), the additional computational time incurred by the eigenvalue estimations is marginal
when d is large and k is small. Figure 6(b) and Figure 6(c) show the case that d = 4000. (The cases
d = 1000 and d = 2000 have similar results.) We find that βk is quickly adapted to the optimal value
2/(µ+ L) within very small number of iterations. So we can adaptively choose βk in the beginning,
and fix the obtained βk and disable the eigenvalue estimation procedure in the later iterations to
reduce the computational cost. Figure 6(c) shows that the eigenvalue estimates computed by Min-AM
(at the last iteration) well approximate the exact eigenvalues.

F.2 Regularized logistic regression problem

The regularized logistic regression problem is formulated as

min
x∈Rd

f(x) :=
1

T

T∑
i=1

log
(
1 + exp(−yixTξi)

)
+
w

2
‖x‖22, (173)

where ξi ∈ Rd is the i-th data sample and yi = ±1 is the corresponding label. The regularization
parameter w = 0.1. We used the datasets “madelon” and “a9a” from LIBSVM [14] that are two-class
classifications:

• madelon: training data size: 2000; feature size: 500;
• a9a: training data size: 32561; feature size: 123.

To set proper µ and L for Nesterov’s accelerated gradient (NAG) method and check the eigenvalue
estimates from Min-AM, we applied the standard Lanczos algorithm [24] to compute 100 Ritz values
of∇2f(x∗) as the estimates of the true eigenvalues of∇2f(x∗), where the minimizer x∗ was obtained
by solving (173). For the test on madelon, Lanczos algorithm gave µ = 1.01× 10−1, L = 1.45; for
the test on a9a, Lanczos algorithm gave µ = 1.00× 10−1, L = 8.64× 10−1.

For the gradient descent (GD), the step size was tuned and set as 1, which was proper for both
datasets. We used the Polak-Ribière variant of nonlinear conjugate gradient (NCG), and the step
size was determined by line search with cubic interpolation, where the strong Wolfe conditions were
checked. The L-BFGS used the Barzilai–Borwein step size as the initial guess of the approximate
inverse Hessian. For AM and ST-AM, the mixing parameter was set as 1. The AM-I performed
similarly to AM in this test, so we only report the results of AM. For the restarted Min-AM, we set
τ = 10−16 for the madelon test and τ = 10−32 for the a9a test. m = 100 for both datasets. η was
set as a large number since Min-AM converged for these tests. Besides, we computed at most 20
eigenvalue estimates in Min-AM (between two successive restarts) to determine βk.

Results about the choice of βk. In Figure 7, we show additional results of the tests on madelon
dataset. (1) To test the effect of βk on Min-AM, we disabled the adaptive choice of βk and used
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Figure 7: Regularized logistic regression with w = 0.1 on madelon dataset. (a) Gradient norms of
GD (with constant step size βk) and Min-AM (with fixed mixing parameter βk). (b) Min-AM with
adaptive choice of βk; gradient norms of Min-AM with different initializations of βk are shown. (c)
Min-AM with adaptive choice of βk; the Ritz values of∇2f(x∗) from k-step Lanczos algorithm, and
eigenvalue estimates from Min-AM with β0 = 100 are shown.

fixed βk chosen from {1, 2, 5}. It is observed in Figure 7(a) that GD does not converge if the step
size βk is chosen from {2, 5}, which suggests that θk > 1 in Theorem 2 and Theorem 6. However,
Min-AM still converges in these cases, which validates our discussion in Remark 8 in Appendix C.1:
the minimization problem on the right-hand side of (112) in Theorem 6 dominates the convergence
when mk is large. It also indicates that Min-AM is less sensitive to βk than GD. (2) When adaptive
choice of βk is used, we investigate the effect of the initialization β0 on the convergence and the
quality of eigenvalue estimates. It is found in Figure 7(b) that even with the improper initialization
β0 = 50, 100, 1000, the iterations still finally converge to an acceptable precision. In fact, GD,
AM, and Min-AM diverge if using fixed βk chosen from {50, 100, 1000}. Hence, Min-AM with
adaptive choice of βk is easy to apply since it discards the requirement of manually tuning the mixing
parameter. In Figure 7(c), we find that the eigenvalue estimates can still roughly approximate the
largest and the smallest Ritz values computed by the Lanczos algorithm, which verifies Theorem 3.
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(d) w = 10−2: eigenvalue estimates
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(e) w = 10−4: eigenvalue estimates
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Figure 8: The norm of gradient and eigenvalue estimates for different w. Left column: w = 10−2;
middle column: w = 10−4; right column: w = 0. “Lanczos(k = 100)” denotes the Ritz values
computed by Lanczos algorithm, and “Min-AM” denotes the eigenvalue estimates from Min-AM.

Results of the problem with different regularization parameters. We also tested Min-AM for the
problem (173) with different settings of the regularization parameter w. The results in Figure 8 also
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show that Min-AM significantly improves the convergence of AM(1) and is comparable to AM(20)
when w is small. The comparison between the Ritz values computed by Lanczos algorithm and the
eigenvalue estimates computed by Min-AM validates Theorem 3. Since the Ritz values approximate
the true eigenvalues of∇2f(x∗), it is expected that Min-AM can give promising eigenvalue estimates
of∇2f(x∗), which accounts for the efficiency of Min-AM.
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Figure 9: The norm of gradient with respect to running time.

Running time. In Figure 9, we report the convergence of each method with respect to the running
time. Min-AM has comparable performance to AM(20) in these tests, while using a smaller memory
size.

F.3 Deep neural network training problem

The experiments about the stochastic Min-AM (sMin-AM) focused on training deep neural networks.
Since Min-AM can be viewed as a special case of sMin-AM with δ(1)

k = δ
(2)
k = 0, αk = 1, the basic

Min-AM was also covered.

F.3.1 Hyperparameter setting of the stochastic Min-AM

The main hyperparameters of sMin-AM are αk, βk, δ
(1)
k , δ

(2)
k . We set δ(1)

k = δ
(2)
k = 1, which ensures

that HA
k is positive definite. We fixed αk = 1 and only tuned βk ∈ (0, 1] in the experiments.

F.3.2 Experiments on CIFAR-10 and CIFAR-100

The experiments on CIFAR-10 and CIFAR-100 followed the same settings of SAM [62] and ST-AM
[63] for direct comparisons. Both CIFAR-10 and CIFAR-100 contain a training dataset (50K images)
and a test dataset (10K images), where CIFAR-10 has 10 classes and CIFAR-100 has 100 classes
for classification. The basic setting of network training followed the standard setting of training
ResNet [30]: The batch size was 128 as commonly suggested; for training with N iterations, the
learning rate of the optimizer was decayed at the (bN2 c)-th iteration and the (b 3

4Nc)-th iteration.
The experiments were run with 3 random seeds and the averaged results along with the standard
deviations were reported. The final accuracy on the test dataset was used as the evaluation metric.
The accuracy reported in Table 1(a) is the final test accuracy of training with 160 epochs.

We compared sMin-AM with SGDM, Adam, AdaHessian, stochastic AM (SAM), and short-term
recurrence AM (ST-AM). SGDM is the default optimizer for training many deep neural networks,
such as ResNet [30], WideResNet [66], DenseNet [34], and ResNeXt [64]. Adam is an adaptive
learning rate method that uses diagonal approximation to the Hessian based on moving average.
AdaHessian also uses adaptive learning rates like Adam, but it relies on Hessian-vector products to
obtain the diagonal approximation. SAM and ST-AM are variants of AM. Both can be used to train
neural networks. The SAM with memory size m is denoted as SAM(m). ST-AM keeps two vector
pairs and has the same memory size as SAM(2).

We tuned the hyperparameters of all the optimizers (including sMin-AM) following the same way for
fair comparison. The tuning procedures were conducted on CIFAR-10/ResNet20. For each optimizer,
the hyperparameter setting that achieved the highest final test accuracy for training ResNet20 on
CIFAR-10 was unchanged in the other tests of training neural networks on CIFAR.
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(b) CIFAR-10/VGG16
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(c) CIFAR-100/ResNeXt50
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(d) CIFAR-100/DenseNet121

Figure 10: Test accuracy during the network training on CIFAR-10 and CIFAR-100.

For SGDM, the momentum was set as 0.9, which is the default setting in the literature [30, 34]. The
initial learning rate and weight decay were tuned and were set as 0.1, 0.0005, respectively. The
learning rate decay was 0.1. This setting is also recommended in WideResNet [66].

For Adam, the initial learning rate and weight decay were tuned and set as 0.001, 0.0005, respectively.
The momentum terms were β1 = 0.9 and β2 = 0.999 as commonly suggested [65, 68]. The learning
rate decay was 0.1.

For AdaHessian, the initial learning rate was 0.15, and the momentum terms β1 = 0.9, β2 = 0.999;
eps = 1× 10−4, and the hessian-power was 1. The weight decay was 0.0005/0.15, and the learning
rate decay was 0.1.

For SAM, the initial mixing parameter β0 = 1, the initial damping term α0 = 1, and the regularization
parameter c1 = 0.01. The weight decay was 0.0015. The decay rate for βk, αk was 0.06.

For ST-AM, the initial mixing parameter β0 = 1, the initial damping term α0 = 1, and the
regularization parameters were c1 = 1, c2 = 1× 10−7. The weight decay was 0.001, and the decay
rate for βk, αk was 0.1.

For sMin-AM, the initial mixing parameter β0 = 0.2, the damping termαk = 1, and the regularization
parameters were δ(1)

k = 1, δ
(2)
k = 1. The weight decay was 0.0015, and the decay rate for βk was 0.1.

Note that our hyperparameter settings of the baseline methods were the same as those in SAM [62]
and ST-AM [63], so we used their results for reference.

Convergence behaviour in the training process. In Figure 10, we plot the test accuracy of training
four networks on CIFAR-10 and CIFAR-100, for each optimizer. It shows Adam has fast convergence
in the beginning, but stagnates in the later training. Compared with SGDM, SAM, and ST-AM, it is
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observed that sMin-AM converges faster to an acceptable accuracy. The process of sMin-AM is also
much more stable than SAM(1) and SAM(10).
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Figure 11: Effect of weight decay on training CIFAR-10/ResNet20. “lr” and “wd” are abbreviations
of learning rate and weight decay.

Effect of weight decay. Figure 11 shows the effect of weight decay on the training process. It
suggests that a larger weight decay can slow down the training in terms of training loss. When using
the same weight decay, sMin-AM often has faster convergence than SGDM. The results also justify
our settings of the weight decay.
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Figure 12: Effect of learning rate or mixing parameter on training CIFAR-10/ResNet20. “lr” and
“wd” are abbreviations of learning rate and weight decay.

Effect of learning rate/mixing parameter. Figure 12 shows the behaviours of SGDM with different
learning rate settings and sMin-AM with different mixing parameters. Small learning rate or small
mixing parameter can lead to fast convergence in the beginning, but the training may stagnate early
and the test performance is not satisfactory.

Effects of δ(1)
k , δ

(2)
k , and αk. In Figure 13, we show the results of sMin-AM with different settings

of other hyperparameters, i.e., δ(1)
k , δ

(2)
k , and αk. It is observed that sMin-AM is more sensitive to

δ
(2)
k than δ(1)

k and αk, which may be due to the fact that δ(2)
k directly affects the regularization in the

Min-AM update (Line 10 in Algorithm 4). When choosing δ(2)
k ≥ 1, the effect of δ(2)

k is also minor.

As a result, the most critical hyperparameters that affect the effectiveness of sMin-AM are the mixing
parameter βk, the regularization parameter δ(2)

k , and weight decay. The weight decay is a common
hyperparameter that needs to be tuned for each optimizer; for δ(2)

k , we can choose δ(2)
k ≥ 1 to ensure

HA
k � 0. So except for the weight decay, we only tuned the mixing parameter in the experiments.

Check of the choices of δ(1)
k and δ(2)

k . From Lemma 2, we know ‖HA
k − βkI‖2 ≤ −ρk‖pk‖22 −

2βkρk‖pk‖2‖qk‖2 + βkρ
2
k‖pk‖22‖qk‖22 assuming ρk ≤ 0. In Figure 14, we plot the value of this

bound. It is found that ‖HA
k − βkI‖2 ≤ βkC2 for some constant C2, which justifies our choice of

the regularization parameters.

Train neural networks with fewer epochs and less time. We also tested sMin-AM for training
different epochs. Figure 15 shows the comparison between sMin-AM and SGDM for training 80,
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(d) Test accuracy (different δ(1)k )
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(e) Test accuracy (different δ(2)k )
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(f) Test accuracy (different αk)

Figure 13: Effects of δ(1)
k , δ

(2)
k , and αk on sMin-AM for training CIFAR-10/ResNet20. The default

setting is δ(1)
k = 1, δ

(2)
k = 1, αk = 1, β0 = 1, and weight decay is 0.0015. When one hyperparameter

was inspected, the other hyperparameters were set as default.
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Figure 14: The value of −ρk‖pk‖22 − 2βkρk‖pk‖2‖qk‖2 + βkρ
2
k‖pk‖22‖qk‖22 during training CIFAR-

10/ResNet20.

120, and 160 epochs. The results show that sMin-AM can attain comparable accuracy to SGDM in
fewer epochs, which infers the faster training process of sMin-AM. In Table 2, by setting the final
test accuracy (160 epochs) of SGDM as the baseline, we report the memory cost, per-epoch time,
total training epochs, total training time of SAM(10), ST-AM, and sMin-AM to achieve a comparable
accuracy to SGDM (within 0.05% difference). The attained final accuracy is also shown. It is found
that sMin-AM largely reduces the memory cost of SAM(10) and can achieve comparable results to
those of SGDM using less training time.

Discussion about the computational cost and memory cost. The per-epoch computational cost
and memory cost are closely related to three factors: the network architecture, the training data, and
the optimizer. From Table 2, the effects of the network architecture and the optimizer are clear. For the
effect of training data, we consider the batch size. Given a specific network, the cost is composed of
two parts: (i) updating network parameters by the optimizer; (ii) other necessary computations, such
as the forward and back propagations of the neural network, data transfers between memory and disks,
etc., where additional memory and processing time are required. If the cost of Part (ii) only occupies
a small proportion of the total cost, the cost incurred by the optimizer will be of great importance.
In Figure 16, we plot the ratios of memory/per-epoch time of SAM(10)/ST-AM/sMin-AM to that
of SGDM, for training ResNeXt50 on CIFAR-100 with different batch sizes (16, 32, 64, and 128).
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(c) Test accuracy on CIFAR-100/ResNeXt50
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Figure 15: Comparison between SGDM and sMin-AM on training deep neural networks for 80, 120,
and 160 epochs.

Table 2: The cost and final test accuracy compared with SGDM. Notations “m”,“t/e”, “e”, “t”, “a”
are abbreviations of memory, per-epoch time, training epochs, total training time, accuracy.

Cost (× SGDM) CIFAR-10/ResNet18 CIFAR-10/VGG16
& accuracy m t/e e t a(%) m t/e e t a(%)

SGDM 1.00 1.00 1.00 1.00 94.82 1.00 1.00 1.00 1.00 93.52
SAM(10) 1.73 1.78 0.56 1.00 94.81 2.51 2.59 1.00 2.59 93.59
ST-AM 1.05 1.46 0.56 0.82 94.84 1.55 1.91 0.88 1.67 93.56
sMin-AM 1.01 1.15 0.56 0.64 94.85 1.35 1.25 0.63 0.78 93.56

Cost (× SGDM) CIFAR-100/ResNeXt50 CIFAR-100/DenseNet121
& accuracy m t/e e t a(%) m t/e e t a(%)

SGDM 1.00 1.00 1.00 1.00 78.41 1.00 1.00 1.00 1.00 78.49
SAM(10) 1.30 1.16 0.50 0.58 78.37 1.16 1.19 0.50 0.60 78.84
ST-AM 1.04 1.07 0.50 0.54 78.39 1.01 1.11 0.50 0.55 78.90
sMin-AM 1.03 1.00 0.50 0.50 78.39 1.01 1.09 0.50 0.55 78.67

When a smaller batch size is used, the Part (ii) cost reduces and the proportion of Part (i) cost in the
total cost increases, thus the performance improvement of sMin-AM over SAM(10)/ST-AM is more
significant. To investigate the effect of model size on the cost, we tested SAM(10)/ST-AM/sMin-AM
on CIFAR-10/ResNet18 and CIFAR-10/ResNet50, where the batch size is 16 so that the Part (ii) cost
is not large. In Table 3, it is observed that for a network of larger scale (ResNet50), sMin-AM is more
advantageous than SAM(10)/ST-AM in terms of memory cost.

The difference between CIFAR-10 and CIFAR-100 has only a minor effect on the cost. For a given
network architecture, e.g., VGG16, its implementations for CIFAR-10 and CIFAR-100 differ in the
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dimension of the last linear layer. Since the parameters of this linear layer usually occupy a very
small portion of the whole parameters, the costs (memory and per-epoch running time) on CIFAR-10
and CIFAR-100 are roughly the same, as shown in Table 4.
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Figure 16: Memory and per-epoch time for training CIFAR-100/ResNeXt50 with different batch
sizes, where those of SGDM are set as the units.

Table 3: The memory and per-epoch time of SAM(10)/ST-AM/sMin-AM, where the batch size is
16. The memory and per-epoch time of SGDM are set as the units; memory and per-epoch time are
abbreviated as “m” and “t/e”, respectively.

Cost (× SGDM) CIFAR-10/ResNet18 CIFAR-10/ResNet50
m t/e m t/e

SAM(10) 2.44 2.66 3.01 2.63
ST-AM 1.59 1.91 1.79 1.86
sMin-AM 1.41 1.21 1.52 1.15

Table 4: The memory and per-epoch time of SAM(10)/ST-AM/sMin-AM, where the batch size is
128. The memory and per-epoch time of SGDM are set as the units; the first element and the second
element in (·, ·) denote the memory and per-epoch time, respectively.

Cost (× SGDM) CIFAR-10 CIFAR-100

ResNet18 VGG16 ResNeXt50 DenseNet121 ResNet18 VGG16 ResNeXt50 DenseNet121

SAM(10) (1.73, 1.78) (2.51, 2.59) (1.30, 1.18) (1.16, 1.21) (1.84, 1.85) (2.52, 2.53) (1.30, 1.16) (1.16, 1.19)
ST-AM (1.05, 1.46) (1.55, 1.91) (1.04, 1.06) (1.02, 1.08) (1.12, 1.47) (1.56, 1.84) (1.04, 1.07) (1.01, 1.11)
sMin-AM (1.01, 1.15) (1.35, 1.25) (1.02, 1.00) (1.01, 1.01) (1.08, 1.09) (1.36, 1.19) (1.03, 1.00) (1.01, 1.09)

F.3.3 Experiment of training ResNet50 on ImageNet

We applied sMin-AM to train ResNet50 on the ImageNet dataset, which contains 1.2M images for
training and 50K images for test. The code was based on the example from PyTorch3. We followed
the standard process of training ResNet [30]. Four GPUs were used to conduct the experiment.
SGDM was used for comparison. The batch size was 256. The weight decay for each method was
0.0001. We trained ResNet50 for 90 epochs. The learning rate of SGDM and the mixing parameter
of sMin-AM were decayed by 0.1 at the 30th and 60th epochs. For SGDM, the momentum was 0.9
and the learning rate was 0.1, which was the standard setting [30, 66, 34, 64]. For sMin-AM, we set
the initial mixing parameter β0 = 0.5, and the other hyperparameters were kept unchanged.

Comparisons with SAM and ST-AM. We conducted tests to compare the accuracy of sMin-AM
with that of SAM/ST-AM, and results in Figure 17 show that sMin-AM also improves the test
accuracy of SAM(10)/ST-AM.

F.3.4 An additional experiment: adversarial training

We conduct an additional experiment to further compare the effectiveness of SGDM, ST-AM, and
sMin-AM for training deep neural networks. The considered problem is adversarial training, which

3 https://github.com/pytorch/examples/tree/master/imagenet.
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Figure 17: Comparisons between SAM, ST-AM, and sMin-AM for training ResNet50 on ImageNet.
The results of the final accuracy of ST-AM and sMin-AM are shown in (b) and (c).

tries to solve the following minimax problem

min
x∈Rd

1

T

T∑
i=1

max
‖ξ̄i−ξi‖2≤ε

fξ̄i(x), (174)

where ξ̄i is the adversarial data sample in the ε-ball centered at the data sample ξi. We used the
standard PGD adversarial training process [40]: using projection gradient descent to solve the maxi-
mization problem in (174), and applying SGDM/ST-AM/sMin-AM to solve the minimization problem
in (174). The tests were conducted on CIFAR-10/WideResNet34-10 and CIFAR-100/DenseNet121,
where for the training dataset of CIFAR-10/CIFAR-100, 5K images were randomly selected as the
validation dataset and the other 45K images were used as the new training dataset. We trained the
neural network for 200 epochs, where the learning rate/mixing parameter was decayed at the 100th
and the 150th epochs. The best checkpoint model on the validation dataset was chosen to be evaluated
on the test dataset. For SGDM and ST-AM, we used the recommended setting of hyperparameters in
[26, 63]. For sMin-AM, we set β0 = 0.3, and other hyperparameters were kept unchanged.

Table 5: Clean test accuracy (%) and robust test accuracy (%) on adversarial training.

Optimizer CIFAR-10/WideResNet34-10 CIFAR-100/DenseNet121
Clean FGSM PGD-20 C&W∞ Clean FGSM PGD-20 C&W∞

SGDM 85.48 66.42 54.00 53.28 59.45 39.75 30.91 29.02
ST-AM 85.79 66.43 53.46 52.88 60.48 40.39 31.19 29.56
sMin-AM 85.76 67.49 54.67 54.05 60.04 40.50 31.71 29.95

The training process of each optimizer is shown in Figure 18, where we plot the accuracy on validation
dataset (called as validation accuracy), and the accuracy on adversarial data samples generated by
the PGD-10 attack [40] on validation dataset (called as robust validation accuracy). It is observed
that the best robust validation accuracy of sMin-AM is higher than that of SGDM/ST-AM, which
indicates that better checkpoint model can be obtained by sMin-AM.

In Table 5, we report two types of test accuracy: clean test accuracy, where the clean test data was
used for classification; robust test accuracy, where corrupted test data was used for classification.
Three attacking methods were used for the robust test accuracy evaluation: FGSM [25], PGD-20 [40],
and C&W∞ attack [13]. It shows that sMin-AM significantly improves SGDM, and outperforms
ST-AM in terms of robust test accuracy, which is a desirable property in adversarial training.

G Limitations

We focus on developing the variant of AM with minimal memory size for solving optimization
problems. The properties of Min-AM for deterministic optimization are established in the smooth
case. The non-smooth optimization is important and one possible direction is to adapt Min-AM to
the framework of proximal quasi-Newton methods [15, 7]. We leave it as an extension of Min-AM in
the future work.
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(a) CIFAR-10/WideResNet34-10
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(b) CIFAR-10/WideResNet34-10
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(c) CIFAR-100/DenseNet121
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(d) CIFAR-100/DenseNet121

Figure 18: Left: accuracy on the clean validation dataset (validation accuracy). Right: accuracy on
the validation dataset attacked by PGD-10 (robust validation accuracy).

Min-AM exploits the symmetry of Hessian in solving optimization problems. For general fixed-point
problems, the Jacobian can be non-symmetric. However, in this case, the short-term recurrence
algorithms that are equivalent to the full-memory methods generally do not exist even in solving
linear systems [53].
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