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Abstract

Despite the superior empirical success of deep meta-learning, theoretical under-
standing of overparameterized meta-learning is still limited. This paper studies the
generalization of a widely used meta-learning approach, Model-Agnostic Meta-
Learning (MAML), which aims to find a good initialization for fast adaptation
to new tasks. Under a mixed linear regression model, we analyze the general-
ization properties of MAML trained with SGD in the overparameterized regime.
We provide both upper and lower bounds for the excess risk of MAML, which
captures how SGD dynamics affect these generalization bounds. With such sharp
characterizations, we further explore how various learning parameters impact the
generalization capability of overparameterized MAML, including explicitly identi-
fying typical data and task distributions that can achieve diminishing generalization
error with overparameterization, and characterizing the impact of adaptation learn-
ing rate on both excess risk and the early stopping time. Our theoretical findings
are further validated by experiments.

1 Introduction

Meta-learning [22] is a learning paradigm which aims to design algorithms that are capable of gaining
knowledge from many previous tasks and then using it to improve the performance on future tasks
efficiently. It has exhibited great power in various machine learning applications spanning over
few-shot image classification [31, 32], reinforcement learning [21] and intelligent medicine [20].

One prominent type of meta-learning approaches is an optimization-based method, Model-Agnostic
Meta-Learning (MAML) [16], which achieves impressive results in different tasks [30, 4, 2]. The
idea of MAML is to learn a good initialization ω∗, such that for a new task we can adapt quickly
to a good task parameter starting from ω∗. MAML takes a bi-level implementation: the inner-level
initializes at the meta parameter and takes task-specific updates using a few steps of gradient descent
(GD), and the outer-level optimizes the meta parameter across all tasks.

With the superior empirical success, theoretical justifications have been provided for MAML and
its variants over the past few years from both optimization [18, 38, 14, 25] and generalization
perspectives [1, 11, 15, 9]. However, most existing analyses did not take overparameterization into
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consideration, which we deem as crucial to demystify the remarkable generalization ability of deep
meta-learning [41, 22]. More recently, [36] studied the MAML with overparameterized deep neural
nets and derived a complexity-based bound to quantify the difference between the empirical and
population loss functions at their optimal solutions. However, complexity-based generalization
bounds tend to be weak in the high dimensional, especially in the overparameterized regime. Recent
works [6, 43] developed more precise bounds for overparameterized setting under a mixed linear
regression model, and identified the effect of adaptation learning rate on the generalization. Yet, they
considered only the simple isotropic covariance for data and tasks, and did not explicitly capture how
the generalization performance of MAML depends on the data and task distributions. Therefore, the
following important problem still remains largely open:

Can overparameterized MAML generalize well to a new task, under general data and task
distributions?

In this work, we utilize the mixed linear regression, which is widely adopted in theoretical studies for
meta-learning [27, 6, 12, 3], as a proxy to address the above question. In particular, we assume that
each task τ is a noisy linear regression and the associated weight vector is sampled from a common
distribution. Under this model, we consider one-step MAML meta-trained with stochastic gradient
descent (SGD), where we minimize the loss evaluated at single GD step further ahead for each task.
Such settings correspond to real-world implementations of MAML [17, 28, 22] and are extensively
considered in theoretical analysis [14, 8, 15]. The focus of this work is the overparameterized regime,
i.e., the data dimension d is far larger than the meta-training iterations T (d ≫ T ).

1.1 Our Contributions

Our goal is to characterize the generalization behaviours of the MAML output in the overparameter-
ized regime, and to explore how different problem parameters, such as data and task distributions, the
adaptation learning rate βtr, affect the test error. The main contributions are highlighted below.

• Our first contribution is a sharp characterization (both upper and lower bounds) of the excess
risk of MAML trained by SGD. The results are presented in a general manner, which depend
on a new notion of effective meta weight, data spectrum, task covariance matrix, and other
hyperparameters such as training and test learning rates. In particular, the effective meta
weight captures an essential property of MAML, where the inner-loop gradient updates
have distinctive effects on different dimensions of data eigenspace, i.e., the importance of
"leading" space will be magnified whereas the "tail" space will be suppressed.

• We investigate the influence of data and task distributions on the excess risk of MAML. For
log-decay data spectrum, our upper and lower bounds establish a sharp phase transition of
the generalization. Namely, the excess risk vanishes for large T (where benign fitting occurs)
if the data spectrum decay rate is faster than the task diversity rate, and non-vanishing risk
occurs otherwise. In contrast, for polynomial or exponential data spectrum decays, excess
risk always vanishes for large T irrespective of the task diversity spectrum.

• We showcase the important role the adaptation learning rate βtr plays in the excess risk
and the early stopping time of MAML. We provably identify a novel tradeoff between
the different impacts of βtr on the "leading" and "tail" data spectrum spaces as the main
reason behind the phenomena that the excess risk will first increase then decrease as βtr

changes from negative to positive values under general data settings. This complements the
explanation based only on the "leading" data spectrum space given in [6] for the isotropic
case. We further theoretically illustrate that βtr plays a similar role in determining the early
stopping time, i.e., the iteration at which MAML achieves steady generalization error.

Notations. We will use bold lowercase and capital letters for vectors and matrices respectively.
N
(
0, σ2

)
denotes the Gaussian distribution with mean 0 and variance σ2. We use f(x) ≲ g(x) to

denote the case f(x) ≤ cg(x) for some constant c > 0. We use the standard big-O notation and its
variants: O(·),Ω(·), where T is the problem parameter that becomes large. Occasionally, we use the
symbol Õ(·) to hide polylog(T ) factors. 1(·) denotes the indicator function. Let x+ = max{x, 0}.
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2 Related Work

Optimization theory for MAML-type approaches Theoretical guarantee of MAML was initially
provided in [17] by proving a universal approximation property under certain conditions. One line of
theoretical works have focused on the optimization perspective. [14] established the convergence
guarantee of one-step MAML for general nonconvex functions, and [25] extended such results to
the multi-step setting. [18] analyzed the regret bound for online MAML. [38, 36] studied the global
optimality of MAML with sufficiently wide deep neural nets (DNN). Recently, [10] studied MAML
from a representation point of view, and showed that MAML can provably recover the ground-truth
subspace.

Statistical theory for MAML-type approaches. One line of theoretical analyses lie in the statistical
aspect. [15] studied the generalization of MAML on recurring and unseen tasks. Information
theory-type generalization bounds for MAML were developed in [26, 9]. [8] characterized the
gap of generalization error between MAML and Bayes MAML. [36] provided the statistical error
bound for MAML with overparameterized DNN. Our work falls into this category, where the
overparameterization has been rarely considered in previous works. Note that [36] only derived the
generalization bound from the complexity-based perspective to study the difference between the
empirical and population losses for the obtained optimization solutions. Such complexity bound is
typically related to the data dimension [29] and may yield vacuous bound in the high dimensional
regime. However, our work show that the generalization error of MAML can be small even the data
dimension is sufficiently large.

Overparamterized meta-learning. [13, 34] studied overparameterized meta-learning from a repre-
sentation learning perspective. The most relevant papers to our work are [43, 6], where they derived
the population risk in overparameterized settings to show the effect of the adaptation learning rate
for MAML. Our analysis differs from these works from two essential perspectives: i). we analyze
the excess risk of MAML based on the optimization trajectory of SGD in non-asymptotic regime,
highlighting the dependence of iterations T , while they directly solved the MAML objective asymp-
totically; ii). [43, 6] mainly focused on the simple isotropic case for data and task covariance, while
we explicitly explore the role of data and task distributions under general settings.

Overparameterized linear model. There has been several recent progress in theoretical under-
standing of overparameterized linear model under different scenarios, where the main goal is to
provide non-asymptotic generalization guarantees, such as studies of linear regression [5], ridge
regression [35], constant-stepsize SGD [42], decaying-stepsize SGD [39], GD [40], Gaussian Mixture
models [37]. This paper aims to derive the non-asymptotic excess risk bound for MAML under
mixed linear model, which can be independent of data dimension d and still converge as the iteration
T enlarges.

3 Preliminary

3.1 Meta Learning Formulation

In this work, we consider a standard meta-learning setting [15], where a number of tasks share some
similarities, and the learner aims to find a good model prior by leveraging task similarities, so that the
learner can quickly find a desirable model for a new task by adapting from such an initial prior.

Learning a proper initialization. Suppose we are given a collection of tasks {τt}Tt=1 sam-
pled from some distribution T . For each task τt, we observe N samples Dt ≜ (Xt,yt) ={
(xt,j , yt,j) ∈ Rd × R

}
j∈[N ]

i.i.d.∼ Pϕt(y|x)P(x), where ϕt is the model parameter for the t-th

task. The collection of {Dt}Tt=1 is denoted as D. Suppose that Dt is randomly split into training and
validation sets, denoted respectively as Din

t ≜ (Xin
t ,y

in
t ) and Dout

t ≜ (Xout
t ,yout

t ), correspondingly
containing n1 and n2 samples (i.e., N = n1 + n2). We let ω ∈ Rd denote the initialization variable.
Each task τt applies an inner algorithm A with such an initial and obtains an output A(ω;Din

t ). Thus,
the adaptation performance of ω for task τt can be measured by the mean squared loss over the
validation set given by ℓ(A(ω;Din

t );Dout
t ) := 1

2n2

∑n2

j=1

(〈
xout
t,j ,A(ω;Din

t )
〉
− yout

t,j

)2
. The goal of

meta-learning is to find an optimal initialization ω̂∗ ∈ Rd by minimizing the following empirical
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meta-training loss:

min
ω∈Rd

L̂(A,ω;D) where L̂(A,ω;D) =
1

T

T∑
t=1

ℓ(A(ω;Din
t );Dout

t ). (1)

In the testing process, suppose a new task τ sampled from T is given, which is associated with the
dataset Z consisting of m points with the task. We apply the learned initial ω̂∗ as well as the inner
algorithm A on Z to produce a task predictor. Then the test performance can be evaluated via the
following population loss:

L(A,ω) = Eτ∼T EZ,(x,y)∼Pϕ(y|x)P(x) [ℓ (A (ω;Z) ; (x, y))] . (2)

Inner Loop with one-step GD. Our focus of this paper is the popular meta-learning algorithm
MAML [16], where inner stage takes a few steps of GD update initialized from ω. We consider one
step for simplicity, which is commonly adopted in the previous studies [6, 10, 19]. Formally, for any
ω ∈ Rd, and any dataset (X,y) with n samples, the inner loop algorithm for MAML with a learning
rate β is given by

A(ω; (X,y)) := ω − β∇ωℓ (ω; (X,y)) = (I− β

n
X⊤X)ω +

β

n
X⊤y. (3)

We allow the learning rate to differ at the meta-training and testing stages, denoted as βtr and βte

respectively. Moreover, in subsequent analysis, we will include the dependence on the learning rate
to the inner loop algorithm and loss functions as A(ω, β; (X,y)), L̂(A,ω, β;D) and L(A,ω, β).

Outer Loop with SGD. We adopt SGD to iteratively update the meta initialization variable ω based
on the empirical meta-training loss eq. (1), which is how MAML is implemented in practice [17].
Specifically, we use the constant stepsize SGD with iterative averaging [15, 12, 11], and the algorithm
is summarized in Algorithm 1. Note that at each iteration, we use one task for updating the meta
parameter, which can be easily generalized to the case with a mini-batch tasks for each iteration.

Algorithm 1 MAML with SGD

Input: Stepsize α > 0, meta learning rate βtr > 0
Initialization: ω0

for t = 1 to T do
Receive task τt with data Dt

Randomly divided into training and validation set: Din
t = (Xin

t ,yin
t ), Dout

t = (Xout
t ,yout

t )
Update ωt+1 = ωt − α∇ℓ(A(ω, βtr;Din

t );Dout
t )

end for
return ωT = 1

T

∑T−1
t=0 ωt

Meta Excess Risk of SGD. Let ω∗ denote the optimal solution to the population meta-test error
eq. (2). We define the following excess risk for the output ωT of SGD:

R(ωT , β
te) ≜ E

[
L(A,ωT , β

te)
]
− L(A,ω∗, βte) (4)

which identifies the difference between adapting from the SGD output ωT and from the optimal
initialization ω∗. Assuming that each task contains a fixed constant number of samples, the total
number of samples over all tasks is O(T ). Hence, the overparameterized regime can be identified as
d ≫ T , which is the focus of this paper, and is in contrast to the well studied underparameterized
setting with finite dimension d (d ≪ T ). The goal of this work is to characterize the impact of SGD
dynamics, demonstrating how the iteration T affects the excess risk, which has not been considered
in the previous overparameterized MAML analysis [6, 43].

3.2 Task and Data Distributions

To gain more explicit knowledge of MAML, we specify the task and data distributions in this section.
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Mixed Linear Regression. We consider a canonical case in which the tasks are linear regressions.
This setting has been commonly adopted recently in [6, 3, 27]. Given a task τ , its model parameter ϕ
is determined by θ ∈ Rd, and the output response is generated as follows:

y = θ⊤x+ z, x ∼ Px, z ∼ Pz (5)

where x is the input feature, which follows the same distribution Px across different tasks, and z is the
i.i.d. Gaussian noise sampled from N (0, σ2). The task signal θ has the mean θ∗ and the covariance
Σθ ≜ E[θθ⊤]. Denote the distribution of θ as Pθ. We do not make any additional assumptions on
Pθ, whereas recent studies on MAML [6, 43] assume it to be Gaussian and isotropic.

Data distribution. For the data distribution Px, we first introduce some mild regularity conditions:

1. x ∈ Rd is mean zero with covariance operator Σ = E[xx⊤];
2. The spectral decomposition of Σ is V ΛV ⊤ =

∑
i>0 λiviv

⊤
i , with decreasing eigenvalues

λ1 ≥ · · · ≥ λd > 0, and suppose
∑

i>0 λi < ∞.

3. Σ− 1
2x is σx-subGaussian.

To analyze the stochastic approximation method SGD, we take the following standard fourth moment
condition [42, 24, 7].
Assumption 1 (Fourth moment condition). There exist positive constants c1, b1 > 0, such that for
any positive semidefinite (PSD) matrix A, it holds that

b1 tr(ΣA)Σ + ΣAΣ ⪯ Ex∼Px

[
xx⊤Axx⊤] ⪯ c1 tr(ΣA)Σ

For the Gaussian distribution, it suffices to take c1 = 3, b1 = 2.

3.3 Connection to a Meta Least Square Problem.

After instantiating our study on the task and data distributions in the last section, note that
∇ℓ(A(ω, βtr;Din

t );Dout
t ) is linear with respect to ω. Hence, we can reformulate the problem eq. (1)

as a least square (LS) problem with transformed meta inputs and output responses.
Proposition 1 (Meta LS Problem). Under the mixed linear regression model, the expectation of the
meta-training loss eq. (1) taken over task and data distributions can be rewritten as:

E
[
L̂(A,ω, βtr;D)

]
= L(A,ω, βtr) = EB,γ

1

2

[
∥Bω − γ∥2

]
. (6)

The meta data are given by

B =
1

√
n2

Xout
(
I− βtr

n1
XinTXin

)
γ =

1
√
n2

(
Xout

(
I− βtr

n1
XinTXin

)
θ + zout − βtr

n1
XoutXin⊤zin

)
(7)

where Xin ∈ Rn1×d,zin ∈ Rn1 ,Xout ∈ Rn2×d and zout ∈ Rn2 denote the inputs and noise for
training and validation. Furthermore,we have

γ = Bθ∗ + ξ with meta noise E[ξ | B] = 0. (8)

Therefore, the meta-training objective is equivalent to searching for a ω, which is close to the task
mean θ∗. Moreover, with the specified data and task model, the optimal solution for meta-test
loss eq. (2) can be directly calculated [19], and we obtain ω∗ = E[θ] = θ∗. Hence, the meta
excess risk eq. (4) is identical to the standard excess risk [5] for the linear model eq. (8), i.e.,
R(ωT , β

te) = EB,γ
1
2

[
∥BωT − γ∥2 − ∥Bθ∗ − γ∥2

]
, but with more complicated input and output

data expressions. The following analysis will focus on this transformed linear model.

Furthermore, we can calculate the statistical properties of the reformed input B, and obtain the
meta-covariance:

E[B⊤B] = (I− βtrΣ)2Σ+
βtr2

n1
(F−Σ3)
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where F = E[xx⊤Σxx⊤]. Let X ∈ Rn×d denote the collection of n i.i.d. samples from Px, and
denote

Hn,β = E[(I− β

n
X⊤X)Σ(I− β

n
X⊤X)] = (I− βΣ)2Σ+

β2

n
(F−Σ3).

We can then write E[B⊤B] = Hn1,βtr . Regarding the form of B and Hn1,βtr , we need some further
conditions on the higher order moments of the data distribution.

Assumption 2 (Commutity). F = E[xx⊤Σxx⊤] commutes with the data covariance Σ.

Assumption 2 holds for Gaussian data. Such commutity of Σ has also been considered in [42].

Assumption 3 (Higher order moment condition). Given |β| < 1
λ1

and Σ, there exists a constant
C(β,Σ) > 0, for large n > 0, s.t. for any unit vector v ∈ Rd, we have:

E[∥v⊤H
− 1

2

n,β(I−
β

n
X⊤X)Σ(I− β

n
X⊤X)H

− 1
2

n,βv∥
2] < C(β,Σ). (9)

In Assumption 3, the analytical form of C(β,Σ) can be derived if Σ− 1
2x is Gaussian. Moreover, if

β = 0, then we obtain C(β,Σ) = 1. Further technical discussions are presented in Appendix.

4 Main Results

In this section, we present our analyses on generalization properties of MAML optimized by average
SGD and derive insights on the effect of various parameters. Specifically, our results consist of three
parts. First, we characterize the meta excess risk of MAML trained with SGD. Then, we establish the
generalization error bound for various types of data and task distributions, to reveal which kind of
overparameterization regarding data and task is essential for diminishing meta excess risk. Finally,
we explore how the adaptation learning rate βtr affects the excess risk and the training dynamics.

4.1 Performance Bounds

Before starting our results, we first introduce relevant notations and concepts. We define the following
rates of interest (See Remark 3 for further discussions)

c(β,Σ) := c1(1 + 8|β|λ1

√
C(β,Σ)σ2

x + 64
√

C(β,Σ)σ4
xβ

2 tr(Σ2))

f(β, n, σ,Σ,Σθ) := c(β,Σ) tr(ΣθΣ) + 4c1σ
2σ2

xβ
2
√

C(β,Σ) tr(Σ2) + σ2/n

g(β, n, σ,Σ,Σθ) := σ2 + b1 tr(ΣθHn,β) + β21β≤0b1 tr(Σ
2)/n.

Moreover, for a positive semi-definite matrix H, s.t. H and Σ can be diagonalized simultaneously,
let µi(H) denote its corresponding eigenvalues for vi, i.e. H =

∑
i µi(H)viv

⊤
i (Recall vi is the

i-th eigenvector of Σ).

We next introduce the following new notion of the effective meta weight, which will serve as an
important quantity for capturing the generalization of MAML.

Definition 1 (Effective Meta Weights). For |βtr|, |βte| < 1/λ1, given step size α and iteration T ,
define

Ξi(Σ, α, T ) =

{
µi(Hm,βte)/ (Tµi(Hn1,βtr)) µi(Hn1,βtr) ≥ 1

αT ;

Tα2µi(Hn1,βtr)µi(Hm,βte) µi(Hn1,βtr) < 1
αT .

(10)

We call µi(Hm,βte)/µi(Hn1,βtr) and µi(Hm,βte)µi(Hn1,βtr) the meta ratio (See Remark 2).

We omit the arguments of the effective meta weight Ξi for simplicity in the following analysis.

Our first results characterize matching upper and lower bounds on the meta excess risk of MAML in
terms of the effective meta weight.

Theorem 1 (Upper Bound). Let ωi = ⟨ω0 − θ∗,vi⟩. If |βtr|, |βte| < 1/λ1, n1 is large ensuring that
µi(Hn1,βtr) > 0, ∀i and α < 1/ (c(βtr,Σ) tr(Σ)), then the meta excess risk R(ωT , β

te) is bounded
above as follows

R(ωT , β
te) ≤ Bias + Var
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where

Bias =
2

α2T

∑
i

Ξi
ω2
i

µi(Hn1,βtr)

Var =
2

(1− αc(βtr,Σ) tr(Σ))

(∑
i

Ξi

)

×[f(βtr, n2, σ,Σθ,Σ)︸ ︷︷ ︸
V1

+2c(βtr,Σ)
∑
i

(
1µi(Hn1,βtr )≥ 1

αT

Tαµi(Hn1,βtr)
+ 1µi(Hn1,βtr )< 1

αT

)
λiω

2
i︸ ︷︷ ︸

V2

]

Remark 1. The primary error source of the upper bound are two folds. The bias term corresponds to
the error if we directly implement GD updates towards the meta objective eq. (6). The variance error
is composed of the disturbance of meta noise ξ (the V1 term), and the randomness of SGD itself (the
V2 term). Regardless of data or task distributions, for proper stepsize α, we can easily derive that the
bias term is O( 1

T ), and the V2 term is also O( 1
T ), which is dominated by V1 term (Ω(1)). Hence, to

achieve the vanishing risk, we need to understand the roles of Ξi and f(·)
Remark 2 (Effective Meta Weights). By Definition 1, we separate the data eigenspace into “leading”
(≥ 1

αT ) and “tail” (< 1
αT ) spectrum spaces with different meta weights. The meta ratios indicate the

impact of one-step gradient update. For large n, µi(Hn,β) ≈ (1− βλi)
2λi, and hence a larger βtr in

training will increase the weight for “leading” space and decrease the weight for “tail” space, while a
larger βte always decreases the weight.
Remark 3 (Role of f(·)). f(·) in variance term consists of various sources of meta noise ξ, including
inner gradient updates (β), task diversity (Σθ) and noise from regression tasks (σ). As mentioned
in Remark 1, understanding f(·) is critical in our analysis. Yet, due to the multiple randomness
origins, techniques for classic linear regression [42, 24] cannot be directly applied here. Our analysis
overcomes such non-trivial challenges. g(·) in Theorem 2 plays a similar role to f(·).

Therefore, Theorem 1 implies that overparameterization is crucial for diminishing risk under the
following conditions:

• For f(·): tr(ΣΣθ) and tr(Σ2) is small compared to T ;
• For Ξi: the dimension of "leading" space is o(T ), and the summation of meta ratio over

"tail" space is o( 1
T ).

We next provide a lower bound on the meta excess risk, which matches the upper bound in order.
Theorem 2 (Lower Bound). Following the similar notations in Theorem 1, Then

R(ωT , β
te) ≥ 1

100α2T

∑
i

Ξi
ω2
i

µi(Hn1,βtr)
+

1

n2
· 1

(1− αc(βtr,Σ) tr(Σ))

∑
i

Ξi

×[
1

100
g(βtr, n1,Σ,Σθ) +

b1
1000

∑
i

(1µi(Hn1,βtr )≥ 1
αT

Tαµi(Hn1,βtr)
+ 1µi(Hn1,βtr )< 1

αT

)
λiω

2
i ].

Our lower bound can also be decomposed into bias and variance terms as the upper bound. The bias
term well matches the upper bound up to absolute constants. The variance term differs from the upper
bound only by 1

n2
, where n2 is the batch size of each task, and is treated as a constant (i.e., does not

scale with T ) [23, 33] in practice. Hence, in the overparameterized regime where d ≫ T and T tends
to be sufficiently large, the variance term also matches that in the upper bound w.r.t. T .

4.2 The Effects of Task Diversity

From Theorem 1 and Theorem 2, we observe that the task diversity Σθ in f(·) and g(·) plays a
crucial role in the performance guarantees for MAML. In this section, we explore several types of
data distributions to further characterize the effects of the task diversity.

We take the single task setting as a comparison with meta-learning, where the task diversity diminishes
(tentatively say Σθ → 0), i.e., each task parameter θ = θ∗. In such a case, it is unnecessary to
do one-step gradient in the inner loop and we set βtr = 0, which is equivalent to directly running
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SGD. Formally, the single task setting can be described as outputting ωsin
T with iterative SGD that

minimizes L̂(A,ω, 0;D) with meta linear model as γ = 1√
n2

(Xoutθ∗ + zout).

Theorem 1 implies that the data spectrum should decay fast, which leads to a small dimension of
"leading" space and small meta ratio summation over "tail" space. Let us first consider a relatively
slow decaying case: λk = k−1 log−p(k + 1) for some p > 1. Applying Theorem 1, we immediately
derive the theoretical guarantees for single task:

Lemma 1 (Single Task). If |βte| < 1
λ1

and if the spectrum of Σ satisfies λk = k−1 log−p(k + 1),
then R(ωsin

T , βte) = O( 1
logp(T ) )

At the test stage, if we set βte = 0, then the meta excess risk for the single task setting, i.e., R(ωsin
T , 0),

is exactly the excess risk in classical linear regression [42]. Lemma 1 can be regarded as a generalized
version of Corollary 2.3 in [42], where they provide the upper bound for R(ωsin

T , 0), while we allow a
one-step fine-tuning for testing.

Lemma 1 suggests that the log-decay is sufficient to assure that R(ωsin
T , 0) is diminishing when

d ≫ T . However, in meta-learning with multi-tasks, the task diversity captured by the task spectral
distribution can highly affect the meta excess risk. In the following, our Theorem 1 and Theorem 2
(i.e., upper and lower bounds) establish a sharp phase transition of the generalization for MAML for
the same data spectrum considered in Lemma 1, which is in contrast to the single task setting (see
Lemma 1), where log-decay data spectrum always yields vanishing excess risk.

Proposition 2 (MAML, log-Decay Data Spectrum). Given |βtr|, |βte| < 1
λ1

, under the same data
distribution as in Lemma 1, and the spectrum of Σθ, denoted as νi, satisfies νk = logr(k + 1) for
some r > 0, then

R(ωT , β
te) =

{
Ω(logr−2p+1(T )) r ≥ 2p− 1

O( 1

logp−(r−p+1)+ (T )
) r < 2p− 1

Proposition 2 implies that under log-decay data spectrum parameterized by p, the meta excess risk
of MAML experiences a phase transition determined by the spectrum parameter r. Since large r
implies large eigenvalues and high variations for task vectors, we adopt r to measure the diversity
of task distributions, and call r as the task diversity in the sequel. While slower task diversity rate
r < 2p− 1 guarantees vanishing excess risk, faster task diversity rate r ≥ 2p− 1 necessarily results
in non-vanishing excess risk. Proposition 2 and Lemma 1 together indicate that while log-decay
data spectrum always yields benign fitting (vanishing risk) in the single task setting, it can yield
non-vanishing risk in meta learning due to fast task diversity rate.

We further validate our theoretical results in Proposition 2 by experiments. We consider the case
p = 2. As shown in Figure 1a, when r < 2p− 1, the test error quickly converges to the Bayes error.
When r > 2p− 1, Figure 1b illustrates that MAML already converges on the training samples, but
the test error (which is further zoomed in Figure 1c) levels off and does not vanish, showing MAML
generalizes poorly when r > 2p− 1.

(a) νi = 0.25 log1.5(i+ 1) (b) νi = 0.25 log8(i+ 1) (c) νi = 0.25 log8(i+ 1)

Figure 1: The effects of task diversity. d = 500, T = 300, λi =
1

i log(i+1)2 , βtr = 0.02, βte = 0.2.

Furthermore, we show that the above phase transition that occurs for log-decay data distributions no
longer exists for data distributions with faster decaying spectrum.
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Proposition 3 (MAML, Fast-Decay Data Spectrum). Under the same task distribution as in Proposi-
tion 2, i.e., the spectrum of Σθ, denoted as νi, satisfies νk = logr(k + 1) = Õ(1) for some r > 0,
and the data distribution satisfies:

1. λk = k−q for some q > 1, R(ωsin
T , βte) = O

(
1

T
q−1
q

)
and R(ωT , β

te) = Õ
(

1

T
q−1
q

)
;

2. λk = e−k, R(ωsin
T , βte) = Õ( 1

T ) and R(ωT , β
te) = Õ( 1

T ).

4.3 On the Role of Adaptation Learning Rate

The analysis in [6] suggests a surprising observation that a negative learning rate (i.e., when βtr takes
a negative value) optimizes the generalization for MAML under mixed linear regression models.
Their results indicate that the testing risk initially increases and then decreases as βtr varies from
negative to positive values around zero for Gaussian isotropic input data and tasks. Our following
proposition supports such a trend, but with a novel tradeoff in SGD dynamics as a new reason for
the trend, under more general data distributions. Denote ωβ

T as the average SGD solution of MAML
after T iterations that uses β as the inner loop learning rate.

Proposition 4. Let s = T log−p(T ) and d = T logq(T ), where p, q > 0. Suppose Px is Gaussian
and the spectrum of Σ satisfies

λk =

{
1/s, k ≤ s

1/(d− s), s+ 1 ≤ k ≤ d.

Suppose the spectral parameter νi of Σθ is O(1), and let the step size α = 1
2c(βtr,Σ) tr(Σ) . Then for

large n1, |βtr|, |βte| < 1
λ1

, we have

R(ωβtr

T , βte) ≲O
( 1

logp(T )

) 1

(1− βtrλ1)2
+O

( 1

logq(T )

)(
1− βtrλd

)2
+ Õ(

1

T
). (11)

The first two terms in the bound of eq. (11) correspond to the impact of effective meta weights Ξi

on the "leading" and "tail" spaces, respectively, as we discuss in Remark 2. Clearly, the learning
rate βtr plays a tradeoff role in these two terms, particularly when p is close to q. This explains the
fact that the test error first increases and then decreases as βtr varies from negative to positive values
around zero. Such a tradeoff also serves as the reason for the first-increase-then-decrease trend of the
test error under more general data distributions as we demonstrate in Figure 2. This complements
the reason suggested in [6], which captures only the quadratic form 1

(1−βtrλ1)
2 of βtr for isotropic Σ,

where there exists only the "leading" space without "tail" space.

R
is
k

𝛽!"

(a) λi =
1

i log(i+1)2

R
is
k

𝛽!"

(b) λi =
1

i log(i+1)3

R
is
k

𝛽!"

(c) λi =
1
i2

Figure 2: R(ωβtr

T , βte) as a function of βtr. d = 200, T = 100, Σθ = 0.82

d I, βte = 0.2.

Based on the above results, incorporating with our dynamics analysis, we surprisingly find that βtr

not only affects the final risk, but also plays a pivot role towards the early iteration that the testing
error tends to be steady. To formally study such a property, we define the stopping time as follows.

Definition 2 (Stopping time). Given βtr, βte, for any ϵ > 0, the corresponding stopping time
tϵ(β

tr, βte) is defined as:

tϵ(β
tr, βte) = min t s.t. R(ωβtr

t ;βte) < ϵ.
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In the sequel, we may omit the arguments in tϵ for simplicity. We consider the similar data distribution
in Proposition 4 but parameterized by K, i.e., s = K log−p(K) and d = K logq(K), where p, q > 0.
Then we can derive the following characterization for tϵ.

Corollary 1. If the assumptions in Proposition 4 hold and p = q. Further, let Σθ = η2I, and
|βtr| < 1

λ1
. Then for tϵ(βtr, βte) ∈ (s,K], we have:

exp
(
ϵ−

1
p

[ Ll

(1− βtrλ1)2
+ Lt(1− βtrλd)

2
] 1

p
)
≤ tϵ

≤ exp
(
ϵ−

1
p

[ Ul

(1− βtrλ1)2
+ Ut(1− βtrλd)

2
] 1

p
)

(12)

where Ll, Lt, Ul, Ut > 0 are factors for "leading" and "tail" spaces that are independent of K2.

Equation (12) suggests that the early stopping time tϵ is also controlled by the tradeoff role that βtr

plays in the "leading" (Ul, Ll) and "tail" spaces (Ut, Lt), which takes a similar form as the bound in
Proposition 4. Therefore, the trend for tϵ in terms of βtr will exhibit similar behaviours as the final
excess risk, and hence the optimal βtr for the final excess risk will lead to an earliest stopping time.
We plot the training and test errors for different βtr in Figure 3, under the same data distributions
as Figure 2a to validate our theoretical findings. As shown in Figure 3a, βtr does not make much
difference in the training stage (the process converges for all βtr when T is larger than 100). However,
in Figure 3b at test stage, βtr significantly affects the iteration when the test error starts to become
relatively flat. Such an early stopping time first increases then decreases as βtr varies from −0.5 to
0.7, which resembles the change of final excess risk in Figure 2a.

R
is

k

Iteration T

(a) Training Risk

R
is

k

Iteration T

(b) Test Error

Figure 3: Training and test curves for different βtr. d = 500, λi =
1

i log2(i+1)
,Σθ = 0.82

d I, βte = 0.2.

5 Conclusions

In this work, we give the theoretical treatment towards the generalization property of MAML based on
their optimization trajectory in non-asymptotic and overparameterized regime. We provide both upper
and lower bounds on the excess risk of MAML trained with average SGD. Furthermore, we explore
which type of data and task distributions are crucial for diminishing error with overparameterization,
and discover the influence of adaption learning rate both on the generalization error and the dynamics,
which brings novel insights towards the distinct effects of MAML’s one-step gradient updates on
"leading" and "tail" parts of data eigenspace.
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