
A Implementation Details

Table 9: Hyperparameters of HierSpeech.

Hyperparameter HierSpeech

Phoneme Embedding 192
Layers 6

Text Encoder Hidden Size 192
Conv1D Kernel 3
Conv1D Filter Size 768

Input Feature 12th layer of XLS-R/linear spectrogram
Input Size 1024/513

Linguistic/Acoustic WaveNet Layers 16
Encoder WaveNet Channel Size 192

Conv1D Kernel 5

Affine Coupling Layers 4
Affine Coupling Dilation 1

Flow (fa and fl) Affine Coupling WaveNet Layers 4
Affine Coupling Kernel Size 5
Affine Coupling Filter Size 192

Initial Hidden Size 512
MRF Kernel Size [3,7,11]

Decoder MRF Dilation Size [[1,3,5],[1,3,5],[1,3,5]]
Upsampling Rate [8,8,2,2]
Upsampling Transposed Conv1D Kernel Size [16,16,4,4]

Loss λkl2/ λrec/λctc/λdur/λadv/ λfm 1/45/45/1/1/2

The details of hyperparameter are described in Table 9. Moreover, we describe the objective function
with the respect to the trained parameters in details as follows:

Ltotal = Lkl1(ϕa, θa, θfa) + λkl2Lkl2(ϕl, θl, θfl) + λrecLrec(ϕa, θd) + λctcLctc(ϕl, θpp)

+ λdurLdur(θdp) + λadvLadv(ϕa, θd) + λfmLfm(ϕa, θd)
(10)

where θfa is the parameter of normalizing flow network in acoustic prior encoder, θfl is the parameter
of normalizing flow network in linguistic prior encoder, and θpp and θdp is the phoneme predictor
and duration predictor.

Flow

wav2vec 2.0

Linguistic

Encoder

Waveform

Acoustic

Encoder

STFT

Waveform

Decoder

Waveform

()

Slice

Training

Figure 4: The training procedure of untranscribed text-to-speech.

For untranscribed text-to-speech as shown in Figure 4, we fine-tune the model without linguistic prior
encoder, phoneme predictor, and duration predictor as follows objective:

Lfinetuning = Lkl1(ϕa, θa, θfa) + λrecLrec(ϕa, θd) + λadvLadv(ϕa, θd) + λfmLfm(ϕa, θd)
(11)

14

B Voice Conversion

By disentangling speech representations into linguistic and acoustic representations, we assume that
the linguistic representations contain a small amount of speaker information. To evaluate the speech
disentanglement, we conduct the voice conversion task using the linguistic representations. In our
model, we can extract the linguistic representations by four different methods.

First, we convert the speech x into a linear spectrogram xspec, and we predict the linguistic represen-
tations ẑl through the acoustic encoder qϕa and the normalizing flow in the acoustic prior encoder fa
given the source speaker information s and linear spectrogram xspec. Using the predicted linguistic
representations ẑl, we generate a converted speech xt with a voice of target speaker information st
through the inverse transformation of the normalizing flow f−1

a and decoder G as follows:

za ∼ qϕa
(za|xspec, s)

ẑl = fa(za|s)
xt = G(f−1

a (ẑl|st)|st)
(12)

Second, we convert the predicted linguistic representations ẑl into a speaker-independent represen-
tations e through the normalizing flow in the linguistic prior encoder fl given the source speaker
information s. Using e and the target speaker information st, we generate a converted speech st
through inverse transformation of the normalizing flow f−1

l and f−1
a , and decoder G as follows:

za ∼ qϕa
(za|xspec, s)

ẑl = fa(za|s)
e = fl(ẑl|s)
xt = G(f−1

a (f−1
l (e|st)|st)|st)

(13)

Third, we extract the linguistic representations zl directly through the linguistic encoder qϕl
given the

source speaker information s and the representations from the XLS-R xw2v. Then, we generate a
converted speech xt with a voice of target speaker information st through the inverse transformation
of the normalizing flow f−1

a and decoder G as follows:

zl ∼ qϕl
(zl|xw2v, s)

xt = G(f−1
a (zl|st)|st)

(14)

Finally, we convert the extracted linguistic representations zl into a speaker-independent represen-
tations e through the normalizing flow in the linguistic prior encoder fl given the source speaker
information s. Using e and the target speaker information st, we generate a converted speech st
through inverse transformation of the normalizing flow f−1

l and f−1
a consecutively, and decoder G.

The objectives for fine-tuning are represented as:

zl ∼ qϕl
(zl|xw2v, s)

e = fl(zl|s)
xt = G(f−1

a (f−1
l (e|st)|st)|st)

(15)

We conduct the ASR evaluation and ASV evaluation to compare the above methods. Table 10 shows
that the first method with Eq. 12 has better performance than others, and this means that xspec

contains more information to reconstruct the audio than xw2v alongside the ablation study of Table 7.
The EER results also show that all method can convert the voice of speech, indicating that speech is
disentangled through linguistic and acoustic encoder.

Table 10: Comparison for the different methods of voice conversion.
Model CER PER WER EER

HierSpeech (Eq. 12) 6.37 5.65 18.74 2.77
HierSpeech (Eq. 13) 8.42 7.96 20.34 2.92
HierSpeech (Eq. 14) 18.38 16.56 36.67 2.92
HierSpeech (Eq. 15) 20.15 18.89 40.09 3.72

15

C Experiments

(a) The 1st layer of XLS-R (b) The 12th layer of XLS-R

(c) The 24th layer of XLS-R

Figure 5: The t-SNE visualization for the representations from the different layers of XLS-R.

(a) Acoustic representations za (b) Linguistic representations zl

Figure 6: The t-SNE visualization for the acoustic/linguistic representations.

t-SNE visualization In Figure 5, we present the t-SNE visualization for the representations from
the different layers of XLS-R. Following (Choi et al., 2021), we average each representation from
the 1st, 12th, and 24th layer of XLS-R on the time-axis for 50 utterances of 10 speakers. Similar
to the previous analysis of XLSR-53 (Choi et al., 2021), the representations from the 1st layer of
XLS-R are already clustered by each speaker while it is hard to distinguish the representations of
the latter layer by each speaker. In Figure 6, we also present the t-SNE visualization for the acoustic
representations za and linguistic representations zl. While acoustic representations are clustered by
each speaker, it is difficult to differentiate the linguistic representations by speakers. This means that
the linguistic encoder is able to extract the linguistic information from speech, and this allow the
model to learn each representation hierarchically. It is worth noting that using different features from
the same speech can simply extract the disentangled representations of speech in our model.

16

Table 11: Results for speaker adaptation. To compare the adaptation performance with respect to the
number of speakers, two models trained using VCTK and LibriTTS datasets are used for speaker
adaptation. We used 10 speakers of VCTK dataset as novel speakers for fine-tuning.

Method Pre-training Fine-tuning Transcript PER WER EER MCD RMSEf0

GT - - - 4.26 16.69 4.14 - -

HierSpeech VCTK ✗ - 4.01 16.85 14.61 4.27 30.66

HierSpeech VCTK ✓(1) ✓ 3.32 15.04 10.80 4.32 29.66
HierSpeech VCTK ✓(5) ✓ 3.89 17.04 8.84 4.08 29.39
HierSpeech VCTK ✓(10) ✓ 4.74 18.26 8.08 4.00 29.15
HierSpeech VCTK ✓(20) ✓ 5.02 19.17 7.60 3.97 29.28
HierSpeech-U VCTK ✓(1) ✗ 4.76 18.71 13.33 4.29 29.74
HierSpeech-U VCTK ✓(5) ✗ 4.99 18.47 8.40 4.13 28.80
HierSpeech-U VCTK ✓(10) ✗ 4.28 16.94 7.60 4.15 28.83
HierSpeech-U VCTK ✓(20) ✗ 4.36 17.04 6.97 4.05 29.27

HierSpeech VCTK+LibriTTS ✗ - 3.58 15.50 13.20 4.38 32.90

HierSpeech VCTK+LibriTTS ✓(1) ✓ 3.44 15.91 16.80 4.47 29.98
HierSpeech VCTK+LibriTTS ✓(5) ✓ 3.94 17.08 8.40 4.06 29.66
HierSpeech VCTK+LibriTTS ✓(10) ✓ 4.95 18.32 7.20 4.03 30.02
HierSpeech VCTK+LibriTTS ✓(20) ✓ 4.40 16.95 6.40 3.96 29.56
HierSpeech-U VCTK+LibriTTS ✓(1) ✗ 4.16 16.99 12.00 4.31 29.61
HierSpeech-U VCTK+LibriTTS ✓(5) ✗ 4.28 16.70 8.40 4.12 28.93
HierSpeech-U VCTK+LibriTTS ✓(10) ✗ 4.45 17.15 7.60 4.12 30.02
HierSpeech-U VCTK+LibriTTS ✓(20) ✗ 3.71 15.85 6.40 4.09 30.64

Untranscribed text-to-speech We describe the results of the objective evaluation for speaker
adaptation in Table 11. We compare the adaptation quality with different numbers of samples (1, 5,
10, and 20) and different numbers of pre-trained speakers (98 from VCTK and 1,151 from LibriTTS).
Table 11 shows that the adaptation quality is improved with an increase in the number of samples.

Phoneme predictor We conduct the ablation study of phoneme predictor. At first, we attempt to
extract the linguistic representations without conditioning speaker information to extract the speaker-
independent linguistic representations. However, adding speaker condition in linguistic encoder
improves the model performance, indicating that a speaking style with the exception of voice is also
trained from the speaker condition. Also, although the speaker conditioning is used in the linguistic
encoder, the linguistic representations zl contains a little speaker information as shown in Table 2 and
Figure 6. Following (Kim et al., 2021), we remove a bias parameter of phoneme predictor, which
causes unstable training during mixed precision training. For better generalization, we attempt to
train the phoneme predictor with label smoothing. However, it decreases the model performance, as
it disturbs to optimize the KL divergence.

Data augmentation For effective speech disentanglement, we use the data augmentation for the
input of the linguistic encoder. We use the information perturbation of (Choi et al., 2021) to the
waveform for the input of XLS-R. After data augmentation, the representations from the XLS-R may
lose their speaker and pitch information, and then the linguistic representations are extracted from the
linguistic-related information of XLS-R. However, this information perturbation decreases the model
performance as shown in Table 12b. Also, our model already extracts the linguistic representations
guided by phoneme predictor. Hence, the data augmentation for speech disentanglement is not
necessary in our method.

Table 12: The results of ablation study and data augmentation.

(a) Ablation study for phoneme predictor.

Model CER PER WER

GT 6.26 5.64 18.94

HierSpeech 6.77 6.25 20.89
w.o speaker condition 7.38 6.77 21.82
w bias 7.51 6.93 22.31
w Label Smoothing 7.99 7.60 23.00

(b) Experiment for data augmentation.

Model Augmentation ratio CER PER WER EER

GT 6.26 5.64 18.94 4.03

HierSpeech ✗ - 6.77 6.25 20.89 3.45

HierSpeech ✓ 0.1 6.98 6.54 20.96 3.81
HierSpeech ✓ 0.2 7.63 7.14 22.35 3.71
HierSpeech ✓ 0.3 7.12 6.59 21.80 3.81
HierSpeech ✓ 0.4 7.63 7.16 22.25 4.09
HierSpeech ✓ 0.5 7.57 6.98 22.26 3.96
HierSpeech ✓ 0.6 7.69 7.26 22.90 3.59
HierSpeech ✓ 0.8 7.88 7.31 22.81 3.96
HierSpeech ✓ 1.0 7.87 7.37 22.77 3.74

17

� � � 	
 � � � �� �� �� �� �	 �
 �� �� � �� �� �� �� �� �	
�����������

�

��

�

��

�

�

��
��

��
��

���
�

Figure 7: Speaker classification on self-supervised representations from different layers of XLS-R.

� � � 	
 � � � �� �� �� �� �	 �
 �� �� � �� �� �� �� �� �	
�����������

�

��

��

��

��

�	

�

��
��

��
��

���
�

Figure 8: Speaker classification on linguistic representations from different layers of XLS-R.

Analysis of the self-supervised speech representations for TTS Self-supervised speech represen-
tations contain rich information which is trained with large-scale speech dataset. Currently, wav2vec
2.0 (Baevski et al., 2020) is the most widely used model where the public can be easy to accessible
to it, and it has shown the improved performance on downstream tasks such as ASR and speech
translation. In this paper, we investigate these self-supervised representations to distill this rich
information for text-to-speech task. Previous works show that each representation from the different
layer of these model has different characteristics, and especially the representations from the middle
layer contains the pronunciation information of speech (Shah et al., 2021). Our goal is to bridge the
gap between text and speech through the additional representations, and the linguistic information
such as pronunciation of speech may be appropriate to improve the pronunciation of synthesized
speech. To demonstrate it, we train the model with each layer from the 24-layer transformer networks
respectively. Table 13 shows that all layer with the exception of the 23th layer improve the model
in ASR evaluation, indicating each representation contains rich information which is trained with
large-scale speech dataset. Note that we fail to train the model with the representations from the
23th layer of XLS-R. For the hierarchical training of different information and the untranscribed
text-to-speech, we should disentangle the linguistic and acoustic representations from speech. Hence,
we conduct the speaker classification on each representation from the layer of XLS-R, and on each
linguistic representation zl from each layer of XLS-R to measure the speaker information on the
representations. We train the frame-level speaker classifier which consists of 4 Conv1D with kernel
size of 7 followed by the projection layer. Figure 8 shows that the speaker classification results have
an tendency to be decreased from the first layer to latter layer. However, the linguistic representa-
tions from the 12th layer of XLS-R have the lowest speaker classification accuracy in middle layer,
indicating these representations may contain much more linguistic information which is trained with
phoneme classification. In this regard, we use the representations from the 12th layer of XLS-R to
extract the linguistic representations.

18

Table 13: Hyperparameter search for XLS-R (wav2vec 2.0) layer.
Model w2v layer CER PER WER EER

GT 6.26 5.64 18.94 4.03

VITS - 12.53 12.24 30.62 3.85

HierSpeech 1 6.94 6.49 21.54 3.74
HierSpeech 2 7.01 6.65 21.39 3.74
HierSpeech 3 6.78 6.35 20.87 3.86
HierSpeech 4 6.93 6.44 21.05 3.96
HierSpeech 5 7.14 6.75 21.33 4.00
HierSpeech 6 7.00 6.55 21.16 3.86
HierSpeech 7 6.81 6.30 20.68 3.74
HierSpeech 8 6.87 6.32 20.89 3.56
HierSpeech 9 6.76 6.11 20.86 3.82
HierSpeech 10 6.72 6.12 20.71 3.59
HierSpeech 11 7.04 6.51 21.32 3.66
HierSpeech 12 6.77 6.25 20.89 3.48
HierSpeech 13 6.92 6.40 21.14 3.79
HierSpeech 14 6.89 6.36 20.60 4.01
HierSpeech 15 6.97 6.54 21.28 3.51
HierSpeech 16 6.73 6.35 20.81 3.62
HierSpeech 17 6.88 6.23 20.70 3.71
HierSpeech 18 7.13 6.62 21.41 3.74
HierSpeech 19 6.83 6.38 21.09 3.55
HierSpeech 20 7.53 7.09 22.00 3.96
HierSpeech 21 7.44 7.00 22.30 3.40
HierSpeech 22 7.62 7.18 22.34 4.03
HierSpeech 23 - - - -
HierSpeech 24 7.42 6.85 21.68 3.75

D Baseline Models

TTS We use an open source implementation of Tacotron 26, an official implementation of Glow-
TTS7, PortaSpeech8, and VITS9. Since baseline models synthesize Mel-spectrogram unlike VITS
and HierSpeech, we transform audio into Mel-spectrogram following (Kong et al., 2020) with a
window size of 1024, hop size of 256, 1024 points of Fourier transform, and 22,050 Hz. For Tacotron
2, we use 32-dimensional speaker embedding which is concatenated with the output of text encoder
following Skerry-Ryan et al. (2018). We train Tacotron 2 with batch size of 256 for 100k steps.
For Glow-TTS, we condition 256-dimensional speaker embedding into the affine coupling layer in
decoder and duration predictor to predict the speaker-specific duration. We train Glow-TTS with
batch size of 128 for 960k steps. For PortaSpeech, we add 256-dimensional speaker embedding
with the output of encoder and duration predictor. We train PortaSpeech with batch size of 64 with
320k steps. To convert Mel-spectrogram to waveform audio, we use the official implementation of
pre-trained HiFi-GAN V110. For VITS, we use the same speaker conditioning of ours and train the
model with batch size of 256 with 600k steps. For VITS and HierSpeech, we sample 32 sequences
from the whole za, and upsample it by 256x which is the same size as hop size for STFT. We use
VCTK and train-clean-360 and train-clean-100 subset of LibriTTS dataset. Both dataset are licensed
under the Creative Commons Attribution 4.0.

VC We use the official implementation of AutoVC11 and VoiceMixer12. Both models are trained
with Mel-spectrogram segments of 192 frames during training. We train the AutoVC with the
information bottleneck of 32 frames and a batch size of 16 for 100k steps. For VoiceMixer, we train
the model with a batch size of 64 for 150k steps. We also use the pre-trained HiFi-GAN V1 to convert
the Mel-spectrogram to waveform audio.

6https://github.com/NVIDIA/tacotron2
7https://github.com/jaywalnut310/glow-tts
8https://github.com/NATSpeech/NATSpeech
9https://github.com/jaywalnut310/vits

10https://github.com/jik876/hifi-gan
11https://github.com/auspicious3000/autovc
12https://github.com/anonymous-speech/voicemixer/tree/main/code

19

https://github.com/NVIDIA/tacotron2
https://github.com/jaywalnut310/glow-tts
https://github.com/NATSpeech/NATSpeech
https://github.com/jaywalnut310/vits
https://github.com/jik876/hifi-gan
https://github.com/auspicious3000/autovc
https://github.com/anonymous-speech/voicemixer/tree/main/code

E Evaluation Details

Mean opinion score We include the details of instructions of MOS evaluation in Figure 9.
We highly recommend to hear audios with headphone in the environment with no noise in
background.

● Evaluate naturalness of audio sample.
 ● This score should reflect your opinion of how natural the audio sounded.

 ● Note that you should not judge the grammar or content of the audio, just how it sounds.
● It is an absolute evaluation.

Please read the instruction next to each task before you start!!!

How natural (i.e. human-sounding) is this recording?Instructions Shortcuts

Select an option

Excellent - Completely natural
speech - 5

4.5

Good - Mostly natural speech
- 4

3.5

Fair - Equally natural and
unnatural speech - 3

2.5

Poor - Mostly unnatural

speech - 2

1.5

Bad - Completely unnatural

speech - 1

0:000:00000000 0:000:00/ / 1

2

3

4

5

6

7

8

9

(a) nMOS

Please wear earbuds or headphone before you start the task

Instructions

Evaluate speaker similarity of the audio pair.

Please listen to the two audio samples and rate how similar they are.
 Your rating should reflect an evaluation of how close the voices of the two speakers sound.

You should not judge the audio quality (how natural it is) of the sentence
 instead, just focus on the similarity (e.g. accent, intonation) of the speakers to one another.

Please listen to each of the audio files carefully during evaluation.
 If reliability of your evaluation is less than 50% or the total evaluation time is shorter than the total

length of the audio files, we will reject your review.
 We put some fake samples. So, if your evaluation on fake samples looks doubtful, we will reject

your review.

Please read the instruction next to each task before you start!!!

Q. Please rate the similarity of the two samplesInstructions Shortcuts

Select an option

Same - Absolutely sure - 4

Same - Not sure - 3

Different - Not sure - 2

Different - Absolutely sure - 1

0:000:00000000 0:000:00/ /

0:000:00000000 0:000:00/ /

1

2

3

4

(b) sMOS
Please wear earbuds or headphone before you start the task

Instructions

● Evaluate relative naturalness of the second audio.

● This score should reflect your opinion of how natural the second audio sounded compared to
the first.

● Note that you should not judge the grammar or content of the audio, just how it sounds.

Please listen to each of the audio files carefully during evaluation.
 If reliability of your evaluation is less than 50% or the total evaluation time is shorter than the total

length of the audio files, we will reject your review.
 We put some fake samples. So, if your evaluation on fake samples looks doubtful, we will reject

your review.

Please read the instruction next to each task before you start!!!

Q. How natural (i.e. human-sounding) is the second recording compared to the first?Instructions Shortcuts

Select an option

3 - Much better

2 - Better

1 - Slightly better

0 - About the same

-1 - slightly worse

-2 - Worse

-3 - Much Worse

0:000:00000000 0:000:00/ /

0:000:00000000 0:000:00/ /

1

2

3

4

5

6

7

(c) CMOS

Figure 9: The screenshots of MOS evaluation. $0.1 per 1 hit is paid to participants for nMOS (7
samples) and $0.01 per 1 hit is paid to participants for sMOS and CMOS.

Automatic speech recognition We use the pre-trained wav2vec 2.0 model (base model13) to
evaluate the character error rate, phoneme error rate, and word error rate (WER). We calculate the
WER based on the character prediction results to evaluate the pronunciation without language model.

Automatic speaker verification We use the pre-trained ASV model14 to evaluate the speaker
similarity. The Fast ResNet-34 model (Chung et al., 2020) is used to extract the features, and the
similarities of features are compared for the verification results. The model was trained by VoxCeleb2
(Chung et al., 2018) with online data augmentation (Heo et al., 2020). The online data augmentation
improves the model performance from EER of 2.1792 to 1.1771 as described in (Heo et al., 2020).

Mel cepstral distortion We extract the Mel-frequency cepstral coefficients (MFCCs) by discrete
cosine transform to raw waveform15. Then, we calculate the MCD between ground-truth and
synthesized speech from the first 13 MFCCs by using dynamic time warping (DTW) to align the
different length of sequences.

F0 root mean square error We extract the fundamental frequency F0 by World vocoder16. Then,
we compute the l2 distance between the ground-truth and synthesized speech for RMSEf0. We use
the DTW to align two sequences.

Average differences of the utterance duration We conduct DDUR evaluation presented in (Zhang
et al., 2019) to evaluate the duration prediction performance. For fair evaluation, we trim the silence
of audio, and then we calculate the average absolute differences of duration between ground-truth
and synthesized speech.

13https://huggingface.co/docs/transformers/model_doc/wav2vec2
14https://github.com/clovaai/voxceleb_trainer
15https://github.com/MTG/essentia/
16https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder

20

https://huggingface.co/docs/transformers/model_doc/wav2vec2
https://github.com/clovaai/voxceleb_trainer
https://github.com/MTG/essentia/
https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder

	Introduction
	HierSpeech
	Speech representations
	Hierarchical variational inference
	Untranscribed text-to-speech

	Experiment and Result
	Experimental setup
	Evaluation metrics
	Analysis of self-supervised representations
	Evaluation on TTS
	Untranscribed text-to-speech
	Ablation study and hyperparameter search
	Evaluation on VC

	Broader Impact
	Conclusion
	Implementation Details
	Voice Conversion
	Experiments
	Baseline Models
	Evaluation Details

