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A Comparisons with conventional methods

We compare the proposed Min-AM method with other related methods, including Newton’s method,
the (nonlinear) conjugate gradient method, BFGS method, momentum-based method, and some other
variants of Anderson mixing.

A.1 Relationship between AM-I, Min-AM, and Newton’s method

We first give a new interpretation of the AM-I method here, which reveals the relationship between
AM-I and Newton’s method.

Recall that the historical information is stored in X3, Ry € R?*™. We have the decomposition of the
solution space by R = range(X},) @ range(X}, ). Define V}, € R?*(@=™) whose columns form
an orthonormal basis of range(Xk)J-. Then for any x € RY, we have x = 1, — Xy — Vin, where
v €R™, neR“™. As aresult,
min f(z) =  min  fz — Xpy = Vin). (29)
z€R4 yER™ nERI—™
Suppose that f is twice differentiable and X, V2 f(x)) X}, is nonsingular. We apply Newton’s
method in the low dimensional subspace range(X}) followed by a gradient descent with stepsize 5y
in the complementary subspace range(X)*. Then

T =2k — XkV, Tkt = Tk — Vilk, (30)

where v = (XEV2f(2r) Xi) P XEV f(2r), and n, = B V,E V f(Z1). When m < d, the scheme
(30) is more economical than applying the Newton’s method in the whole solution space R.

Now, consider the simple case that f is a quadratic function: f(z) = %xTAx — bTx. The residual
rp ==V f(xg) =b— Axy. Thenry — r—1 = —A(xy, — 2x—1), which implies R, = —AX. It
follows that v, = (X,;FRk)*lX,;rrk. Also, T := 1 — Ry = =V f(Zk). So 7, L range(Xy) due
to the choice of v, i.e., a kind of the Galerkin’s projection condition [53]]. Let U be the matrix
whose columns form an orthonormal basis of range(X}). Then V,V,I = I — UyUl and U'7), = 0.

For the gradient descent step, we have n, = —3;,V,I 7, which implies
Tt = Tk — Vie = T + BeViVi T = i + B (1 — UpUY) P = T, + Bil,

namely a mixing step. Therefore, the AM-I method coincides with the scheme (30) for minimizing
a quadratic function. Since Min-AM is essentially equivalent to the full-memory AM-I when
minimizing a strongly convex quadratic function, we know Min-AM is also closely related to the
scheme (30). In the general case, if the objective function f can be well approximated by a quadratic
function in a local region around the optima, it is expected that AM-I and Min-AM can behave
similarly to the scheme (30) when the iterates enter this local region.

A.2 Comparison with the conjugate gradient/residual method

The conjugate gradient (CG) method [32] and the conjugate residual (CR) method [53, Algo-
rithm 6.20] are classical methods for solving SPD linear systems, where the CG method is extended

to solving unconstrained optimization [45]]. We first discuss the connection between the proposed
Min-AM method and the CG/CR method.

Connection between Min-AM and CG/CR. For solving linear systems, it has been established
in [60] that the full-memory AM-I and AM are essentially equivalent to the full orthogonalization
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method (FOM) [52] and GMRES [51], respectively. If the linear system is SPD, both FOM and
GMRES methods can be simplified to have short-term recurrences: FOM is equivalent to CG, and
GMRES is equivalent to CR. Thus, the full-memory AM-I and AM are essentially equivalent to
CG and CR respectively, for solving SPD linear systems. However, CG and CR are much more
efficient in terms of memory and per-step computational cost, which motivates the development of
the proposed Min-AM method that also has short-term recurrences. From Theorem ] for solving
SPD linear systems, Min-AM is essentially equivalent to CG, FOM, and the full-memory AM-L.
Compared to CG, Min-AM has the advantage that it does not need explicit matrix-vector products to
determine the step size. The update scheme of Min-AM only depends on the historical iterations,
which makes it easier to extend to the nonlinear case. Min-AM can also have a similar convergence
behaviour to CR for solving SPD linear systems, due to the close relationship between FOM and
GMRES [53) Section 6.5.7].

Now, we consider the unconstrained optimization problem

min f(x
i (),

where f : R? — R is continuously differentiable and bounded from below. The nonlinear CG (NCG)
generates {x}} by the update scheme

Tyl = Tp + Pk, 31

where the step size «y is usually obtained by a line search, and the searching direction py is
constructed by

DPkt+1 = Tk + BrPk, Po = To. (32)

Here, r, := —V f(xy) and the 3y, is the momentum term. There are several choices of Sy, for ex-

2 T _
ample, the Fletcher-Reeves variant 3;, = % and the Polak-Ribiére variant 35, = W
2 v 112

(See [45]].) However, the step size ay, is not easy to obtain. If f is a quadratic function, let A be the
Hessian of f. The computation of oy, involves a matrix-vector product, e.g.,

rgpk
prApy’

A =

which ensures r;1 L pg. If finite difference is used to compute Apy, it requires two gradient
evaluations. If f is a general nonlinear function, a line search is necessary to ensure the convergence
of NCG: o, is chosen as an approximate solution to the problem

min f(xr + apr), (33)

where py, is supposed to be a descent direction. The d-step quadratic convergence proved in [17]],
which is similar to our result of the restarted Min-AM, was only established under the assumption
of an exact line search, namely, (33)) is exactly solved. More practical choices of oy require some
conditions to be satisfied. For example, the strong Wolfe conditions are

f(@r + anpr) < f(or) + eV f () Tk,
IV f(zr + apr) il < 2|V f(xr) Tpxl,

where 0 < ¢; < ¢z < 1. Since the line search can incur many times of the backtracking procedure,
the total number of gradient evaluations for NCG can be large.

In contrast, our proposed Min-AM method does not need explicit Hessian-vector products or line
search to determine the step size, while the convergence results (cf. Theorem [2)) match those of
NCG with exact line search. Therefore, Min-AM is more economical than NCG, and can have better
convergence than the NCG with inexact line search. Also, it should be pointed out that even in
strongly convex quadratic optimization, Min-AM generally does not generate the same sequence of

iterates as CG: They are equivalent in the sense that x,(cl) = 29, where x,(cl) is the intermediate step

in (8a).
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A.3 Comparison with the BFGS method

The BFGS constructs the approximate inverse Hessian by solving

Hy = argn}}HHH — Hillpowy, st.Hye=s,, H=H", (34)
where sp, := oy — Tx—1,yr = V f(2x) — Vf(2r_1). The norm || - || p(yy) is the weighted Frobenius
norm (i.e., ||XH2F(W) = |[WY2XWY?| 1 for a matrix X € R?*?) and the weight matrix W
satisfies W sy, = yi. The solution is

SpYX s¥ SpSE
Hk:(I— ’“Ty’“>Hk1(I—y’;k>+ bk (35)
Yi Sk Yi Sk Yi Sk

Note that the H;, € R4*¢ is recursively constructed and can be dense during the later iterations. To
reduce memory overhead, the limited-memory BFGS [39] is often used. In memoryless BFGS, the
previous approximate Hessian is always reset to Iy, i.e.,

T T T
Hy, = (1 — 2k ) (1 _ Y3 ) + K%k (36)

Y sk Yi sk YL sk

Memoryless BFGS has minimal memory size in L-BFGS, but has no equivalence to BFGS. It is
pointed in [43] that for the update xp+1 = x — ax HpV f (2 ) of memoryless BFGS, if «, is chosen
by an exact line search, then memoryless BFGS is equivalent to CG for quadratic function. However,
an exact line search can incur prohibitive cost in practice.

The Min-AM method has a similar form to that of memoryless BFGS, but uses a recursively
constructed vector pair. Min-AM is essentially equivalent to the full-memory AM-I and CG for
minimizing strongly convex quadratic functions. In fact, let P, = (p1,...,pk), Qr = (¢1,---,qk),
and define

Hit = —=P(Pf Qi)' Py + Bu(I — Pu(PQr) QI — Qu(PLQr)'P), (37

assuming P,;f @y, is nonsingular. We call the iterations defined by xy11 = xx + H, ,‘frk as Scheme A.
Clearly, H, ,fQ r = — Py holds. Moreover, it can be proved by direct computation (using the properties
in Theorem that for strongly convex quadratic optimization, if fixed Sy, is used, i.e., 5y = /3, where
(3 is a constant, we have

T T T

kP Pk qkp

Hg‘:_T’mr(J— Tk>H,;41(I— T’€>, (38)
P dk Pi. 9k Pi 9k

starting from Hg' := B1. Hence, the H{! in (37) solves
Hi} = arg min || — H{ |lpw)y, st Hg = —pr, H=H", (39

where the weight matrix satisfies Wpy, = —q;. The is similar to (34), but based on modified
vector pairs. (Note that we use 1, — 1x,—1 = —(V f(zg) — Vf(xr_1)) to construct g, so there
is a difference of sign.) It can also be verified that for strongly convex quadratic optimization,
Hyrp, = H ;frk, where Hy, is defined in (I0). So the iterations of Min-AM are identical to those of
Scheme A in this case. In this sense, though only using one vector pair, Min-AM implicitly constructs
H{* which can well approximate the inverse Hessian.

A.4 Comparison with the momentum-based method

The momentum-based method is similar to the scheme defined in (31)) and (32)), but the momentum
By is different from that in CG. We take the Nesterov’s accelerated gradient (NAG) method as an
example. The update scheme of NAG is defined as

1
Ykt1 = Tp — ZVf(CBk), (40a)
VI —
Thtl = Yyl + mﬁ@kﬂ — Yk), (40b)

18



where L and p are the Lipschitz constant and the strong convexity constant of V f, respectively.
Unlike Min-AM, NAG generally does not form a symmetric approximation to the Hessian. In
Figure[3] we show the convergence behaviours of NAG with different settings of 4 and L. It is found
that the setting of L and u can have a large effect on the convergence. On the contrary, Min-AM forms
symmetric Hessian approximations and can give useful information of L and x via an economical
eigenvalue estimation procedure.

Norm of gradient

— NAG: pt = 0.101, L = 1.45
—12

10 —— NAG:=01,L=1
— NAG:p=01L=2

0 20 40 60 80 100
Iterations

Figure 3: Convergence behaviours of NAG with different settings of L and p, for the regularized
logistic regression on the madelon dataset.

A.5 Comparison with related variants of Anderson mixing

Compared with the original AM, AM-I, the regularized nonlinear acceleration scheme [55]], and
the stochastic AM [62]], the proposed Min-AM has the minimal memory size, the same as that of
AM(1). Nonetheless, Min-AM incorporates more historical information than AM(1) and AM-I(1),
and is equivalent to the full-memory AM-I in solving strongly convex quadratic optimization. The
convergence analysis in Section [3.4]also shows that the stochastic Min-AM has similar convergence
to that of the stochastic AM in theory.

The short-term recurrence AM (ST-AM) [63] stores two vector pairs and is equivalent to the full-
memory AM in solving strongly convex quadratic optimization, but the approximated Hessian from
ST-AM is generally not symmetric. It is also worth pointing out that for AM and ST-AM, their
existing theoretical results do not show the significantly better convergence rate than the simple
gradient descent method for unconstrained optimization.

Our proposed Min-AM further reduces the memory size of ST-AM and the faster convergence than
gradient descent for general nonlinear optimization is rigorously justified in theory.

B Details of the basic Min-AM

The procedure of the basic Min-AM is described in Algorithm 2] Next, we give the derivation of the
basic Min-AM, and prove the related theoretical properties.

B.1 Derivation of the basic Min-AM

We give the derivation of the update scheme for solving the quadratic optimization

mingcgra f(z) = %xTAx — bTx here. Recall that the steps in one iteration of the basic Min-AM are:
o =a -, 2 =) + B, we =27 -l (41)

where r,gl) =71, — qkl"g) and 5 > 0. Define r,(f) = r,gl) — &cAr,(:) and r,(f) = r}(€2) — qkfg). The
I‘g) and I‘g) are determined by imposing the projection conditions:

7“,(61) r,(c?’) 1 pr.

Here, we define p; = Axg, ¢1 = Arg, and for k£ > 2, the construction of py, ¢i at the beginning of
the k-th iteration is

L pg,

Pk = Azp_1 — Pp—1Cks  qk = Ark—1 — qr—1Ck»

where (i, = (p_1qk—1) "' Pl Arg—1, assuming p_;qx—1 # 0.

19



Algorithm 2 Min-AM for strongly convex quadratic optimization
Input: =y € R?, B, > 0,0 < max_iter < d
1: po,qo =0 € R¢

2: for k=0,1,...,max_iter do

3: TE = —Vf(a?k)

4: if k£ > 0 then

5: P=Tkp =~ Tp—1,4 =Tk — Th—1 (Compute Azy_1, Arg—_1)
6: Ck = (pg_1Qk71)Tpg_1q

7 Pk =D — Pk—1Ck> Gk = q — qr—1Ck Pr L 1,9k L pr—1)

8 end if

o T} = (pfan)pim

10: x,(cl) =) — pkf,gl), r,gl) =TrE — qkfg) (Projection step: 7‘1(@1) 1 pr)
11: a:,(f) = x,(gl) + Bkr,(cl) (Mixing step)

122 T = Bulpran) gl ry”

130 xpq1 = m,(f) — pkfg) (Projection step: 7541 L pi)
14: i |2 = 0 then

15: break

16:  endif

17: end for

18: return xj

We first prove that
ax = —Apk (42)

by induction. By the definition of f and r, = —V f(xy), itis clear that 7, —rp—1 = —A(xr —TK—1).
So ([@2) holds for k = 1. For k > 2, suppose that @2) holds for k — 1. Then g, = Arg_1 —qx—1k =
—AAz_1 + Aprp—1(, = —Apy, which completes the induction.

Suppose that p;qu = 0. We have I‘,(;) = (pqu)’lpgrk. For I‘](f), the exact solution is

I = (han) "' pir” = whae) ok () — BeAry”)
= —ﬂk(pg%)*lpgx‘lﬁ(j) = _6k(pEQk)71(Apk)T7’/(€1) = 5k(pEQk)7lqg7’,§1) (43)
due to p;fr](ﬂl) = 0, the symmetry of A, and @2). As a result,
mi =) =l = ol + Ber) — el
= — pkr;(cl) + 5k7’;(€1) - kaEf)
=z — el + Bert” — pi - Beloban) by
=z —pe(prar) Park + Be (I — pu(Prae) 'ar) it
=ar —pe(ppar)  prre + Bl — pe(phar) e ) — ar(Prar) ™ pi )Tk (44)

The corresponding inverse Hessian approximation is
Hy, = —pi(piar) "'pi + BeT — pe(pi )" ai ) (I — ax (i ax) ™' PL)- (45)

The reason to use the projection condition of AM-I. Note that the Galerkin’s projection condition
of AM-I is used to determine F,(Cl) and F,(f). On the other side, if the Galerkin’s condition of the
original AM is used to determine F,(Cl) and I‘,(f), the scheme (@1) leads to

Tr1 = o — pe(ar ar)  ap i + B+ prlar ar) tar A — au(ap ae) g )i, (46)

which is not a practical method since Agy needs to be explicitly computed.
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B.2 Proof of Theorem[Il

Recall that the strongly convex quadratic optimization is formulated as

: _ L T
min f(z) = 7% Az — bz, (47)
where A € R%*4 is SPD, b € R?. Solving is equivalent to solving the SPD linear system

Az = b. (48)

We first state the relationship of the AM-I with the full orthogonalization method [52]] (FOM) in the
following propositions. Let z5°M and 7fOM := b — A2FM denote the k-th FOM iterate and residual,

respectively. Define ¢/ := (1,1,...,1)T € R/ for j > 1. The main results of the full-memory AM-I
are stated in Proposition and Proposition (Proposition is a known result in [60]].)

Proposition 1 (General linear system). For solving a general linear system Ax = b with the full-

memory AM-I, suppose that By, > 0 and the fixed-point map is g(x) = (I — A)x + b. If the initial

point of AM-1 is zg = x5, and XjTRj is nonsingular for j = 1,... k, then the intermediate

iterate Ty, satisfies Ty, = xiOM.

We give the proof here, which is similar to [63 Proof of Proposition 1], but applies to the Type-1 AM.
Proof. The definition of the fixed-point map suggests that the residual 7, = g(zx) — 2 = b — Axy,.

From (§), for j = 1,. .., k, the nonsingularity of XjTRj ensures that each I'; is uniquely determined.
Thus the updates of AM-I are well defined.

Since X' Ry, is nonsingular, we have rank(X},) = rank(Ry) = k. We first show
range(Xy) = Ky (A, r5M) (49)
by induction. We abbreviate Ky, (A4, 75°M) as Ky, in this proof.

First, Azg = Borg = Borf™ since z; = x¢ + Boro. If k = 1, then the proof is complete. Then,
suppose that k£ > 1 and, as an inductive hypothesis, that range(Xy_1) = Ki—1. From (3)), we have
Tpt1 = xp + Berr — (Xk + BrRi)Tk. Noting that R, = — A X}, it follows that

Axp_ =T — Tp—1
= Br—1mk—1 — (X1 + Br—1Re—1)Th 1
=Br-1(b—Axp_1) — (Xp—1 — Br—1 AXp_1)r1
= Br—1b— Pr_1A(xo + Azg + -+ + Azp_2) — (Xp1 — Bpo1AXp—1)h1
= Br—170 — Be-1AXp—1" " — (Xpo1 — Bro1 AX 1)1 (50)
Since 179 € Kg_1, and by the inductive hypothesis range(Xx_1) = Kr_1 which also implies
range(AXy,_1) C Ky, we know Azy_1 € Ki. Thus, range(Xy) C K. Since rank(Xy) = k,

namely dim(range(X)) = dim(Ky), we have range(Xy) = K, thus completing the induction.
As a result, we also have

range(Ry) = range(AXy) = AKXk (A, 7). (51)
Recalling that to determine I'j, we solve the projection condition:
T =1 — Rply L range(Xy). (52)
The nonsingluarity of X, Ry, ensures that I, is uniquely determined by
T = (X Ry X . (53)
Also, since 7, = b— Axy, = b— A(xg+ Xpek) = rg — AXpe¥, wehave 1, — Rl = rp + AX I =

rg — Ag(kek + AXi I’ = rog — AXI', where I =¢"—T, forVT € R¥. So T solves if and
only if 'y, = e* — Ty, solves

ro — AXgD) L range(Xy). (54)
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According to (@9), the condition (54) is equivalent to
ro — Az L range(Xg) s.t. z € Ky, (55)

where range(X}) = K. Since the initializations are identical, the condition (33) for AM-I is the
Petrov-Galerkin condition for FOM. Due to the nonsingularity of X;' Ry, the solution of lb is also
unique. Therefore, we have

T =x — Xil'p = x — Xk(ek — fk) = X0 +X}€f‘k = LL‘EOM.

O

In Proposition the assumption that X" Ry, is nonsingular is critical to ensure no stagnation occurs at
the k-th iteration for solving a general linear system. In fact, for SPD linear systems or strongly
convex quadratic optimization , when AM-I breaks down, i.e. X;| Ry, is singular, AM-I obtains
the exact solution, as shown in the next proposition.

Proposition 2 (SPD). For applying the AM-I to minimize a strongly convex quadratic problem (#7),
or equivalently, solve an SPD linear system , suppose that B, > 0 and the fixed-point map is
g(x) = (I — A)x + b. If the condition X' Ry, is nonsingular holds for 1 < k < s while failing to
hold for k = s, where s > 1, then the residual of AM-I satisfies rs = 751 = 0.

We give the proof here, which is similar to [[63, Proof of Proposition 2], but applies to the Type-I AM.

Proof. The definition of g suggests that the residual 7, = g(zx) — xr = b — Azy. The relation
Rj, = — AX|, holds during the iterations and the nonsingularity of A implies rank(X}) = rank(Ry).
Since A is SPD and X, Ry, = — X" AX,, it follows that X, Ry, being nonsingular < rank(X}) =
rank(Ry) = k. Hence rank(X}) = k holds for 1 < k < s while failing to hold for k = s.

For s = 1, since the first step of AM is z1 = ¢ + Bo70, the assumption rank(X;) = 0 implies that
rank(rg) = rank(X;) = 0, then ry = 7y := 0.

Fors > 1, Azs_ 1 = a3 — 251 = —Xs_11s_1 + PBs_17s_1. The rank deficiency of X, implies
Az, € range(X,_1), which further implies 7;_; € range(X,_1). So there exists ¢ € R*~!, such
that 7s_1 = Xs_1(. Dueto7s_1 1 X, 1, we have

0= (Fs—1) " Xso1 = (Xsm10) T X1 = X1 X1 (56)

Because rank(X;_1) = s — 1, we have ¢ = 0, which implies 7s_; = 0. Hence x5 = ZTs_; and
rg =17s—1 = 0. O

It is also known that FOM method can be simplified to the conjugate gradient (CG) method [53] in
this case. Now we prove Theorem I} following a similar procedure of [63 Proof of Theorem 1].

Proof of Theorem|[I| The A-norm minimization problem in the property (iii) is equivalent to the
Galerkin condition [53], i.e. 2, = argmin.cx, (a,ro) [[Z0 + 2 — 2|4 & 10 — Az L Kp(A,70).
Also, ) = Tkl = r? — g,

> Tk +1 k qrl g
Besides relations (i)-(iii), we add an auxiliary relation here:
(V) ry =10+ Qrlx € Kgr1(A, 1r0), where Ty, € R*.
We prove the relations (i)-(iv) by induction.

For k = 1, since 79 = rél) # 0, we have rank(Azg) = rank(X;) = 1 and rank(Arg) =
rank(R;) = 1. So p, # 0 and pl g, = —pj Apy, < 0. The relation (i) holds. Since p; = Az, ¢1 =
Arg, and Arg = —AAux, the equality )1 = —AP; also holds. Since 71 = 79 — B9 Arg and
range(Q1) = span{Arg}, itis clear that r; = ro — Q1I'1 € K3(A, rp), namely relation (iv). Due
to the projection step (Line 10 in Algorithm , T§1) 1 range(P;) and rgl) is unique, which is
guaranteed by pTq; # 0. Also, rgl) =7 — qll"ll) =19 — PBoArg — qugl) = rg — 111, where the
last equality is due to span{Arg} = range(Q;). For r'M = ry — Az, where 21 € K1(A, rg), it
holds rFOM | K1 (A, ro) = range(P;). As a result, both ") and rFM are the oblique projections
of 7o onto the subspace range(P; )" along range(Q1). Since pTq; # 0, the projection exists and is
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: o 1 o
unique, which implies 7" = 7TOM_ 8o 2{!) = 2FOM — 5 & -/ because their residuals are equal

and A is nonsingular. Hence the relation (iii) holds.

Suppose that k£ > 1, and as an inductive hypothesis, the relations (i)-(iv) hold for j = 1,..., k — 1.
Consider the k-th iteration. From Line 7 in Algorithm [2| ¢ € span{Ary_1,qrx_1}, and py €
span{Axj_1,pr_1}. Due to p} qx—1 = —pf_, Apr—1 # 0, we have ¢} pp—1 = 0. We first prove
that pi, # 0 by contradiction.

If p. = 0, then from Line 7 in Algorithm Azy_1 € span{pg—_1}. From Line 10, Line 11, and
Line 13, we have

Axp_ =2 — Tp—1 = Br— 17"( ) pk—l(rg_)l + FEf_)l). (57)

€ span{pg_1} since Azxy_1 € span{pi_1}. Hence there exists ¢ € R, such that r(l) =

pr—1¢. From the Line 10, we know r,i )1 1L span{pg_1}, so we have

Sor()

0= ) et = k10 prer = CTpF_1pr_a.

Since pr—1 # 0, it follows that ¢ = 0 which implies r( ) = 0. It is impossible otherwise Algorithm

has terminated in the (k — 1)-th iteration. So py # 0. Moreover piar = —pj Api, # 0 since A is
SPD.

Since r,(cljl =7rL_1 — qk,lFélzl, and 7,1 € Kr(4,7r0),qk—1 € range(Qr—1) = AKr_1(4,10)
due to the inductive hypothesis, we have r](gl_)l € Ki(A,ro), which together with and py_1 €
range(Pr—1) = Kr—1(A, o) infers Axy_1 € Ki(A,10). As aresult, p, € span{Azy_1,pp—1} C
Kr(A,ro). Sorange(Py) = range(Px_1,pr) C Kr(A,ro). Moreover, py, ¢ range(Pr_1). We
prove it by contradiction.

If ps, € range(Py_1), then from Line 7 in Algorithm Axp_q € span{pr_1,pr} C range(Py_1),
which together with (57) leads to r,(cljl € range(P;_1). Hence there exists ¢ € R¥~1 such that

1) a )

r,,~q = Pr_1£. From the inductive hypothesis, we know r; ’, L range(Px—_1). So we have

0= ()P 1 = (Por&) " Pey = €TPT Py,

Since fP,;rflAPk_l = P,C 1Qr—1 is nonsingular due to the inductive hypothesis p; L ¢;(1 <14 #
j<k—1)andplq = —pfAp; #0(1 <i <k—1)asp; # 0, it follows that rank(Pj,_1) = k — 1.
So Pl | P;_; is nonsingular which implies that £ = 0. Then r,(clzl = P;_1£ = 0. Butitis impossible
otherwise Algorithm 2] has terminated in the (k — 1)-th iteration. Hence p ¢ range(P,—1). Asa
result, range(Py,) = Ki (A, 19).

Because Ar,_y = —AAx,_; and g1 = —Apy_1, Line 7 in Algorithm [2]infers ¢, = —Apy.. So
Qr, = —AP;. Hence range(Qy) = AK; (A4, ro).

To prove p; L g; for 1 <4 # j <k, it suffices to show g5, L Pj_1. From the construction of g, in
Line 7 in Algorithmand Pr_1qr—1 # 0, we know ¢l pj—1 = 0. To further prove g, L range(Py_2)
(k > 3), note that

A?“k,1 = —AA:L’k 1= Apk 1( (1) ‘i‘ F(Q) ) 5]971147”](61_)1
=~ (0, + 1)) = B Ar,
where the second equality is a direct substitution with (57). Therefore,

Pl A1 = —P ,qk- 1(11;(c )1 +F,(f D) = B B 2147‘,9 ,=0- 5k—1(APk—z)Tr,(€1,)1 =0,
(58)

where the second equality is due to g;—1 L range(Px_2) and A is SPD, and the third equality is due

to r,(C )1 1 range(Py—1) = Kr—1(A4,ro) and range(AP;_3) = AKk_2(A,1r9) C Kr—1(A,79). A
a result, we obtain

Pl ogr = PEo(Arg—1 — qx-1Gr) = 0,
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which is due to and ¢, 1 | range(Py_»). Therefore, g L range(P;_1). Since A is SPD, we
also have pEQk_l = fp;fAPk_l = —(App)T Py = qEPk_l = 0. Hence relation (ii) holds in
the k-th iteration.

Next, we prove the relation (iv). We have

TR = T;(CQ_)1 - Qk71P;(€2_)1
= T;(cl_)l - 51@71AT;(61_)1 - Qk711—‘;(62_)1
=Tp_1 — qufl(cl,)l — Br—1A(rk—1 — qzc711“,(cl,)1) - qk71f,(€2,)1
=704 Qr—1Tk-1 — qchﬂjl(:,)l — Br—14A(ro + Qr—1Tk-1) + 5197114%71%1,)1 - Qk71F;(62,)17

where the last equality is due to rp_; = 79 + Qr_1%_1 by the inductive hypothesis. Since
range(Qk,l) = A/Ckfl(A,To) - A/Ck(A,T()), Qk—1 € range(Qk,l), Arg € A/Ck(A,T()),
range(AQy—1) C A2 _1(A, o) C AK(A,70), and Agy—1 € range(AQy 1), it is clear that
e =10 + QT € Kip1(A, o) for some T, € R¥. The relation (iv) is proved.

Finally, we prove the relation (iii). For proving r,(cl) 1 range(Py), note that 7"1(;) 1 span{ps}

already holds due to the projection step (Line 9 and Line 10 in Algorithm [2)) and p;qu # 0. It
suffices to prove r,(cl) 1 range(Py—_1). We first prove r;, L range(Py_1). The projection step
(Line 12 and Line 13 in Algorithm at the (k — 1)-iteration ensures r;, L pg_;. It remains to
prove 7 L range(Py_2). Because 1, = 7“1(@2_)1 — qk,ll",(f_)l = r,iljl — Bk,lAr,(Cl_)l — qk,ll",(f_)l,
and r,(cljl L range(Px—2),qx—1 L range(Py_s), (Ar,(cljl)TPk_g = (T](Cljl)T(APk_z) = 0 as
range(AP;_2) C Kr_1(A,rg) = range(Py_1), it follows that r, | range(P;_2). Therefore, r, L
range(Py—_1). Also noting that ¢;, L range(Pj_1), we have r,(cl)

r,(cl) L range(Py).

=71, — qug) 1 range(Py_1). So

To prove x,(cl) = 2fOM = x4 + 24, where z;, € K1(A,ro) should satisfy ro — Az, L K (A,70),
first we have 7, = 19 + QI '%, where ', € R*. Hence r,(cl) =71, — qkl“fcl) =719+ Qply — ku‘g) =
ro — Qrnk, where n, € RF. Since PkT Q. is nonsingular, there exists a unique 7, € R* such that

r,gl) L range(FPy), i.e., r,(cl) is the oblique projection of ry onto the subspace range(P;)" along
range(Qy,). On the other side, for FOM, rfOM = rq — Az, | Ky (A, 70) = range(Py), so 5™ is
also the oblique projection of r( onto the subspace range(Py )~ along range(Q},). So r,(;) = rfOM,
which further indicates xg) = 2fM. Hence, the relation (iii) holds.

With relations (i)-(iv) being proved in the k-th iteration, we complete the induction. O]

B.3 Convergence analysis

Since the basic Min-AM is equivalent to FOM (or CG) method in the sense that a‘cg) = xiOM = x(ka
for strongly convex quadratic optimization, where ng is the k-th iterate of CG, we can obtain the
convergence result as a corollary of Theorem|T]

Corollary 1. For solving the strongly convex quadratic problem @), let x* be the exact solution,
and {xy} is the sequence generated by the basic Min-AM described in Algorithm Define 0, =
[ — BrAll2. Then

[2ke1 —a™|la <Op  _min [|p(A)(zo — 27)| 4, (59)
pEPL,p(0)=1

where Py, denotes the space of polynomials of degree not exceeding k. Moreover, the algorithm finds
the exact solution in at most (d + 1) iterations.

Proof. From Theorem [I] the classical convergence analysis of the CG method [28| 53], and assuming

that CG and Min-AM are initialized from the same starting point, i.e., 5% = o, we have

D _a'a= e —a*la= _min [p(A)(@o— ") (60)

[k
pEP,p(0)=1
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Since :UEC ) = xk ) 4 Bkrk , it follows that

:cf) —z* = x,(:) —x* + Br(b— Aa:,(cl )= ;1:,(61) r* — BkA(xgcl) —z*)=(- BkA)(xél) — ).
Hence,
22 — 2% |4 < |1 = BrAllallzy’ — 2[4 = x|z — ¥4, 61)

where we use the fact that

1T — BrAlla = HHHlaX (I = BrA)x|a = ”Alr/gaﬁ(’ » HA1/2(I — BrA)x||2 (62)
= max 4201~ GA)A™ 2yly = |4V~ o)A 2] = T - Al
(63)

Noting that ;1 = 1’2 ) kF( ), Thtl = ( ) + Aka( ) L pg, it follows that

i argglelﬁllxk piel’ = 2" ]a
So @
lzrsr = a"[la < flag” — 2%||a- (64)

Combining (60), (61)), and (64) yields (39).

Since CG iterates at most d steps to obtain x*, the Min-AM will obtain the same solution in at most
(d+ 1) steps. O

C Details of the restarted Min-AM

C.1 Proof of Theorem

For the proof of Theorem 2]about the restarted Min-AM, we use a local quadratic model inspired by
the techniques in [17,[18]. The second-order Taylor expansion f of f around z* is

* 1 * *
fl@) = f@") + 5@ —2") T Al - a7), (65)
where A := V2 f(x*).
We compare the iterates {x)} generated by Min-AM to the iterates {Z}} generated by applying
Min-AM to minimizing the quadratic model (63). More precisely, we give the following definition.

Definition 1. Let the mixing parameter {81, } be chosen to satisfy < |Bx| < 8/, where B and 3’ are
two positive constants. The sequences {xy} and {&1.} are generated by the following two processes:

(1) Process I: Solve the optimization problem (1)) with the restarted Min-AM (see Algorithm[l), and
the resulting sequence is {xy}.

(2) Process II: Apply the basic Min-AM to minimize f (2) in each interval between two successive
restarts in Process . Specifically, let my,, By, be the same as those in Process I. Define 7, = —V f (iy,).
Then, &y, = xx, and P, = G, = 0 € R, ifmg =0. Formy > 1,

AZp_1 = T — Tp—1, AFp_1 =7 —Th—1,

Pr=A%k 1 — Pr1Cry  Gp = Afp_1 — Gr1Cr, where G, = (Pr_1Gk—1) Pr_ Afg_1;
A(1)

defining 7" = T, — cjkf‘(,l), the update of Ty, is
i) == gl where L) = (L) o,
j:(?) A(l) 1 By 7;](61)7 (66)

Tpr1 = fE;g ) —pklﬂf)a where f,(c) Br (b dr) Gt (1)~

By comparing {xj} and {Z}, we first have the following lemma.
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Lemma 1. Suppose that Assumption[l| holds for the optimization problem (I). For the sequences
{z1} and {Z},} defined in Definition|l| if || xo — x*||2 is sufficiently small and there exists a positive
constant 1y such that |V f(z;)|l2 < nol|V f(zo)|2 for j =0,. .., k, then

I = ll2 = ROk, — 2 [3), (67)

[2hs1 = Ertallz = RO(|Tr—mmy — 2*[13)- (68)

Proof. Besides (67) and (68), we will also prove the following relations.

zy, € Bs(z"), (69)
|G| = O(1), &k — G| = BO(|Th—my — 2*]]2),  (70)
Ipillz = Ok —m, — [|2), laillz = Ok, —27[l2) (71
Ipr — prllz = ROk —m, — *[I3), lai — dll2 = ROk, — 2*13),  (72)
Iry| = 0(), I T = RO(|2hmy, — *l2),  (73)
Iz = 202 = ZO(|2r—m, — 2*3),  lIry? = 70|z = RO(lwrem, —2[13),  (74)
122 — 2y = RO(||zp—m, — 2*[3), (75)
r? | =0(), 0 — TP = RO(|2hmy, — *]2).  (76)

Here, for convenience, we define (, = (x = 0if my, = 0.

We first prove (69). Recall that 7, = —V f(xy). Due to (124), we have

pllze — a2 < llrellz = IV S (2r) = VF(@@)ll2 < Lllze — 272, (7)
Note that ||7¢]l2 < no||7o||2- By choosing ||zg — z*||2 < n‘Z—i, we can ensure
. 1 0 oL . ol pup .
s —a*ll2 < —lirslle < lrolle < B flwg — a7y < B2 B =50 78)
7 Iz 1 po oL

Then (69) holds. Since ||7||2 < no||70||2 holds for j = 0,. .., k, (78) implies that a sufficiently small
|zg — x*||2 ensures ||xg—m, —z*||2 < %on — x*||2 is sufficiently small. Next, we prove (67)),

(68), and (70)-(76) by induction.

For k = 0, we have T'{") = f‘g) = O,I‘,(f) = f‘ff) = 0. The relations (70)-({74), and (7€) clearly
hold. Also, due to s

lro = follz = IV f (o) — Vf(&0)ll2 = IV f (z0) = V2 f(a") (0 — &")||2 < %f-‘vllxo -3,

namely (67). Note that 241 = :c,(f) =xp + Brrr and Ty = 5%,(62)

(68) and (73) follow from

. ) . . Bok
21 — 212 = [[xo + Boro — (Zo + Bofo)ll2 = Bollro — Toll2 < THIO — x*||3.

= Iy, + BT in this case. Then

Suppose that k& > 1, and as an inductive hypothesis, the relations (67)), (68), and (70)-(76) hold for
7 =0,...,k— 1. Consider the k-th iteration.

If my = 0, i.e., a condition in (TTa)-(TTc) is violated at the beginning of the k-th iteration, then
&), = x. The same as the case that & = 0, (67), (68), and (70)-(76) hold.

Consider the nontrivial case that my, > 1. From (I1d), it follows that
1 n L .
lzj = 2"[l2 < ;”W”Q < ;llrkfmkHz < %Hffkfmk —xtlle, j=k—mp 1k

Therefore,
|zj —2*[l2 = O(|zk—my — 2*2), G=Fk—my,... k. (79)
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Since xj, € B;(«*), we have

lr = #illz = 1V f () = V.f(@x)ll2
<V (ar) = Vi @r)llz + 1V f(@r) = V@)l
= IV f(@r) = V2 (") (@ — a2+ [IV2f (@) (@r — @x)l2

1. .
SRllzr — 2|13+ Lllze — &l

IN

= KO(|[r—m, —2"13),

where the second inequality is due to (12b) and (12a), and the last inequality is due to (79) and the
inductive hypothesis (68). Hence, the relation (67) holds. Next, we prove the relation (70).

Due to the check (TTB), with & := 71%/3%, we have
|p;rq.7| > T|p;£—mk+1qk—mk+1| = T‘Ax;g—mk Ark—mk|

1
> Awgfmk/ VQf(xk,mk F AT, ) AT, A
0

> 7| Az g—m, 15 = T1B% iy ITh=m |13

> 712 B |k, — 23 = Bl Tk, — 23, (80)
forj=k—myp+1,... k.
If my =1, then ¢}, = (Ak = 0, and (70) holds. For m;, > 1, we have
pE_lA'rk—l

p%Ll(Jk—l

lpe—1llz - 1ATe-1]l2 _ O(lzk—m, — =*[[3)
|2k, — 2|3 @k —m, — %3

|Ck| =

=0(1), 81)

due to (71) and [|Ary_1[l2 < [Irellz + re—1llz < 20llrk—my ll2 = O(|zk—m, —2*[|2).
Next, if p{_ | Arg_1 # 0, then

2 Cr P A1 Pk
G = Ce| = |Ck| - |1 = = | =[] |1 = —F— :
| = 1< Ck Gl Pr1Gk—1 P ATk
_ |<k| 1= ﬁgf1A7ﬁk—l ) pzf1Qk—1
pgf1A7"k—1 ]5571%—1
= |Gkl - la(1 = b) +b] < [Ck] - (|a] + 6] + |ab]), (82)

AT ~ T
Pr—1AFk— Pr—19k—
Pr—12Tk—1 =1 — Ze=19k71 \We have

where a :=1 — : L
Py Arg_1’ Pr_ k-1

T AT A
pk71Ark—1 - pk71A7’k—1

PR Qk—1

T T AT ~
pk71A7’k—1 pk71A7’k—1 *pk71Ark—1

PR 1Qk—1

From (67) and (71),

ph_ 1 (Arp—1 — Afe_1)| < [Ipe—tllz - e — Tre1 — Fr + Poeillz = RO(||@p—m, — 2*II3).

(Gl - lal =

83)
p;f_lATk—1 (

We also have

|(pr—1 — Pr—1) T AAZ )1 |

|(pr—1 — Pr—1)T ADzg—1 — (pr—1 — Pr—1) " A(Azp—1 — Adp_1)|
|(pr—1 — Pe—1)" ADzp 1|+ |(pr—1 — Pr—1) T A(Azp—1 — Adgp_1)|
RO(| @ —my — 2*13) + R2O(||Th—m,, — 2"[|2)

RO (k=) — 2*[13)-

|(Pr—1 — Pr—1) T Afp_1| =

A
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Hence,
Ph_1 ATk — i 1 APk_1| = |pj_1 (Ark—y — Afk_1) + (Pr—1 — Pr—1)" Af_1]
< pi— (Arg—1 = A 1)| + [(pr—1 — 1) T Afy_1]|
= RO(||Th—m, — *[3)- (84)
Combining (83) and (84), we have
RO(||k—my — =*|I3)

Bl @k —m, — 2*3

(Gl - laf < = RO([[xk—my — "[|2)- (85)

Note that
Pr—1Gk—1 — Ph_1q—1| = |Pp_1 (Ge—1 — qr—1) + Pr-1 — P-1)" qr—1|
= [(Br—1 = Pe—1) " (Ge—1 = @r—1) + Pp_1(@r—1 = 1) + (Pr—1 — Pr—1) "1
< k-1 = Pe—1) " (Ge—1 = @r—1) + [Pr_1 (@1 = @e—1)| + | (Br—1 — Pr—1) " @11
= R2O(||Th—m, — 2*[|2) + RO([2k—m, — 2*[|3) + RO([[ Tk —m,, — 2*[I3)
= RO(|z-m, —2*3), (86)
and
Pr—1Gs—1| > IPi—1qk—1| = [Pi_1Gr—1 — Pr—1k1]
> Blle—m, — 2" |3 = Rerllzr-m, — "3 > %ﬁllxk—mk —a'l3, @D
where the existence of the constant ¢; is guaranteed by (86), and the last inequality holds by choosing
o — 2|2 < 577, which ensures Aci ||z —m, — 2|2 < "%Cl%nxo —z*||s < ik

Then, we have

T ST s T
Pr_19k-1 Pr—19k—1 — Pr—19k—-1 . %
b = 1 = Zemaeot | Pl Z Pl ) (s9)
Pi_19k-1 Pi_19k-1
As aresult, by (83), (8), (§1), and ([82), we have
G = Gl < [Gkllal + IGal 1Bl + Ikl llallb] = RO(xk—m,, —*|l2). (89)

Now consider the case that pgflArk_l = 0. It is clear that (;, = 0. Then

AT n I *(3
~ Pr_ A?‘k71 ~O Tk - N
G~ &l = |21 DUtk =) 0oy, — o),
Pr—19k—1 3Tk — 2|3
where the inequality is due to (84) and (87).
Hence the (70) holds.

For the relation (71), it holds since

Ipkllz = [[Azk—1 — pr—1Ckll2 < lzx — 2" [|l2 + [[2k—1 — 2*[|2 + [[PE—11l2]Ck]
= O(|Zk—m,, — 2"|12),

lgrllz = |ATs—1 — qe-1Ckll2 < Lllzk — z-1ll2 + [lgr—1l2|Cxl
< L|lzk — 2™ |l2 + Lllzg—1 — 2™ |l2 + [lgr—1l2/Ck|
= O([|Zk—m, — 2"[2)-

Next, we prove ([72). We have

Pr—1Ck — Pr—1Chll2 = IIPr—1Ck — Pr—1(Ck — Ck) — Pr—1Ckll2
< [(pr—1 = Br-1)Cull2 + 11Pr—1(Cr — i)l

<N Pr—1 = Pr—1)Ckll2 + 1 Br-1 — Pr—1)(Cr — Ci)ll2 + lPr—1(Ch — Ci)ll2
= RO(||Th—m, — z*||3), (90)
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lak—1Ck — Gr—1Ckll2 = lae—1Cr — dr—1(Ck — ) — dr—1Gull2
< [lar—1 = Gr—1)Cull2 + 11(dr—1 — @r—1)(Cx — Cu)ll2 + law—1(Cr — i)l
= RO([[—m, — =*[13)- 1)
Therefore,
Ik = Drllz = Akt = pr—1Gs = (Adk—1 — Pr—1Ge) 2
<|[Azg1 = Az 1]l + lps-1Gk = Pr-1lklls = RO(|2h—my — 27I[3),  (92)

lax — dkllz = |ATK—1 — qe—1Ck — (AFk—1 — Gr—1p) 2
<N Are—1 — Afg_all2 + [lgr—1Ck — de—18kll2 = RO(|Th—my — z*|3). 93)
The (72) is proved.

Now, we prove (73), which follows a very similar procedure in proving (70). For the completeness,
we still give the proof.

‘We have
. O J— * (|2
o= [P o _ledalrele Ol =) oy oy
prar| = Elltk—m, =23 Elzk—m, — 2[5
due to (71) and [|rx[l2 < nllre—my ll2 = O(|zk—m, — 2*[|2).
Next, if pj 4, # 0, then
(1 T T
(1) A0 p L N Pilh pk o | _ PeTr  Pidk
|Fk *Fk|—|rk|'1*ﬁ |F |'1 ~T ~ —| | ~ " T. " ATaA
Fk Pr 4k pkrk PpTk P4k
= [T] - laa (1 = b) + ba] < [TV] - (laa] + [ba] + [asby]), (95)
where a1 :=1 — igi’“,bl =1- pqu . We have
(1) pkrk Ptk — Drtr| | peTE — DLtk
|F | ‘a ‘_ : T - T (96)
pkq P Tk Pk

From (67) and which have been proved,

Pk (ri = 7)< ARO[k —m, — 2*|3).
We also have

(pk — D) Pkl = (P — D) T A(&k — 2|
= |(pr — P) " Ak — %) — (P — Pr) " Al — 24)|
< |(px — pr) T Ak — 2| + [(or — D) " Az — 31
= RO([@k—m, — 2*[13) + R2O(| Tk, — 2*[13) = RO([|2k—m, — z*[I3).
Hence,

ek — PPkl = [pic (re — 7%) + (P — Dr) " 7|
< Ipk (v = 7)l + [ = Pr) 7k| = RO(|wr—m,, — 2*[13)- ©7)
Combining (96) and (97), we have
RO(||2k—m, — *[3)

(1)
r aq | <
R P

= RO(||xk—m, — z"||2)- (98)

Note that
|Dn G — v | = by (G — ar) + (B — pi) " i
=k — pe)" (G — ) + pr (G — @) + (B — pi) " i
< (Pe — pr) " (Gk — )| + Pk (G — ar)| + 1P — pr) " an]
= R2O([[eh—my — 2*||2) + RO(|Tp—m,, — 2*[[3) + RO([|Zg—m,, — 2*(3)
= RO(|@k—m, —*[3), (99)
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and
Pk @kl > [Pk gk — [Pk 4k — P ax]
R 1
> Bl|wnm, = 2"[5 — feallkmy —2"|5 = Sllkm, =275, (100)

where the existence of the constant ¢, is guaranteed by (99), and the last inequality holds by choosing

|[zo — 2*||2 < W which ensures Aca||Tr—m, — 2*||2 < heg 2= on —z*||2 <1 55,
Then, we have
T T o T
[ba] = ‘1 ~DeDel A PeDE P Tk|  RO (|, — 2|2)- (101)
P ak Pr 9k
As aresult, by (©8), (T0T), (94), and (©3)), we have
D a0 1 1 1 . .
03 = D01 < PP lan] + 010 + [Pl [1b1] = Oz m, — 2 [2). (102)

Now consider the case that pj i, = 0. It is clear that 1“561) = 0. Then

STA - |3
1) a0 Petr| _ RO([|zk—m, — @ N
R R L et L ([N B)
Prae| = ghllzr—me — 22
where the inequality is due to (97) and (T00).

Hence the (73) holds.
Now, we prove (74). We have

o — 0l = g — T — (@ — piE) 2 < i — als + [pel) — 5o
< llak = dllz + e (T = Tl + [1(ox — )T
< lze — Zkll2 + |lpe (T} r® _ f;(gl))‘|2 + [(ps _ﬁk)rg)Hz
+ (o — D) (T} — 1“,(61))”2
= RO(|wk—m, — 2" [3), (103

I = # Dl = i = T = (i~ b < i — Al + ol - b
< v = #ellz 4 s (03 = )2 + [l (ae — )T 2
< [lrk = #all2 + llge (S = PE) 2 + (g — @)TE 12
+ @k — @) (@) =T
= RO(||Zk—m,, — 2*|3)- (104)
Then, (73) holds as
‘%22)“2 = ||.Z'](cl) + ﬁkrl(cl) (xkl) + ﬁkA(l))HQ
1 ~(1 1 1 R .
<l — &0 s + Billrl) —# Ol = RO([icmm, — 2 3)

is a consequence of (I03) and (T04).

Next, we prove (76), which follows a very similar procedure in proving (73). For the completeness,
we still give the proof.

2
[E3%

‘We have
T,.(1) 1,1 O _ex||2
@)= gl | < ol Wil _ OUkm =218 _ ) (105
gk |~ EllTk—me =23 ElTk—m, — 273

due to 1) and [V |l = e — a2 < Iralle + larll2I T8 < 0llre—my 2 + O k—m, —
2*]12) = O(|Zh—my — &*2)-
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Next, if ¢} rk 75 0, then

~(2) T (1) T A1)
r® _ pO)| _ [p® T TN PR ST PN 0 S AT
k k |_ k | | | AT A T (1) k | T (1) ~T ~
Py 4k q}IC T qk T Dy K
= T Jas(1 - b2> +bo| < D21+ (Jaa] + [ba] + azbal), (106)
— _ Cjkal(cl) o pk Qk
where ag := 1 — “Ef55,by := 1 — . We have
i Tk pk
(1) 1) _ A1) T,.(1) _ ~1a(1)
TP Jas| = |8 qu T Sk O PR Sk (107)
g [ grrt PE

From (71)) and (74) which have been proved,
gt () = #) < RO(|wr—m, — 2 [3).
We also have
(e — @) 7| = I(ax — @) TA@L — )
(ar — ) "A@)= %) = (g — @) TA() — &)
[(ar — @) T Az — Ty — 2| + (g — @) T Ay — &)
K

O([wr=m,. — 2*[13) + B2 O(|@r—m, — 2"[13) = EO(||zk-m, — 2" [3).

Bl

IN

Hence,

(1)

1
qurk (1)

— g = 1k ) = ) + (e — an) |
~(1
| —# )+ [(ax — @) ")+ 1 — @) " — 7))
= RO(|[Tp—my — =" [13)- (108)
Combining and (T08), we have
RO(||x —m —x* 3 ~ *
PO Jag) < FOUL=me =) _ pyy o). (109)

Bl —m,, — %13

From (T0T)),

lba] = |b1] = RO(| -y — *|2)- (110)
As aresult, by (T09), (TT0), (I03), and (T06), we have
T — 1P < TP Jag| + ITP[ba] + [TP[[as||b2] = AO(|@h—my —*[2). (1D

Now consider the case that q,?r,(C ) = 0. Ttis clear that 1"( ) = 0. Then
T (1)

29 _p@ _ |Gk | o BOUlmn—m, —2*[3) _ . )

0~ 0 = | = KO(| k-, — 2" l2),
R P 38Tk, — ¥ 3 '

where the inequality is due to (T08) and (T00).

Hence the (7€) holds.
Finally, we prove ||zx+1 — Zx+1]l2 = 8O(||2k—m, — 2*||3). It follows from (8c) that
lzips = ngalls =l — Pl = (@7 = 5Tl
<l = 27 ll2 + psTy — uLy7 2
< N = 2212 + 11 e = )T 2+ Ipe (0 = T2)]l2

+ 1 (Br — i) (T = T2
= RO(|Th—my — *|3),

where the last equality is due to (73), (71), (72), and (76) that have been proved. Therefore, the
relation (68) holds.

As a result, we complete the induction. The relations (67) and (68)) are proved. O
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Based on Lemma(T]and Corollary[I] we can obtain the convergence theorem of the restarted Min-AM.

Theorem 6. Suppose that Assumption holds for the optimization problem (1). Let {xy} denote the
sequence of iterates generated by the restarted Min-AM, and define 0y, = ||I — B A||2. Assume f5; €
[B,6'] (j > 0) for some positive constants  and . If |V f(z;)|l2 < nol|Vf(zo)|l2 (0 < j < k)
for a constant ng > 0, and x is sufficiently close to x*, then

lorss —a*lla <6 min [p(A) @, — 2|4+ KO0k, — 273, (112)
PEPm,,,p(0)=1

where Py, is the space of polynomials of degree not exceeding my,. As a result,

VL/p—1
VL/p+1

Proof. From Corollary [T} the auxiliary sequence { } in Definition [I] satisfies

me
||wk+1—x*||A<2ek< ) ko — @ lla + KO(l@homy — 2" [3).  (113)

[#i1—o"lla <0 min [p(A) ek m, 2] (114)
PEPm,, ,p(0)=

Then (T12)) follows from (TT4), (68), and the fact that ||z 1 — &x11]la < VI|Trs1 — Epi1ll2.

Since A is SPD, we can choose the Chebyshev polynomial for p € P,,, to obtain (e.g., see
Section 6.11.3 in [53])

PEPm,, ,p(0)=1 PEPm,, ,p(0)=1 Xe[u,L]

mi,
VL/p—
. 15)
vL/p+1

Like (63) in the proof of Corollaryl we also have ||p(4 )||A = ||p(A)]]2- Then ||p(A)(Tk—rm, —

2|4 < [p(A)|allzh—m. —2"lla = [lp(A)ll2l[#x—m, — 27 4. With ([I5) and (IT2), the bound
@)holds O

min  p(A)] < min - max [p(3)] <2 (

Remark 8. In Theorem|[6] we do not assume each By, is chosen such that 0, = ||I — B Alls < 1. It
is expected that when 0y, is not too large, and my, is sufficiently large, the minimization problem on
the right-hand side of (112) can dominate the convergence rate, thus leading to fast convergence.
However, in the case that an improper choice of By causes 0y, > 1, the restarted Min-AM may have
an erratic convergence behaviour or even diverge if my, is too small.

Remark 9. From (112), a large my, can make the first-order term diminish significantly. However,
the high-order terms of errors KO(||Tk—_m, — x*||3) can be large since they are accumulated from
the last restart. In practice, we can first choose large m, small T, and large ) in (112)-(T1d) so that
the restarts do not occur too frequently. When the restarted Min-AM has a problematic convergence
behaviour due to the high nonlinearity of V f, more frequent restarts are necessary.

Now, we give the proof of Theorem [2] which can be obtained from Theorem [6]

Proof of Theorem 2] Under the assumptions of Theorem 2} we prove that
lz; —a*||a < |lxo— 2|4, 5=0,...,k, (116)
and there exists a constant 79 > 0 such that

IVf(z)ll2 < nollVf(zo)ll2, j=0,...,k. 117)

We prove (IT6) and (IT7) by induction. For k£ = 0, (TT6) and (IT7) hold. Suppose that k& > 0, and
the results hold for k. We establish the results for k& + 1. From (I14) in the proof of Theorem [f] it
follows that

[Zh41 — 2[4 < Ol|wp—my — 274 < Oflzrm, — 27 a. (118)

Since 6 < 6, we know S, € [132, 13]. With the inductive hypothesis (TT7), for sufficiently
small ||zg — z*||2, the relations (67) and (68) hold. From (68)), it follows that ||zx+1 — Zx+1la =
RO(||k—m,, — x*||%). Then, there exists a constant ¢; such that |21 — Zx41]|a < ket ||Tk—m, —

x*||4. With (TT8), we have

2kt — 2% |4 < Ol Thom, — 2*||a + Kerl|Thm, —2* 5.
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Hence, by choosing ||a;0 —a¥p < 2\1;9 which ensures ||xg_pm, — 2*||la < |lzo — 2*||a <
VL To — x¥|o < ? due to the inductive hypothesis , it follows that
yp

1+46
[€h41 — 274 <

2nr'

[€h—mi — 2|4 < [[2h—m, —27[[a < [lzo — 27 4,

namely (TT6) for k+1. Also,

2l € Llarin—a7lla < Llleo—a*la < Y zo—a”|e
9 < ‘fp to ensure 1 € B;(x*), which further yields that |[r 112 <

So we can impose ||zg — x*

Lljzgyr — a2 < Lf“xo — x*||2 < uf VL |1 ]|2, namely (TT7) for k + 1, and g = LVL Hence,
we complete the induction. The convergence result (T3)) follows from (I13) in Theoremﬁ

If my, = d, then Z141 = «* from Corollary Therefore, ||zx+1—2*||2 = 8O(|Xk—m, —2*||3). O

D Details of the eigenvalue estimation procedure

D.1 Analysis of the quadratic case

The procedure of the basic Min-AM leads to three-term recurrences for Py and Q.

Proposition 3. Under the same assumptions of Theorem[I] for solving strongly convex quadratic
optimization 7)), we have

Apr = 1 Vpy +t0pr + 1 Vpia, (119)
Age =t Vg + g+ 185 g, (120)
where the coefficients are given by
(1) Pr—1 - ® _ 1 - < 1 ¢k> fkHD 1 7
Br_1(1—TM) 1-1) \Be-1 B Br(1—T¢Y)

(121)
and ¢y, 1= 1",(61) + F,(f) + Cit1- Then ¢y, = F,(f) and there exists a tridiagonal matrix Tj, € R(+1)xk
such that ~ ~

AP, = Py Ty, AQk = Qpy1Ty. (122)
Proof. The relations can be verified by direct computation. In the (k + 1)-th iteration, since
win =2 = pelY =l + Bl = gD = w4 Bl — () 41, (123)
we have
Prt1 = Azg — prCri1 = ﬁkﬁ(j) — Pk (F(l) + 1“,(62) + Cet1)
= Br(re — %F(l)) — PrPr = ﬁk(rk 1 — QK- 1F(2) - C]kF(l)) — PkPk
= Be(I — Br- 114)7";.C 1~ Brar- 1F ﬂkaF( ) o

=/3k<1—/3k,1A)p’“+§:% BeanaT | — BranT — prc
- ﬁf%(pk + Pr—10k—1) — BrADr + Pr—1Pk—1) + 5kz4pk—1r§f,)1 + 5k14pkf§€1) — PrPr
= (51@’: - ¢k> P + <ﬁfk1¢k—1> Pr—1 + (/kag) — Br)Api
+ (5krk2_)1 — Brdr—1)Apr—1
= (55: - ¢k) P+ (58_ Gr— 1) Pr—1+ (@er( ) — By) Apy, (124)

where the last term vanishes due to
2 2 2)
My = oe =12, — T, -T2, — G
_prlffﬂ"k—l B pk71A7'k—1 . p;f,lrk

=— =0, (125)
Pr_iQk-1 DR_1Qk—1 Pi_1Gk—1
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since r;, | pr_1. It also indicates that

T TAr L
o = F(l) + F ) + Cot1 = (2) + pk . png = = Fl(f) + kakH = Fl(f)' (126)
pk qk Pi. 9k Pi 9k
Now, it follows from Equation (TZ4)) that
I ¢gr1 1 ( 1 ¢7k) -1
Ap: +7 — — | P+ ———"Dk+1- 127
k F(l B, Pr1 1O \Ber Be)F Be(1—TW) kot
The second relation about Agy, can be obtained by noticing that g, = —Apy,. The tridiagonal matrix
Tk is
A )

1 2

t§2) téQ) t§2)

i té&) tés) tf)

Ty, = € RE+D Xk (128)

t;f__gl) t(k 1) t](gk_l)

ti’“)l £ (k)

(k1)
k

Algorithm 3 k-step A-norm based Lanczos Algorithm for Ax = Az, where A is SPD.

Input: Starting vector v € R?
Output: Approximate eigenvalues {6, }5_,

I r=v,99=0

2: Bo = |Irlla

3: for j =1,2,..., until convergence do
4 v = T/BJ 1

50 r= Ay

6: rTr=r— Uj—lﬁj—l

7 o= vaAr

8 =T — 004

9 Bi=|rla
10:  if j = k then

11: break
12:  end if
13: end for

14: Construct tridiagonal T}, € R***: The main diagonal is {c; }%_, ; the subdiagonals are {3;}* !
15: Compute the eigenvalue decomposition T, = SkG(k)ST
16: return ©*)

D.2 Proof of Theorem[3

For solving general nonlinear optimization, the iterations between two successive restarts in the
restarted Min-AM are the basic Min-AM iterations. Hence, at the (k + 1)-th iteration, a tridiagonal
matrix T}, € R™#*™* can be constructed based on the coefficients starting from the (k — my,)-th
iteration. We formulate it in the following definition.

Definition 2. For solving optimization problem (1) with the restarted Min-AM (see Algorithm/[I)), sup-
pose that my, > 1, and t;@k_l), tgc), t;gk—i_l) are obtained by (121). Then T}, € R™*™* [s defined as
T = tx if mi = 1, and Ty, = (Tho_1, tg) if my, > 2. Here, Ty = (T, ¥, )T € RmatD)xmi
where ey, is the last column of I, ; t), = t;@k) ifmg =1, and t, = (0,...,0, t,(ck_l), t,(gk))T € R™*
ifmg > 2.

Now, we prove Theorem 3]
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Proof of Theorem 3] Without loss of generahty, we consider the case that no restart happens during
the iterations, i.e. my = k. Let A := V2 f(z*).

The A-norm based Lanczos algorithm with a starting vector v for computing eigenvalues of an SPD
matrix A is described in Algorithm [3] which is a modification of the Algorithm 4.6 in [6] with
A-norm. It forms an A-orthonormal basis Vj, of the Krylov subspace K (A, 7o) by the Lanczos
A-orthogonalization, i.e. VkTAVk = I, where 7y = A(z* — x¢). Then the A-norm based Lanczos

algorithm seeks to find A € R and z € R¥ such that
(A= ADVipz L AV,
Then we have
ViFAAV,z = (AVi)TAViz = M(AV) TViz = Az (129)
The eigenvalues of (AV})T AV, are the approximations to the true eigenvalues of A.

For Min-AM, we still use an auxiliary solving procedure of Min-AM on the local quadratic approxi-
mation (63), i.e. Process Il in Deﬁnition The same as Py, Tj, Tk, t,(f_l), t,(ck)7 t;kﬂ) in Process I,
the notations P;C, Tk, Tk (k D t(k) t(kH) are defined for Process II, correspondingly. Then the
Min-AM in Process 11 seeks )\ € Rand Yy € R”, such that

(A — XI)pky 1 A.IAD]€7
namely,
According to Proposition we have APk = ]3;,3+177“k. Then
(AP)T AP, = PY APy 1 Ty = BT ABT,.
Then the eigenvalues of
T, = (PFAP,) Y (AP,)T AP,

are the approximations of the true eigenvalues of A. Tk is tridiagonal but generally not symmetric.
However, it is clear that 7}, is similar to

(PEAP)Y 2Ty (PEAP,)™Y? = (PLAR,) V2P AAD(PY AD,) /2, (130)
which is symmetric. The columns of Uy, := Py, (PF AP;,)~'/? are A-orthonormal and also span the

same Krylov subspace Ky (A, 7o), which implies that there exists an orthonormal matrix S € R¥**,
such that V;, = U.S. Therefore,

VIAAV, = STUT AAU,S. (131)
Since STS = I, the eigenvalues of (129) and (T30) are identical.

Recall that we have the explicit forms of Ty, T} by (121), and we restate it here for convenience.

A1) = I #B) 1 ( L ¢k> (R S

b)) P e A Ty
(132a)

fk=1) _ L (k) _ 1 1 _ ﬂ k1) _ 7;

* Br—1(1 — f,(j’) bk 1-— f‘,(:) Bo—1 Bk ) * (1 — fl(cl)),

(132b)

and ¢y, == I‘,(:) + I‘gf) +Cra1, g?) = f‘(l) + f(2) + (AkH. With the already proved relations (69)-(76),
we can compute the bounds of tfg) t(J), j=k—1kk+1 Lete := 8O(||xog — x*||2) to simplify
the notation. Then

1 1 1 1 ¢ B

———g = - = = RO([|lwo —2"||2),
T I T I T R S D SIS 0 [C R i)
(133)
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where we use the fact that |I‘§€1) - fg)\ = £O(||xo — z*||2), and the assumption that |1 — I’,(cl)| > 7.
We also have |¢5| = O(1) and ¢y, — ¢r| = RO(||zk—m, — =*||2). Hence,

¢k71 - ¢k71 + ¢k71 ( 1 1 ) ’ _ I%O(Hil’() o .’E*||2)7

6 8 < -
T B (=T B N1 =TV 11

(134)
k) (k) 1 1 1 bk — Ok
It —hol <5 m 7 _pm | T M
k-1 \1— T} 1-1} Br(1—T7)
i 1 1
+|= -—
B \1-1" 11
= kO([|lzo — 2™ [|2), (135)
[t — 8] = £O(l|wo — 27]l2). (136)
With my < m, we have that
1T — Trll2 = 2O(||lzo — 2*|2).- (137)

Define ﬁk = PkT Aﬁk. It is clear that ﬁk is a diagonal matrix, and the i-th diagonal element is
—p} ;. From (T00), (71), and (72), it follows that
ma {5Tal}
min; {[p} ¢;|}
By (130), we know that D,/ QTkﬁ,;l/ * can be diagonalized. There exists orthonormal matrix
W, € R¥** and diagonal matrix Aj, € RF**, such that

DT DM = Wi, A W (139)

Therefore, T}, = 15,;1/ Wi Ak wir [/\),1/ % can be diagonalized. Then with (I37), (138)), and applying
the Bauer-Fike Theorem [33]], we know that for an eigenvalue X of T}, the following result holds:

min A=A < 1D, Wil WEDY 2 2l Tk — Tl
Ao (Ty)

I Dell2| D} M2 = o(1). (138)

< 1D 2121 D 2lI T = Tell2 = £O(llzo — ), (140)

where O'(Tk) denotes the spectrum of T. O

E Details of the stochastic Min-AM

Now, we prove the theorems about the stochastic Min-AM (sMin-AM) in Section[3.4] The algorithm
is given in Algorithmlé-_ll For brevity, we use dj, to denote § ,(62), ie. d0p =0 ,(62). Our proofs follow those
of SAM [62]] and ST-AM [63].

From Assumption for the mini-batch gradient fs, (zx) = rle > ics, fi(zr), where ny, = [Sk|, we
have

E[V fs, (z)|zi] = V f(z1), (141a)

0.2

E[|[Vfs, (z1) = VS (@)lslex] < - (141b)

Note that the update of sMin-AM (Lines 10-12 in AlgorithmE[) can be written as xx+1 = xx + Hp7k,
where 1, = —V fg, (x1), and for k > 0,
Hy = (1 — ap)Bil + apH = Bl + ap(H{ — BiI). (142)

To prove the theorems, we need Hj, to be positive definite, and show that the noise in gradient
estimates is suppressed during iterations.

We first state some useful results about sMin-AM, then we prove Theorem A and Theorem 3}
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Algorithm 4 Stochastic Min-AM
Input: 25 € R%, B, > 0,04 € [0,1],6" > 0,62 >0
1: po,qo =0 € R¢

2: for k =0,1,..., until convergence, do
3: rE = —stk (ack)
4: if k > 0 then
5: P=2Tkp — Tk—1, ¢ =Tk — Tk-1
1
6: Ck = (I)(pkfh qk—1, 5](€ ))Tp’]g—lq
7 Gk = q — qk—1Ck, Pk =P — Pr—1Ck
8: endif @
9 pr =K, 6, )1

100z =z + (—proepr + Be(L — pepraid )L — prarpy)) s
11: wg:wk—&-ﬁkrk

12: wpp1 = (1 — o)zl + apai
13:  Apply learning rate schedule of ay, Ok
14: end for

15: return x;

E.1 Some useful results

Lemma 2. Suppose that the sequence {xy} is generated by sMin-AM. If there are constants
€ (0,1), C2 > 0 such that oy, € (0,1 — i, pr; < 0 and —p|[pull3 — 28kpxllprl2llaxll2 +
Bz |pkll3llakl|3 < BrCo, then we have that

|Hf = BrI||2 < CaP, (143)
[ Hillz < Br(1 + C2), (144)
Hy, = Brpl. (145)

Proof. Since
H{' = —prpipy, + Br(1 = prorai )(1 = prawpy )
= —prpipy + Bl — BrpraiPr — Brpebrdy + BePiPrdn AkPy »
we have
H{t — Bl = —pipipic — Brpraubi — Brpeprds + Brpiprde Gibi - (146)
Hence,

|H = Billlz < |prlllpepr |2 + Belowlllarpr 12 + Belowlllprar |12 + Bepillprar axpy |2
< |pxlllpell3 + Brlowlllael2lpell2 + Bel okl lpell2llaxll2 + Beoillaxl3lpxl3

< BrCo. (147)

It follows that
[ Hillz < 1Bk |l2 + x| Hi' = Belll2 < B + Cafk = (1 + Ca) Bk (148)
Because p; < 0, it follows that H;;‘ = 0. Hence Hy, = (1 — ) Bl = uBil. O

Remark 10. The conditions that py < 0 and —py||py||5 — 28k ok [|pr |2l gk |2 + B o7 w3 llax |13 <
B1Cs for a positive constant Co can be fulfilled with some proper choice of 6. For example, if Cy
satisfies (1 + %5k)2 < Cy and we choose 6;, > % + ﬂk_l, then it can be proved that the conditions
hold. Moreover, in practice, dy, can be chosen as a constant, as shown in our experiments.

With Lemma 2] we can prove the convergence of sMin-AM for full-batch training.
Theorem 7. Suppose that Assumption 2| holds and {xy} is the sequence generated by full-batch

sMin-AM, i.e. ny, = T. Given constants ;i € (0,1), Co > 0, let B, = 8 € (0, m] be a
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constant, oy, € [0,1 — pl. The 5](f) is chosen such that py, < 0 and —py||px||3 — 2Bk |lpkll2|lgx]|2 +
Brpillpell3llarll3 < BrCa. Then

1 - 2(f (zo) — f')
— ||Vf x < — (149)
N Z g N

in the N-th iterations. To ensure +: Zk:_() |V f(x1)|13 < € the number of iterations is O(1/¢) .

Proof of Theorem[7] With Lemmal[2] we have
1Hkrl3 < B2(1+ Co)?[lrel3,

and
i Hire > Bullrll3.
Then, under Assumpti0n|2|, we have

Flonin) < ) + 9 @) (@ — ) + 5l = aal}
= f(ax) — 1 Hery + gllHkaHS
< fla) — Bullrl3 + 5 520+ Colr
= flon) = 5 (= 500+ 02 ) Il
< fan) — 5P IV FGR)I3 (150)

where the last inequality is due to 0 < 8 < m Thus, f(zri1) — f(zr) < —3Bul|V f(zr)]]3.

Summing both sides of this inequality for ¥ € {0,..., N — 1} and recalling f(z) > f°¥ in
Assumption 2] gives

N-1
1
J' = f(xo) < flaew) = flxo) < =581 Y IV ()3
k=0
Rearranging and dividing further by N yields (T49). O

The next lemmas are about the stochastic case.

Lemma 3. Suppose that Assumption|3|and Assumption4|hold and {x}} is the sequence generated
by sMin-AM with (3, > 0. Then

2
Es, [1Hurell2] < B2(1 4+ Ca)? (nwmn% n ;) , (1512
1 1 2
V() B [Hir) < =5 Bl VSl + 587 CRCE (151b)

Proof. (i) From Lemma 2] we have
Es, [| Hirill3) < Bi(1 + C2)*Es, [||rI3)- (152)
From Assumption 3] we have
Es [lrxl3] = Es, [lrx — Es, [ri]13] + [Es, [relll3 < IVF(@)l3 + 0% /me. (153)

With (T52)) and (T33), we obtain (T51a).

(ii) Recalling that Hy = [y, the result holds for k¥ = 0. Define ¢, = V fs, (xr) — Vf(zr) =
—rp — Vf(zy), then Hyryp = Hy (—e,, — V f(2)) . First, we have

V(@) " HyV f(z1) > Bepl| V£ (i) |13,
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which implies
Es, [V f(xn) HyV f(z1)] 2 Brepl |V f () |13 (154)

Let My, := ay(H{* — BI), then Hy, = BxI + M},. With the assumption (141a), i.e. Eg, [ex] = 0, we
have

Es, [V (xr)" Heer] = Es, [V f(zr)" (Brex + Myer)]
= BV f(xr) " Es, [ex] + Es, [V f (k)" Mier] = Eg, [V f ()" Myer].

Using the Cauchy-Schwarz inequality with expectations, we obtain

Es, [V £ ()T Hier)| = [Es, [V (21) " Miei| < \/Es, 1V )31/ Es, [| Mkee 3
= |V £ (ax) 2\ Es, [ Mex 3] (155)
We now bound || Myez|3.
| M|z = o || Hit = Brlll2 < Coonefr. (156)
With (156)), we have || Myex|l2 < Coay Bl ek |2, which implies
B, [|Myer 8] < CBa3oREs, leslB) < CRed 77, (157)

where the last inequality is due to m Now we can obtain the bound of [Eg, [V f(z1)T Hyex]| as
follows (cf. (I33)):

Es, [V f ()" Hrer]| < |V f(@k)l21/Es, [ Mrex]3]
< Coa Be ||V f (k) [l24/ Es, [[ exI3]
< Coan B |V f (1) |2

VT
Coarfy o
= VBl V()2 == v
1 1C3a2 o?
<2 2 CyarPr P L
< 2Bkﬂ‘|vf($k)”2 2 By nn (158)
With the inequality (I54) and (I58), we obtain
Vf(zk) Esy [Hiry]
= =V [f(x1) Es[Hp (e + V[ ()]
= —Es, [V (x1) HiV f(21)] = Bs, [V f (1) " Hyex]
< —Es, [V (zr) " HiV f (k)] + |Es, [V f (xx) " Hyer|
1 1 C202% o2
< Bl VF @il + 5 BunllV S () 3+ 5 =52 -
n
1 2 1C§ai6£ o’ o Lo 4 p p 0
= __ z < - .2
25kMHVf($k)||2 *3 Gep e = 25kﬂ||vf(33k)H2+ 25kﬂ 10y - (159)
where the last inequality is due to oy < C15;, 12 O

Using Lemma 3] we obtain the descent property of sMin-AM:

Lemma 4. Suppose that Assumptions hold, B € (0, 2L(11702)2] and {x1} is the sequence
generated by sMin-AM. Then
6]@ o?

( 12z +L(1+02)2);k. (160)

Es, [f(zr+1)] < flon) — *ﬁk#”vf(xk)ﬂg
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Proof. Due to Assumption 2} we have
L
Flarsr) < flaw) + V@) (@en = on) + 5 lowen — 23

L
= f(zr) + Vf(zy) " Hiry, + §||Hkrk\|§. (161)

Taking expectation with respect to the mini-batch Sy, on both sides of (I61)) and using Lemma[3] we
obtain

Es, [f(2x41)]

L
< f(ar) + Vf(zr) " Es, [Her] + gESkHHkaH%

1 212—122‘72L2 2 202
< fa) - 3Bl VIR + 5620 RGBT + 80+ C) (nwmnb n nk)

Bk 2 o?

= f(xr) — Br ( = *@c(l + Cs) ) IV £ (i3 + ( “1CICE + L(14 Cy) )TTk' (162)

Then l) combined with the assumption 8 < m implies 1b O

E.2 Proof of Theorem [

Following the proofs in [61} (62| [63]], we introduce the definition of a supermartingale.

Definition 3. Let {F} be an increasing sequence of o-algebras. If { X} is a stochastic process
satisfying (i) E[| Xy |] < oo, (ii) Xy, € Fi, for all k, and (iii) E[ X 11| Fr] < X for all k, then { X} }
is called a supermartingale.

Proposition 4 (Supermartingale convergence theorem, see, e.g., Theorem 4.2.12 in [20]). If { X} is
a nonnegative supermartingale, then limy,_, oo Xy, — X almost surely and E[X] < E[X].

Now, we prove Theorem [ of sMin-AM.

Proof of Theorem[d, (i) Define ¢, = 24|V f(xy)||3 and L = L (u=1C2C3 + L(1 + C»)?),

v = flag) + i"% oo B2 Let Fy, be the o-algebra measuring ¢y, vy, and xx. From (160) we
know that for any k,

~ 2 s
Elyks1lFi] = Bl (@r)| Fil + L7 P

1 - 0% o
< Jow) = 0l VF @3 + L7 37 B = i — b, (163)
i=k

which implies that E[y; 41 — £ | Fy] < v — f'° — ¢y Since ¢y, > 0, we have 0 < E[y; — f1o*] <
70 — fl°% < 4o00. As the diminishing condition holds, we obtain E[f(zx)] < M; for
some constant My > 0. According to Definition[3| {7z — f!°“} is a supermartingale. Therefore,

Proposition ] indicates that there ex1sts a constant y such that limg_,, 7, = <y with probability 1,
and E[y] < E[yo]. Note that from (163) we have E[¢x] < E[yx] — E[yx11]. Thus,

Z‘bk] < Z E[yk41]) < 400,

which further yields that

> on = %Z Bl V f(2x)]|3 < 400 with probability 1. (164)
— k=0

Since >, B = 400, it follows that (26) holds.
(ii) If the noisy gradient is bounded, i.e.,
Ee, [IV fe, (zx)lI3] < My, (165)
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where M, > 0 is a constant, then a stronger result can be obtained.

For any given € > 0, according to (26), there exist infinitely many iterates z, such that ||V f(zy,) |2 <
€. Then if does not hold, there must exist two infinite sequences of indices {s;}, {t;} with
t; > s;,suchthatfori =0,1,..., k=s;+1,...,t; — 1,

IVF(@s)llz2 = 26, [V f (@)l < & [V f(zr)ll2 = e (166)
Then from (T64) it follows that
e} +oo ti—1 +o0 t;—1
+00 > > Bl V()3 =D D BellVF(r)ll3 > €Y > By with probability 1,
k=0 1=0 k=s; 1=0 k=s;
which implies that
t;—1
>~ B — 0 with probability 1,as i — +oc. (167)
k=s;

According to (T44), we have

Ell|zk4+1 — zkll2|zk]

= E[|[Hyrillzlze] < Bk(1+ Co)E[|Irilllza] < Bi(1+ Co) (E[|Irill3lzs])? < Bi(1+ Cz)fgég’)

where the last inequalities are due to Cauchy-Schwarz inequality and (T63). Then it follows from
(T68) that

t;—1

1
Elllze, — 2sll2) < (14 C2)Mg Y B,
k:s,;

which together with (167) implies that ||z;, — x5, |2 — 0 with probability 1, as ¢ — +o00. Hence,
from the Lipschitz continuity of V £, it follows that |V f(z;,) — V f(xs,)||2 — 0 with probability 1
as i — +oo. However, this contradicts (I66). Therefore, the assumption that does not hold is
not true. O

E.3 Proof of Theorem[3

Proof of Theorem[5] According to (I62) in Lemma[d] we have

N-1 g
> B (2M — 5P+ 02)2) E||V £ (xx)ll3
k=0

N-L 32 o2
< flao) =S+ 3 S (WTICIO + L+ Co)) (169)

k=0

where the expectation is taken with respect to {S;}7". Define

1, L 2
Pr(k) = Prob{R = k} = B (31— 5 (1 + Co)’) k=0,...,N—1,  (170)

SN B (Rn— LB+ C)2)

then
S B (B — LB(1+ o)) E [V £ (1) 13]
E ||V 2 = e
v stea)z] S5 0 (b= 58,0+ C2)?)
Dy + SO+ L0+ C)) S B
- S By (31— 581+ C2)?)

(171)
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Let D be a problem-independent constant. If we choose 8, =  := min{m, %}, and
ng = n, then the definition of Pg, simplifies to Pr(k) = 1/N. From (171 we have

Dy + % ("' C3C3 + L(1 + Cy)?) X
Yo B — k)

D+ % (T CR03 1 L(1 + Cy)) Y

B NB - g

AD; T (plC2CE+ L(1+Cy)?) -8

N " inp

_4py  [2n(i+ 02)2’ a\/ﬁ} L2 PG + L1+ C))
D np o

E[|Vf(zr)l3] <

i

_ 4Dy (2L(1+Cy)*  oVN N 20(u~'CFC3 + L(1 + Cy)?)D
N H nuv/'N

8D L(1 + Cy)? o (4D; 2(u'C3C3 4+ L(1+Cy)*)D
= 5 — -+ .
Nu uv N D n

Therefore, to ensure E[||V f(xr)||3] < ¢, the number of iterations is O(1/¢€2). O

F Experimental details

We implemented the algorithms based on PyTorch E] and used one GeForce RTX 2080 Ti GPU for
training neural networks (except that four GPUs were used for training ResNet50 on ImageNet). We
tested the basic Min-AM on solving strongly convex quadratic optimization, the restarted Min-AM
on solving regularized logistic regression, and the stochastic Min-AM on training neural networks.

F.1 Strongly convex quadratic problem

The experiments on solving strongly convex quadratic optimization were conducted to verify Theo-
rem [I] about the basic Min-AM. The problem is

. 1 2
min f(z) := 5|4z - bll3, (172)

where A € R®*?, b € R’. For the test, we first generated a random matrix A € R590%190 and a
random vector v € R following Gaussian distribution, then b € R5%° was obtained as b = Av.

The fixed step size [ for the gradient descent (GD) was chosen by a grid search in
{0.001,0.002,...,0.01}. We set 5 = 0.001 that guarantees the convergence of GD. The AM-I(1)
and the full-memory AM-I (i.e. AM-I(c0)) also used the same mixing parameter setting 5 = 0.001.
For Min-AM, we set the initial mixing parameter 5y = 1, and the later mixing parameters {3y } were
adaptively determined based on the eigenvalue estimates (see Section [3.3).

Figure d{a) compares the convergence behaviours of different methods in terms of relative residual
norm. It can be observed that due to the improper initial setting of 3y for Min-AM, Min-AM does
not perform well in the beginning. Nonetheless, as shown in Figure [b), the 3}, of Min-AM can be
quickly adapted to the optimal value 2/(; + L) = 1.67 x 1072 based on the eigenvalue estimates.

In Figure @fc), we show the effects of (;, on the full-memory AM-I and Min-AM, where both
methods used fixed Sy, chosen from {0.01,0.1,1}. (For Min-AM, we disable the adaptive choice of
B.) It should be noted that the GD method diverges when choosing the step size in {0.01,0.1, 1},
which suggests that 6, > 1 for the Min-AM in these settings. Nevertheless, we find that Min-AM
still converges to the tolerance of ||ry||2/||7o]|2 < 10711, which validates the convergence property
(®9) in Corollary [1} i.e., the minimization problem in (59) dominates the convergence when k is

2 https://pytorch.org,
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Figure 4: (a) ||7x||2/||70||2 of each method; (b) the mixing parameter 3j, of Min-AM and the optimal
choice 2/(p + L); (©) ||rkll2/]|7ol2 of AM-I and Min-AM with different Sj.

large. Note that AM-I fails to coincide with Min-AM in the later iterations. It is due to the fact that
AM-I needs to solve (X ,;ka)_lX grk to determine I'j, where the matrix inverse operation can have
numerical weakness when £ is large.
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Figure 5: (a)(b)(c): relative residual norm, eigenvalue estimates, and S, of Min-AM, when L/u =
102, (d)(e)(D): relative residual norm, eigenvalue estimates, and 3j of Min-AM, when L/ = 102,
In (b) and (c), “eigenvalue” denotes the exact eigenvalues, and “Min-AM” denotes the eigenvalue
estimates computed by Min-AM.

Results about the problem with different condition numbers. In Figure[5] we show the conver-
gence of each method, the eigenvalue estimates from Min-AM, and the 5; of Min-AM, in the tests
with different condition numbers characterized by L/u. The eigenvalues of A € R00%100 were
chosen to be in (0, 1] with equal interval. The results show that Min-AM is competitive with CG and
the full-memory AM-1. Min-AM also gives accurate enough estimates of the largest and the smallest
eigenvalues, and the 3, is quickly adapted to approximate the optimal value 2/(u + L).

Cost of the eigenvalue estimation procedure. In our implementation of the eigenvalue estimation
procedure in the Min-AM, we used the function “numpy.linalg.eigvals” in NumPy to compute the
eigenvalues of T}, constructed by (I8), which needs O(k3) flops. Hence, the cost of the eigenvalue
estimation increases with increasing k, and at the k-th iteration, the ratio of this cost to the total
costis O(k3)/(O(k?) + O(d?)), where O(d?) is due to the gradient evaluation. To investigate the

43



2/(n+L) eigenvalue
o8 —— Min-AM: 5, 0.04 + Min-AM
0.02
0.6

0.00

0.4

Imaginary part

d = 1000 -0.02
— d =2000

— d =4000

0.2
-0.04

0.0

0 200 400 600 800 1000 0 200 400 600 800 1000 0 5000 10000 15000
Iteration number k Iterations Real part

(a) Cost of eigenvalue estimations (b) Br of Min-AM (d = 4000) (c) Eigenvalue estimates (d = 4000)

Figure 6: (a) The ratio of the time of eigenvalue estimations to the total running time during iterations;
(b) the mixing parameter 8; of Min-AM and the optimal choice 2/(u + L) when the problem
dimension d = 4000; (c) exact eigenvalues of the Hessian and eigenvalue estimates computed by
Min-AM when the problem dimension d = 4000.

practical performance of the eigenvalue estimation, we applied the basic Min-AM to solve problem
(T72) of dimension d = 1000, 2000, 4000, where each A € R?*9 was generated following Gaussian
distribution, and the maximal iteration number is maz_iter = 1001 for Min-AM. As can be found
in Figure[6{(a), the additional computational time incurred by the eigenvalue estimations is marginal
when d is large and k is small. Figure[6(b) and Figure[6{c) show the case that d = 4000. (The cases
d = 1000 and d = 2000 have similar results.) We find that 3}, is quickly adapted to the optimal value
2/(u + L) within very small number of iterations. So we can adaptively choose [, in the beginning,
and fix the obtained [ and disable the eigenvalue estimation procedure in the later iterations to
reduce the computational cost. Figure[[c) shows that the eigenvalue estimates computed by Min-AM
(at the last iteration) well approximate the exact eigenvalues.

F.2 Regularized logistic regression problem

The regularized logistic regression problem is formulated as

T

1
min f(x) = ; log (1 + exp(—yia"&) + 3 123, (173)

where &; € R? is the i-th data sample and y; = =1 is the corresponding label. The regularization
parameter w = 0.1. We used the datasets “madelon” and “a9a” from LIBSVM [14] that are two-class
classifications:

e madelon: training data size: 2000; feature size: 500;

e a%a: training data size: 32561; feature size: 123.

To set proper p and L for Nesterov’s accelerated gradient (NAG) method and check the eigenvalue
estimates from Min-AM, we applied the standard Lanczos algorithm [24] to compute 100 Ritz values
of V2 f(z*) as the estimates of the true eigenvalues of V2 f(z*), where the minimizer z* was obtained
by solving (T73). For the test on madelon, Lanczos algorithm gave 1 = 1.01 x 1071, L = 1.45; for
the test on a9a, Lanczos algorithm gave = 1.00 x 107!, L = 8.64 x 107",

For the gradient descent (GD), the step size was tuned and set as 1, which was proper for both
datasets. We used the Polak-Ribiere variant of nonlinear conjugate gradient (NCG), and the step
size was determined by line search with cubic interpolation, where the strong Wolfe conditions were
checked. The L-BFGS used the Barzilai-Borwein step size as the initial guess of the approximate
inverse Hessian. For AM and ST-AM, the mixing parameter was set as 1. The AM-I performed
similarly to AM in this test, so we only report the results of AM. For the restarted Min-AM, we set
7 = 1076 for the madelon test and 7 = 1032 for the a9a test. m = 100 for both datasets. 1 was
set as a large number since Min-AM converged for these tests. Besides, we computed at most 20
eigenvalue estimates in Min-AM (between two successive restarts) to determine (.

Results about the choice of 3;. In Figure|7, we show additional results of the tests on madelon
dataset. (1) To test the effect of 8; on Min-AM, we disabled the adaptive choice of 35 and used
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Figure 7: Regularized logistic regression with w = 0.1 on madelon dataset. (a) Gradient norms of
GD (with constant step size 8x) and Min-AM (with fixed mixing parameter (). (b) Min-AM with
adaptive choice of fj; gradient norms of Min-AM with different initializations of 5 are shown. (c)
Min-AM with adaptive choice of B;; the Ritz values of V2 f(x*) from k-step Lanczos algorithm, and
eigenvalue estimates from Min-AM with 8y = 100 are shown.

fixed Sy chosen from {1,2,5}. It is observed in Figure a) that GD does not converge if the step
size B, is chosen from {2, 5}, which suggests that 6;, > 1 in Theorem [2]and Theorem[6] However,
Min-AM still converges in these cases, which validates our discussion in Remark [8]in Appendix [C.1}
the minimization problem on the right-hand side of (TT2)) in Theorem [6|dominates the convergence
when my, is large. It also indicates that Min-AM is less sensitive to 3 than GD. (2) When adaptive
choice of 3 is used, we investigate the effect of the initialization 3y on the convergence and the
quality of eigenvalue estimates. It is found in Figure [7(b) that even with the improper initialization
Bo = 50,100, 1000, the iterations still finally converge to an acceptable precision. In fact, GD,
AM, and Min-AM diverge if using fixed S} chosen from {50, 100,1000}. Hence, Min-AM with
adaptive choice of [y, is easy to apply since it discards the requirement of manually tuning the mixing
parameter. In Figure[7(c), we find that the eigenvalue estimates can still roughly approximate the
largest and the smallest Ritz values computed by the Lanczos algorithm, which verifies Theorem 3]
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Figure 8: The norm of gradient and eigenvalue estimates for different w. Left column: w = 1072;

middle column: w = 10~%; right column: w = 0. “Lanczos(k = 100)” denotes the Ritz values
computed by Lanczos algorithm, and “Min-AM” denotes the eigenvalue estimates from Min-AM.

Results of the problem with different regularization parameters. We also tested Min-AM for the
problem (I73) with different settings of the regularization parameter w. The results in Figure 8 also
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show that Min-AM significantly improves the convergence of AM(1) and is comparable to AM(20)
when w is small. The comparison between the Ritz values computed by Lanczos algorithm and the
eigenvalue estimates computed by Min-AM validates Theorem 3] Since the Ritz values approximate
the true eigenvalues of V2 f(x*), it is expected that Min-AM can give promising eigenvalue estimates
of V2 f(x*), which accounts for the efficiency of Min-AM.
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Figure 9: The norm of gradient with respect to running time.

Running time. In Figure[9] we report the convergence of each method with respect to the running
time. Min-AM has comparable performance to AM(20) in these tests, while using a smaller memory
size.

F.3 Deep neural network training problem

The experiments about the stochastic Min-AM (sMin-AM) focused on training deep neural networks.

Since Min-AM can be viewed as a special case of sMin-AM with 5,(:) = 5,22) =0, a = 1, the basic
Min-AM was also covered.

F.3.1 Hyperparameter setting of the stochastic Min-AM

The main hyperparameters of sMin-AM are a, Ok, (5,(61), 5,(62). We set (5,&1) = 5,22) = 1, which ensures
that H ,‘f is positive definite. We fixed x, = 1 and only tuned Sy € (0, 1] in the experiments.

F.3.2 Experiments on CIFAR-10 and CIFAR-100

The experiments on CIFAR-10 and CIFAR-100 followed the same settings of SAM [62] and ST-AM
[63] for direct comparisons. Both CIFAR-10 and CIFAR-100 contain a training dataset (S0K images)
and a test dataset (10K images), where CIFAR-10 has 10 classes and CIFAR-100 has 100 classes
for classification. The basic setting of network training followed the standard setting of training
ResNet [30]]: The batch size was 128 as commonly suggested; for training with /V iterations, the
learning rate of the optimizer was decayed at the (| 4 |)-th iteration and the (| 2N ])-th iteration.
The experiments were run with 3 random seeds and the averaged results along with the standard
deviations were reported. The final accuracy on the test dataset was used as the evaluation metric.
The accuracy reported in Table[I(a)]is the final test accuracy of training with 160 epochs.

We compared sMin-AM with SGDM, Adam, AdaHessian, stochastic AM (SAM), and short-term
recurrence AM (ST-AM). SGDM is the default optimizer for training many deep neural networks,
such as ResNet [30], WideResNet [66]], DenseNet [34], and ResNeXt [64]. Adam is an adaptive
learning rate method that uses diagonal approximation to the Hessian based on moving average.
AdaHessian also uses adaptive learning rates like Adam, but it relies on Hessian-vector products to
obtain the diagonal approximation. SAM and ST-AM are variants of AM. Both can be used to train
neural networks. The SAM with memory size m is denoted as SAM(m). ST-AM keeps two vector
pairs and has the same memory size as SAM(2).

We tuned the hyperparameters of all the optimizers (including sMin-AM) following the same way for
fair comparison. The tuning procedures were conducted on CIFAR-10/ResNet20. For each optimizer,
the hyperparameter setting that achieved the highest final test accuracy for training ResNet20 on
CIFAR-10 was unchanged in the other tests of training neural networks on CIFAR.

46



Test Accuracy %

Test Accuracy %

90
80
80
X
>
70 15)
s 60
} ! 3
60 140 160 Q
SGDM < SGDM
50 Adam é 401 Adam
—— AdaHessian ——— AdaHessian
40 —— SAM(1) — SAM(I)
—— SAM(10) 1 —— SAM(10)
X 20
—— ST-AM —— ST-AM
30 — sMin-AM —— sMin-AM
0 25 50 75 100 125 150 0 25 50 75 100 125 150
Epochs Epochs
(a) CIFAR-10/ResNet18 (b) CIFAR-10/VGG16
80 80
70 701
60 =2 60
>
50 § 504
40 3
Z 404
30 g 30 — SGDM
20 = Adam
204 —— SAM(1)
—— SAM(10) —— SAM(10)
]0 —— ST-AM —— ST-AM
0 —— sMin-AM 10 — sMin-AM

0 25 50 75 100 125 150
Epochs

(c) CIFAR-100/ResNeXt50

0 25 50 75 100 125 150

Epochs
(d) CIFAR-100/DenseNet121

Figure 10: Test accuracy during the network training on CIFAR-10 and CIFAR-100.

For SGDM, the momentum was set as 0.9, which is the default setting in the literature [30} [34]]. The
initial learning rate and weight decay were tuned and were set as 0.1, 0.0005, respectively. The
learning rate decay was 0.1. This setting is also recommended in WideResNet [66]].

For Adam, the initial learning rate and weight decay were tuned and set as 0.001, 0.0005, respectively.
The momentum terms were 37 = 0.9 and S5 = 0.999 as commonly suggested [65] [68]]. The learning
rate decay was 0.1.

For AdaHessian, the initial learning rate was 0.15, and the momentum terms 31 = 0.9, 52 = 0.999;
eps =1 x 107, and the hessian-power was 1. The weight decay was 0.0005/0.15, and the learning
rate decay was 0.1.

For SAM, the initial mixing parameter 3y = 1, the initial damping term oy = 1, and the regularization
parameter ¢; = 0.01. The weight decay was 0.0015. The decay rate for S, o was 0.06.

For ST-AM, the initial mixing parameter 5, = 1, the initial damping term oy = 1, and the
regularization parameters were ¢; = 1,co = 1 x 1077, The weight decay was 0.001, and the decay
rate for [, o was 0.1.

For sMin-AM, the initial mixing parameter 8y = 0.2, the damping term o, = 1, and the regularization
parameters were 5}21) =1, 5,(62) = 1. The weight decay was 0.0015, and the decay rate for 3 was 0.1.

Note that our hyperparameter settings of the baseline methods were the same as those in SAM [62]]
and ST-AM [63]], so we used their results for reference.

Convergence behaviour in the training process. In Figure[I0] we plot the test accuracy of training
four networks on CIFAR-10 and CIFAR-100, for each optimizer. It shows Adam has fast convergence
in the beginning, but stagnates in the later training. Compared with SGDM, SAM, and ST-AM, it is

47



observed that sMin-AM converges faster to an acceptable accuracy. The process of sMin-AM is also
much more stable than SAM(1) and SAM(10).
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Figure 11: Effect of weight decay on training CIFAR-10/ResNet20. “Ir”” and “wd” are abbreviations
of learning rate and weight decay.

Effect of weight decay. Figure [T1] shows the effect of weight decay on the training process. It
suggests that a larger weight decay can slow down the training in terms of training loss. When using
the same weight decay, sMin-AM often has faster convergence than SGDM. The results also justify
our settings of the weight decay.
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Figure 12: Effect of learning rate or mixing parameter on training CIFAR-10/ResNet20. “Ir”” and
“wd” are abbreviations of learning rate and weight decay.

Effect of learning rate/mixing parameter. Figure[12]shows the behaviours of SGDM with different
learning rate settings and sMin-AM with different mixing parameters. Small learning rate or small
mixing parameter can lead to fast convergence in the beginning, but the training may stagnate early
and the test performance is not satisfactory.

Effects of 5,21), 5,22), and ay. In Figure we show the results of sMin-AM with different settings
of other hyperparameters, i.e., § ,(Cl), 1) ,(f), and oy. It is observed that sMin-AM is more sensitive to
5,22) than § ,(Cl) and «j, which may be due to the fact that 0 ,(f) directly affects the regularization in the
Min-AM update (Line 10 in Algorithm . When choosing 6,22) > 1, the effect of § 122) is also minor.
As aresult, the most critical hyperparameters that affect the effectiveness of sMin-AM are the mixing

parameter [y, the regularization parameter 5,22), and weight decay. The weight decay is a common

hyperparameter that needs to be tuned for each optimizer; for § ,(f) , we can choose 5,(3) > 1to ensure
H{* = 0. So except for the weight decay, we only tuned the mixing parameter in the experiments.

Check of the choices of 5/(:) and 5122). From Lemma we know [|Hf — BiI|l2 < —pillpkll3 —
28k l|lpkll2llgrllz + Breillpkll3]lgx |3 assuming pr < 0. In Figure [14] we plot the value of this
bound. It is found that || H ,‘f — BrI||l2 < BxC4 for some constant Cs, which justifies our choice of
the regularization parameters.

Train neural networks with fewer epochs and less time. We also tested sMin-AM for training
different epochs. Figure [I3]shows the comparison between sMin-AM and SGDM for training 80,
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Figure 13: Effects of 6., 6\, and ay, on sMin-AM for training CIFAR-10/ResNet20. The default

setting is 51(:) =1, 51(<2) =1,a, =1, 8y = 1, and weight decay is 0.0015. When one hyperparameter
was inspected, the other hyperparameters were set as default.
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Figure 14: The value of —pg||px |13 — 2Bkpkllprll2llgxll2 + Brpillpkll3] g |3 during training CIFAR-
10/ResNet20.

120, and 160 epochs. The results show that sMin-AM can attain comparable accuracy to SGDM in
fewer epochs, which infers the faster training process of sMin-AM. In Table 2] by setting the final
test accuracy (160 epochs) of SGDM as the baseline, we report the memory cost, per-epoch time,
total training epochs, total training time of SAM(10), ST-AM, and sMin-AM to achieve a comparable
accuracy to SGDM (within 0.05% difference). The attained final accuracy is also shown. It is found
that sMin-AM largely reduces the memory cost of SAM(10) and can achieve comparable results to
those of SGDM using less training time.

Discussion about the computational cost and memory cost. The per-epoch computational cost
and memory cost are closely related to three factors: the network architecture, the training data, and
the optimizer. From Table[2] the effects of the network architecture and the optimizer are clear. For the
effect of training data, we consider the batch size. Given a specific network, the cost is composed of
two parts: (i) updating network parameters by the optimizer; (ii) other necessary computations, such
as the forward and back propagations of the neural network, data transfers between memory and disks,
etc., where additional memory and processing time are required. If the cost of Part (ii) only occupies
a small proportion of the total cost, the cost incurred by the optimizer will be of great importance.
In Figure[T6] we plot the ratios of memory/per-epoch time of SAM(10)/ST-AM/sMin-AM to that
of SGDM, for training ResNeXt50 on CIFAR-100 with different batch sizes (16, 32, 64, and 128).
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Figure 15: Comparison between SGDM and sMin-AM on training deep neural networks for 80, 120,
and 160 epochs.
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Table 2: The cost and final test accuracy compared with SGDM. Notations “m”,“t/e”, “e”, “t”, “a
are abbreviations of memory, per-epoch time, training epochs, total training time, accuracy.

Cost (x SGDM) CIFAR-10/ResNet18 CIFAR-10/VGG16

& accuracy m t/e e t a(%) m t/e e t a(%)
SGDM 1.00 1.00 1.00 1.00 9482 1.00 1.00 1.00 1.00 93.52
SAM(10) 1.73 178 0.56 1.00 9481 251 259 1.00 259 93.59
ST-AM 1.05 146 056 082 9484 155 191 0.88 1.67 93.56
sMin-AM 1.01 1.15 056 0.64 9485 135 125 0.63 0.78 93.56
Cost (x SGDM) CIFAR-100/ResNeXt50 CIFAR-100/DenseNet121

& accuracy m t/e e t a(%) m t/e e t a(%)
SGDM 1.00 1.00 1.00 1.00 7841 1.00 1.00 1.00 1.00 7849
SAM(10) 1.30 1.16 0.50 058 7837 1.16 1.19 050 0.60 78.84
ST-AM 1.04 1.07 050 054 7839 1.01 1.11 050 0.55 78.90
sMin-AM 1.03 1.00 050 0.50 7839 1.01 1.09 050 0.55 78.67

When a smaller batch size is used, the Part (ii) cost reduces and the proportion of Part (i) cost in the
total cost increases, thus the performance improvement of sMin-AM over SAM(10)/ST-AM is more
significant. To investigate the effect of model size on the cost, we tested SAM(10)/ST-AM/sMin-AM
on CIFAR-10/ResNet18 and CIFAR-10/ResNet50, where the batch size is 16 so that the Part (ii) cost
is not large. In Table[3] it is observed that for a network of larger scale (ResNet50), sMin-AM is more
advantageous than SAM(10)/ST-AM in terms of memory cost.

The difference between CIFAR-10 and CIFAR-100 has only a minor effect on the cost. For a given
network architecture, e.g., VGG16, its implementations for CIFAR-10 and CIFAR-100 differ in the
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dimension of the last linear layer. Since the parameters of this linear layer usually occupy a very
small portion of the whole parameters, the costs (memory and per-epoch running time) on CIFAR-10
and CIFAR-100 are roughly the same, as shown in Table ]

37X F2X T1six
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Figure 16: Memory and per-epoch time for training CIFAR-100/ResNeXt50 with different batch
sizes, where those of SGDM are set as the units.

Table 3: The memory and per-epoch time of SAM(10)/ST-AM/sMin-AM, where the batch size is
16. The memory and per-epoch time of SGDM are set as the units; memory and per-epoch time are
abbreviated as “m” and “t/e”, respectively.

Cost (x SGDM) CIFAR-10/ResNetl8 CIFAR-10/ResNet50

t/e m t/e
SAM(10) 2.44 2.66 3.01 2.63
ST-AM 1.59 1.91 1.79 1.86
sMin-AM 1.41 1.21 1.52 1.15

Table 4: The memory and per-epoch time of SAM(10)/ST-AM/sMin-AM, where the batch size is
128. The memory and per-epoch time of SGDM are set as the units; the first element and the second
element in (-, -) denote the memory and per-epoch time, respectively.

CIFAR-10 CIFAR-100
Cost (x SGDM)
ResNet18 VGG16 ResNeXt50 DenseNetl21 ResNet18 VGG16 ResNeXt50 DenseNetl21
SAM(10) (1.73,1.78)  (2.51,2.59) (1.30,1.18) (1.16,1.21)  (1.84,1.85) (2.52,2.53) (1.30,1.16) (1.16,1.19)
ST-AM (1.05,1.46) (1.55,191) (1.04,1.06) (1.02,1.08) (1.12,1.47) (1.56,1.84) (1.04,1.07) (1.01,1.11)
sMin-AM (1.01, 1.15) (1.35,1.25) (1.02,1.00) (1.01,1.01) (1.08,1.09) (1.36,1.19) (1.03,1.00) (1.01,1.09)

F.3.3 Experiment of training ResNet50 on ImageNet

We applied sMin-AM to train ResNet50 on the ImageNet dataset, which contains 1.2M images for
training and 50K images for test. The code was based on the example from PyTorcfﬂ We followed
the standard process of training ResNet [30]. Four GPUs were used to conduct the experiment.
SGDM was used for comparison. The batch size was 256. The weight decay for each method was
0.0001. We trained ResNet50 for 90 epochs. The learning rate of SGDM and the mixing parameter
of sMin-AM were decayed by 0.1 at the 30th and 60th epochs. For SGDM, the momentum was 0.9
and the learning rate was 0.1, which was the standard setting [30, |66} 134} 164]. For sMin-AM, we set
the initial mixing parameter 5y = 0.5, and the other hyperparameters were kept unchanged.

Comparisons with SAM and ST-AM. We conducted tests to compare the accuracy of sMin-AM
with that of SAM/ST-AM, and results in Figure [17| show that sMin-AM also improves the test
accuracy of SAM(10)/ST-AM.

F.3.4 An additional experiment: adversarial training

We conduct an additional experiment to further compare the effectiveness of SGDM, ST-AM, and
sMin-AM for training deep neural networks. The considered problem is adversarial training, which

3 https://github.com/pytorch/examples/tree/master/imagenet.
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Figure 17: Comparisons between SAM, ST-AM, and sMin-AM for training ResNet50 on ImageNet.
The results of the final accuracy of ST-AM and sMin-AM are shown in (b) and (c).

tries to solve the following minimax problem

min T Z max  fg (), (174)

zERY Hg? &ill2<e

where &; is the adversarial data sample in the e-ball centered at the data sample &;. We used the
standard PGD adversarial training process [40]: using projection gradient descent to solve the maxi-
mization problem in (T74)), and applying SGDM/ST-AM/sMin-AM to solve the minimization problem
in (T74). The tests were conducted on CIFAR-10/WideResNet34-10 and CIFAR-100/DenseNet121,
where for the training dataset of CIFAR-10/CIFAR-100, 5K images were randomly selected as the
validation dataset and the other 45K images were used as the new training dataset. We trained the
neural network for 200 epochs, where the learning rate/mixing parameter was decayed at the 100th
and the 150th epochs. The best checkpoint model on the validation dataset was chosen to be evaluated
on the test dataset. For SGDM and ST-AM, we used the recommended setting of hyperparameters in
[26,163]]. For sMin-AM, we set 5y = 0.3, and other hyperparameters were kept unchanged.

Table 5: Clean test accuracy (%) and robust test accuracy (%) on adversarial training.

CIFAR-10/WideResNet34-10 CIFAR-100/DenseNet121
Clean FGSM PGD-20 C&W, Clean FGSM PGD-20 C&W

SGDM 85.48  66.42 54.00 5328 5945 39.75 3091 29.02
ST-AM 85.79 66.43 53.46 52.88 6048 40.39 31.19 29.56
sMin-AM  85.76  67.49 54.67 54.05 60.04 40.50 31.71 29.95

Optimizer

The training process of each optimizer is shown in Figure[T8] where we plot the accuracy on validation
dataset (called as validation accuracy), and the accuracy on adversarial data samples generated by
the PGD-10 attack [40] on validation dataset (called as robust validation accuracy). It is observed
that the best robust validation accuracy of sMin-AM is higher than that of SGDM/ST-AM, which
indicates that better checkpoint model can be obtained by sMin-AM.

In Table[5] we report two types of test accuracy: clean test accuracy, where the clean test data was
used for classification; robust test accuracy, where corrupted test data was used for classification.
Three attacking methods were used for the robust test accuracy evaluation: FGSM [235]], PGD-20 [40]],
and C&W , attack [[13]]. It shows that sMin-AM significantly improves SGDM, and outperforms
ST-AM in terms of robust test accuracy, which is a desirable property in adversarial training.

G Limitations

We focus on developing the variant of AM with minimal memory size for solving optimization
problems. The properties of Min-AM for deterministic optimization are established in the smooth
case. The non-smooth optimization is important and one possible direction is to adapt Min-AM to
the framework of proximal quasi-Newton methods [15,[7]. We leave it as an extension of Min-AM in
the future work.
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Figure 18: Left: accuracy on the clean validation dataset (validation accuracy). Right: accuracy on
the validation dataset attacked by PGD-10 (robust validation accuracy).

Min-AM exploits the symmetry of Hessian in solving optimization problems. For general fixed-point
problems, the Jacobian can be non-symmetric. However, in this case, the short-term recurrence
algorithms that are equivalent to the full-memory methods generally do not exist even in solving
linear systems [S3].
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