
Supplementary: Fast Bayesian Inference with Batch
Bayesian Quadrature via Kernel Recombination

1 Convergence analysis

1.1 Proof of Theorem 1

We provide the proof of the following theorem given in the main text.

Theorem 1. Suppose
∫ √

K(x, x)f(x) dx < ∞, ℓ ∼ GP(m,K), and we are given an (n − 1)-
dimensional kernel K0 such that K1 := K − K0 is also a kernel. Let (f, g) be a density pair
with weight λ. Let xrec be an N -point independent sample from g and wrec := λ(xrec). Then, if
(wquad, xquad) is a proper recombination of (wrec, xrec) for K0, it satisfies

Exrec

[√
var[Zf | xquad]

]
≤ 2

(∫
K1(x, x)f(x) dx

)1/2

+

√
CK,f,g

N
(1)

where Zf :=
∫
ℓ(x)f(x) dx and CK,f,g :=

∫
K(x, x)λ(x)f(x) dx−

∫∫
K(x, y)f(x)f(y) dxdy.

Recall H is the RKHS given by the kernel K. As the kernel satisfies
∫ √

K(x, x)f(x) dx < ∞, the
mean embedding

µK(f) :=

∫
f(x)K(x, ·) dx (2)

is a well-defined element of H. We first discuss its approximation via importance sampling.
Lemma 1. Let f be a probability density on Rd and g be another density such that f = λg with a
nonnegative function λ. Let xrec be an N -point independent sample from g and wrec = λ(xrec) be the
weights. If we define µr := 1

N w⊤
recK(xrec, ·) then it satisfies

E[∥µK(f)− µr∥2H] = 1
NCK,f,g

where CK,f,g =
∫
K(x, x)λ(x)f(x) dx−

∫∫
K(x, y)f(x)f(y) dxdy

Furthermore, the choice g(x) ∝
√
K(x, x)f(x) minimises CK,f,g, if λ = K(x, x)−1/2 is well-

defined.

Proof. Let xrec = (X1, . . . , XN ), so µr = 1
N

∑N
i=1 λ(Xi)K(Xi, ·). From (2), we have

∥µK(f)− µr∥2H = ∥µK(f)∥2H − 2⟨µK(f), µr⟩H + ∥µr∥2H (4)

=

∫∫
K(x, y)f(x)f(y) dxdy − 2

N

N∑
i=1

∫
K(x,Xi)f(x)λ(Xi) dx (5)

+
1

N2

N∑
i,j=1

K(Xi, Xj)λ(Xi)λ(Xj). (6)

We have

E
[∫

K(x,Xi)f(x)λ(Xi) dx

]
=

∫∫
K(x, y)f(x)λ(y)g(y) dxdy =

∫∫
K(x, y)f(x)f(y) dxdy

(7)
and for i ̸= j

E[K(Xi, Xj)λ(Xi)λ(Xj)] =

∫∫
K(x, y)λ(x)λ(y)g(x)g(y) dxdy =

∫∫
K(x, y)f(x)f(y) dxdy,

(8)
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so we in total have

E[∥µK(f)− µr∥2H] =
1

N2

N∑
i=1

E[K(Xi, Xi)λ(Xi)
2]− 1

N

∫∫
K(x, y)f(x)f(y) dxdy (9)

=
1

N

(∫
K(x, x)λ(x)f(x) dx−

∫∫
K(x, y)f(x)f(y) dxdy

)
=

CK,f,g

N
.

(10)

We next show the optimality of g(x) ≈
√
K(x, x)f(x). It suffices to consider when∫

K(x, x)λ(x)f(x) dx is minimised as the second term is independent of g. From the Cauchy-
Schwarz, we have∫

K(x, x)λ(x)f(x) dx =

∫
K(x, x)λ(x)f(x) dx

∫
f(x)

λ(x)
dx ≥

(∫ √
K(x, x)f(x) dx

)2

,

(11)
and the equality is satisfied if g(x) = f(x)

λ(x) ∝
√
K(x, x)f(x).

Proof of Theorem 1. Let (wquad, xquad) be a proper recombination of (wrec, xrec), and let Qn be the
quadrature formula given by points xquad and weights 1

N wquad, i.e, Q(h) := 1
N w⊤

quadh(xquad). We
also define µn := 1

N w⊤
quadK(xquad, ·).

A well-known fact is that the worst-case error of Qn (with respect to f here) wce(Qn) =
sup∥h∥≤1|Qn(h) −

∫
h(x)f(x) dx| satisfies wce(Qn) = ∥µK(f) − µn∥H for a kernel satisfying∫ √

K(x, x)f(x) dx < ∞ [9, 18]. By using this and the relation between Bayesian quadrature and
kernel quadrature in the main text, we have√

var[Zf | xquad] ≤ wce(Qn) ≤ ∥µK(f)− µr∥H + ∥µr − µn∥H (12)

From Lemma 1 we have E[∥µK(f) − µr∥H] ≤ E[∥µK(f) − µr∥2H]1/2 =
√

CK,f,g/N , so it now
suffices to show

Exrec [∥µr − µn∥H] ≤ 2

(∫
K1(x, x)f(x) dx

)1/2

. (13)

We first have

∥µr − µn∥2H =
1

N2

(
w⊤

recK(xrec, xrec)wrec − 2w⊤
recK(xrec, xquad)wquad + w⊤

quadK(xquad, xquad)wquad
)
,

(14)

and from the recombination property we also have

w⊤
recK0(xrec, xrec)wrec − 2w⊤

recK0(xrec, xquad)wquad + w⊤
quadK0(xquad, xquad)wquad = 0, (15)

which follows from the fact that (wrec, xrec) and (wquad, xquad) give the same kernel embedding for
the RKHS given by K0 as the latter is a recombination of the former (see e.g. [11, Eq. 14]). By
subtracting, we obtain

∥µr − µn∥2H (16)

=
1

N2

(
w⊤

recK1(xrec, xrec)wrec − 2w⊤
recK1(xrec, xquad)wquad + w⊤

quadK1(xquad, xquad)wquad
)

(17)

= ∥µ(1)
r − µ(1)

n ∥2H1
, (18)

where H1 is the RKHS given by K1 and

µ(1)
r :=

1

N
w⊤

recK1(xrec, ·), µ(1)
n :=

1

N
w⊤

quadK1(xquad, ·). (19)

Now, by letting k
1/2
1 (x) :=

√
K(x, x), we have ∥K1(x, ·)∥H1

= k
1/2
1 (x) for a point x. So we have

∥µ(1)
r ∥H1

≤ 1

N
w⊤

reck
1/2
1 (xrec), ∥µ(1)

n ∥H1
≤ 1

N
w⊤

quadk
1/2
1 (xquad) ≤

1

N
w⊤

reck
1/2
1 (xrec), (20)
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where the last inequality follows from the assumption that (wquad, xquad) is a proper recombination of
(wrec, xrec). Therefore, we have the estimate

∥µr − µn∥H = ∥µ(1)
r − µ(1)

n ∥H1
≤ ∥µ(1)

r ∥H1
+ ∥µ(1)

n ∥H1
≤ 2

N
w⊤

reck
1/2
1 (xrec). (21)

Finally, to prove (13), we recall that xrec is an N -point independent sample from g and wrec = λ(xrec),
so we obtain

Exrec [∥µr − µn∥H] ≤ 2Exrec

[
1

N
w⊤

reck
1/2
1 (xrec)

]
= 2

∫
λ(x)k

1/2
1 (x)g(x) dx (22)

= 2

∫ √
K1(x, x)f(x) dx ≤ 2

(∫
K1(x, x)f(x) dx

)1/2

, (23)

where we have used Cauchy–Schwarz in the last inequality.

1.2 Eigenvalue dacay of integral operators

Let us consider the integral operator

h 7→
∫

K(·, y)h(y)f(y) dy (24)

where h ∈ L2(f) := {h̃ | measurable, ∥h̃∥2L2(f) :=
∫
h̃(x)2f(x) dx < ∞}, and let σ1 ≥ σ2 ≥

· · · ≥ 0 be eigenvalues of this operator. This sequence of eigenvalues is known to be closely related
to the convergence rate of kernel quadrature [3].

For the Nyström approximation, we have the following estimate represented by the eigenvalues:
Theorem 2 ([11]). For a probability density function f on Rd, let xnys be an M -point independent
sample from f . Let K0 be the rank-(n− 1) approximate kernel using xnys given by Eq. (10) in the
main text. Then, K1 := K −K0 satisfies∫

K1(x, x)f(x) dx ≤ nσn +

∞∑
m=n+1

σn +
2(n− 1)Kmax√

M

(
1 +

√
2 log

1

δ

)
(25)

with probability at least 1− δ.

This gives a theoretical guarantee for one step of our algorithm, combined with Theorem 1.

Although the sequence of eigenvalues σn does not have an obvious expression when K is the kernel
in the middle of our algorithms BASQ, when K is a multivariate Gaussian (RBF) kernel and f is also
a Gaussian density, we have a concrete expression of eigenvalues [8].

Indeed, if K(x, y) = exp(−ϵ2|x − y|2) and f(x) ∝ exp(−α2|x|2), in the case d = 1, we have
σn = abn for some constants a > 0 and 0 < b < 1 depending on ϵ and α. Thus, for the d-dimensional
case, we can roughly estimate that σn ≤ adbm+1 if n > md. So, by only using n, we have

σn ≤ adb⌈n
1/d⌉ ≤ adb(n

1/d) = ad exp(−cn1/d), (26)

for c = log(1/b).

2 Model Analysis

2.1 Ablation study

2.1.1 Ablation study of sampling methods

We investigated the influence of each component using 10-dimensional Gaussian mixture likelihood.
The performance is evaluated by taking the mean and standard deviation of five metrics when each
model gathered 1,000 observations with n = 100 batch size. LogMAE is the natural logarithmic
MAE between the estimated integral value and true one, and the logKL is the natural logarithmic of
the KL divergence between the estimated posterior and true one. Wall time is the overhead time until
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Table 1: Ablation study of sampling methods

Sampling Prop. dist. Alternate update Performance metric

Unc.

sampl.

Factor.

trick

Linear

IVR

Optimal

IVR

Kernel

Update
RCHQ logMAE logKL

wall

time (s)

logMAE

per time

logKL

per time

✔
-1.8750

±0.0435

-8.1366

±0.2049

407.42

±10.139

-0.0046

±0.0002

-0.0200

±0.0010

✔ ✔ ✔
-3.3310

±0.5265

-9.5934

±0.1697

50.065

±8.3153

-0.0702

±0.0222

-0.1976

±0.0362

✔ ✔ ✔ ✔
-3.6743

±0.0449

-9.6108

±0.1363

367.63

±26.565

-0.0100

±0.0008

-0.0263

±0.0023

✔ ✔ ✔ ✔
-1.5936

±0.0016

-7.9967

±0.0025

47.499

±8.1966

-0.0346

±0.0060

-0.1735

±0.0300

✔ ✔ ✔ ✔
-3.4379

±0.2345

-9.7877

±0.4589

810.45

±14.468

-0.0042

±0.0003

-0.0121

±0.0008

✔ ✔ ✔ ✔ ✔
-4.0138

±0.0078

-9.6222

±0.17147

48.75

±8.2176

-0.0848

±0.0144

-0.2038

±0.0379

gathering 1,000 observations in seconds. LogMAE per time refers to the value that logMAE divided
by the wall time. LogKL per time is the same.

Uncertainty sampling (Unc. sampl.) and factorisation trick (Factor. trick) refers to the technique
explained in the section 4.2 in the main paper. Linearised IVR proposal distribution (Linear IVR)
is the ones with Equations (8)-(10) in the main paper, whereas the optimal IVR is the square-root
kernel IVR g(x) =

√
CL

y (x, x)π(x) derived from the Lemma 1. Kernel update refers to the type-II
MLE to optimise the hyperparameters. RCHQ means whether or not to adopt RCHQ, if not, it means
multi-start optimisation (that is, the same with batch WSABI.)

Sampling from optimal IVR of the square root is intractable, so we adopted the SMC sampling
scheme. Firstly, supersamples Xsuper are generated from prior π(x), then we calculate the weights

wi =
√
CL

y (Xi, Xi)π(xi)/π(xi) =
√

CL
y (Xi, Xi), then we normalise them via wn

i := wi∑
i wi

,

where
∑

i w
n
i = 1. At last, we resample subsamples Xquad from the supersamples Xsuper with the

weights wi. By removing the identical samples from Xquad, we can construct Xquad. This removal
reduces the size of subsamples to approximately 100 times smaller, so we need to supersample at
least 100 times larger than the size of the subsample Xquad. As the size of subsamples is already large,
this SMC procedure is computationally demanding.

All components were examined by removing each. The ablation study of the sampling scheme
in table 1 shows that all components are essential for reducing overhead or faster convergence.
Alternate update and uncertainty sampling contribute to the fast convergence, and factorisation trick
and linearised proposal distribution reduce overhead with a negligible effect on convergence.

2.1.2 Ablation study of BQ modelling

We investigated BQ modelling influence with the same procedure of the ablation study in the previous
section. The compared models are WSABI-L, WSABI-M, Vanilla BQ (VBA), and log-warp BQ
(BBQ). For the details of VBQ and BBQ modelling, see sections 3.3 and 3.4. With regard to the
WSABI-M modelling, it has a disadvantageous formula in the mean posterior predictive distribution
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Table 2: Ablation study of BQ modelling

BQ modelling Performance metric

WSABI

-L

WSABI

-M

VBQ

(no warp)

BBQ

(log warp)
logMAE logKL

wall

time (s)

logMAE

per time

logKL

per time

✔
-4.0138

±0.0078

-9.6222

±0.1715

48.75

8.2176

-0.0848

0.0144

-0.2038

0.0379

✔
-4.0418

0.0532

-10.083

0.2088

814.13

±19.813

-0.0050

±0.0002

-0.0123

±0.0006

✔
-2.5842

±0.9978

12.307

±0.0158

50.901

±5.3634

0.0534

±0.0252

0.2954

±0.0254

✔
-3.1278

±1.7428

9.0425

±0.3634

54.092

±5.4892

0.0617

±0.0285

-0.2038

±0.0379

mL
y (x). The acquisition function is expressed as:

mL
y (x) := α+

1

2

(
my(x)

2 + Cy(x, x)
)
. (27)

Then, the expectation of the WSABI-M is no more single term;

E[mL
y (x)] := α+

1

2
E[my(x)

2] +
1

2
E[Cy(x, x)] (28)

As such, we cannot apply the factorisation trick for speed. Thus, we should adopt the SMC sampling
scheme to sample from WSABI-M as the same procedure with the square root kernel IVR (Optimal
IVR) explained in the previous section. This significantly slows down the computation with WSABI-
M.

The ablation study result is shown in table 2. While WSABI-M achieves slightly better accuracy than
WSABI-L, it also records the slowest computation. The WSABI-M intractable expression hinders to
apply the quick sampling schemes we adopted. Vanilla BQ and BBQ (log warped BQ) shows larger
errors. Therefore, the WSABI-L adoption is reasonable in this setting.

2.1.3 Ablation study of kernel modelling

We investigated kernel modelling influence with the same procedure of the ablation study in the
previous section. The compared kernels are RBF (Radial Basis Function, as known as squared
exponential, or Gaussian), Matérn32, Matérn52, Polynomial, Exponential, Rational quadratic, and
exponentiated quadratic. The quadrature was performed via RCHQ with the weighted sum of the
mean predictive distribution of the optimised GP. Exponential kernel marked the best accuracy in
the evidence inference, whereas the KL divergence of posterior is embarrassingly erroneous. This is
because all kernels examined in this section is not warped; thus, the GP-modelled likelihood is not
non-negative.

2.2 Hyperparameter sensitivity analysis

2.2.1 Analysis results

The hyperparameter sensitivity analysis is performed in the same setting as the previous section that
adopts a ten-dimensional Gaussian mixture. The analysis was performed with functional Analysis
of Variance (ANOVA) [12]. The functional ANOVA is the statistical method to decompose the
variance V of a black box function f into additive components V U associated with each subset of
hyperparameters. [12] adopts random forest for efficient decomposition and marginal prediction
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Table 3: Ablation study of kernel modelling

Kenel logMAE logKL
wall

time (s)

logMAE

per time

logKL

per time

RBF
-2.9598

± 0.3679

12.321

± 0.0288

54.730

± 1.2979

-0.0543

± 0.0080

0.2349

± 0.0048

Matérn32
-3.7328

± 0.9608

12.312

± 0.0577

53.502

± 0.8661

-0.0701

± 0.0191

0.2355

± 0.0026

Matérn52
-4.3773

± 1.4593

12.332

± 0.0765

53.925

± 0.9662

-0.0817

± 0.0285

0.2341

± 0.0027

Polynomial
-3.7828

± 0.6803

12.208

± 0.0673

52.281

± 1.5491

-0.0728

± 0.0152

0.2449

± 0.0056

Exponential
-4.6094

± 1.3440

12.268

± 0.0291

54.891

± 0.3428

-0.0841

± 0.0250

0.2252

± 0.0009

Rational

quadratic

-3.2004

± 0.6515

12.309

± 0.0596

62.645

± 1.7786

-0.0514

± 0.0119

0.2059

± 0.0046

Exponentiated

quadratic

-3.3361

± 1.4484

11.046

± 0.4465

53.306

± 0.1992

-0.0627

± 0.0274

0.2072

± 0.0076

Table 4: Sensitivity analysis with functional ANOVA

hyperparameters logMAE logKL wall
time

logMAE
per time

logKL
per time

N 0.0835 0.0465 0.6347 0.1729 0.1811
M 0.1041 0.0824 0.2497 0.6401 0.6789
r 0.0041 0.0226 0.0071 0.0040 0.0024
N,M 0.0710 0.1134 0.0903 0.1077 0.1206
N,r 0.1021 0.1299 0.0058 0.0062 0.0024
M,r 0.4598 0.4381 0.0059 0.0604 0.0123
N,M,r 0.1754 0.3116 0.1671 0.0065 0.0023

over each hyperparameter. The hyperparameters to be analysed are the number of subsamples for
recombination N , the number of samples for the Nyström method, and the partition ratio in the IVR
proposal distribution r. They need to satisfy the following relationship; N ≫ M > n, where n is the
batch size. We typically take n = 100, so M should be larger than at least 200, and N should be
larger than at least 20,000. Grid search was adopted for the hyperparameter space, with the range of
N = 20,000, 50,000, 100,000, 500,000, 1,000,000, M = 200, 500, 1,000, 5,000, 10,000, and r = 0.0,
0.25, 0.5, 0.75, 1.0, resulting in 125 data points. To compensate for the dynamic range difference, a
natural logarithmic logN and logM were used as the input.

The result is shown in Table 4. Each value refers to the fraction of the decomposed variance,
corresponding to the importance of each hyperparameter over the performance metric. Functional
ANOVA evaluates the main effect and the pairwise interaction effect. Figure 1 shows the marginal
predictions on the important two hyperparameters for each performance metric.

As the most obvious case, we will look into the wall time. The most important hyperparameter
was N , and the second was M . This is well correlated to the theoretical aspect. The overhead
computation time of BASQ can be decomposed into two components; subsampling and RCHQ. The
N subsampling is dependent on N as O(n2/2 + ncompN). ncomp is way less than M or n2 and is
insensitive to the hyperparameter variation or GP updates as we designed it to be sparse. The SMC
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time

10

8

6

lo
gM

10.0 11.5 13.0
logN

logMAE logKL

logM
1086

logM
1086

r

0.0

1.0
r

0.0

1.0

logMAE per time logKL per time

10

8

6

lo
gM

10

8

6

lo
gM

10.0 11.5 13.0
logN

10.0 11.5 13.0
logN

high

low

Figure 1: Sensitivity analysis of the hyperparameters over the metrics

sampling for M is negligible as O(N +M). The RCHQ is O(NM +M2 log n+Mn2 log(N/n)).
Comparing the complexity, the RCHQ stands out. Therefore, the whole BASQ algorithm complexity
is dominated by RCHQ. While M has the squared component, N itself is as large as M2. Therefore,
the selected two hyperparameters N and M align with the theory. Figure 1 agrees the above analysis.

The logMAE and logKL metrics have a similar trend to each other. In fact, their correlation coefficient
was 0.6494. This makes sense because both metrics are determined by the functional approximation
accuracy of likelihood ℓ(x). While increasing M is always beneficial in any r, varying r is effective
in larger M . At last, the metrics of performance per wall time is the combination of these effects.
Obviously, time is the dominant factor, so we should limit the N and M as small as possible. The
most important hyperparameter was M . This is a natural consequence because M affects the overhead
increment less than N but contributes to reducing errors more.

2.2.2 A guideline to select hyperparameters

The main takeaway from the functional ANOVA analysis is that the accuracy with and without
the time constraint has an opposite trend. Therefore, the best hyperparameter set is dependent on
the overhead time allowance. The expensiveness of likelihood evaluation determines this. Per the
likelihood query time per iteration, we should increase M and N for faster convergence.

In the cheap likelihood case, the most relevant metric is logMAE per time and logKL per time. As we
should minimise the time, we choose the minimal size for N and M to minimise the overhead. As
the typical hyperparameter set is (n,N,M, r) = (100, 200, 20, 000, 0.5), and these are the minimum
values for N and M at given n. The remained choice is the selection of r. As shown in Figure 1,
r = 1, namely, UB proposal distribution, was the best selection in the Gaussian mixture likelihood
case. A similar trend is observed in the synthetic dataset. However, as we observed in the real-world
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dataset cases, some likelihoods showed that r = 0.5, namely IVR proposal distribution outperformed
the UB. Therefore, the r = 1 might be the first choice., and r = 0.5 is the second choice.

In the expensive likelihood case, we can increase the N and M because the overhead time is less
significant than the likelihood query time. The logMAE and logKL without time constraints are good
guidelines for tuning the hyperparameters. As M is the most significant hyperparameter, we wish to
increase M first. However, we have to increase N under the constraint N ≫ M , necessary for RCHQ
fast convergence. Empirically, we recommend increasing the M three times larger than N from the
minimum set because the importance factor ratio in Table 4 is roughly three times. And the increment
of M should be corresponded to the likelihood query time tlikelihood over the RCHQ computation time
tRCHQ. We increase the M in accordance with the ratio rcomp := tlikelihood/tRCHQ. Thus, the M and
N is determined as M = rcompMmin, N =

rcomp

3 Nmin, where Mmin = 200, Nmin = 20, 000.

3 Analytical form of integrals

3.1 Gaussian identities

N (x;m1,Σ1)N (x;m2,Σ2) = CcN (x;mc,Σc) (29)∫
N (x;m1,Σ1)N (x;m2,Σ2)dx = Cc (30)

N (Ax+b;m,Σ) =

√
|2π(A⊤Σ−1A)−1|

|2πΣ|
N
(

x;A−1m − b, (A⊤Σ−1A)−1
)
(31)

where

Σc =
[
Σ−1

1 +Σ−1
2

]−1
(32)

mc =
[
Σ−1

1 +Σ−1
2

]−1 (
Σ−1

1 m1 +Σ−1
2 m2

)
(33)

Cc = N (m1;m2,Σ1 +Σ2) (34)

In the finite number of product case:
n∏

i=1

N (x;mi,Σi) = CmN (x;mm,Σm) (35)

∫ n∏
i=1

N (x;mi,Σi)dx = Cm

∫
N (x;mm,Σm)dx (36)

= Cm (37)

where

Σm =

[
n∑

i=1

(
Σ−1

i

)]−1

(38)

mm =

[
n∑

i=1

(
Σ−1

i

)]−1 n∑
i=1

(
Σ−1

i mi

)
(39)

Cm = exp

[
−1

2

{
(n− 1)d log 2π −

n∑
i=1

log
∣∣Σ−1

i

∣∣+ log

∣∣∣∣∣
n∑

i=1

(
Σ−1

i

)∣∣∣∣∣ (40)

+

n∑
i=1

(
(Σ−1

i mi)
⊤Σi(Σ

−1
i mi)

)
−

(
n∑

i=1

(
Σ−1

i mi

))⊤( n∑
i=1

(
Σ−1

i

))−1( n∑
i=1

(
Σ−1

i mi

))


(41)
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3.2 Definitions

x∗: predictive data points, x∗ ∈ Rd

X: the observed data points, X ∈ Rn×d

y = ℓtrue(X): the observed likelihood, y ∈ Rn

π(x∗) = N (x∗;µπ,Σπ): prior distribution,
v

′
: a kernel variance,

l: a kernel lengthscale,
K(x∗,X) = vN (x∗;X,W): a RBF kernel,
v = v

′√|2πW|: a normalised kernel variance,
W: a diagonal covariance matrix whose diagonal elements are the lengthscales of each dimension,

W =

[
l2 0
0 l2

]
I: The identity matrix,
KXX = K(X,X): a kernel over the observed data points.

3.3 Warped GPs as Gaussian Mixture

3.3.1 Mean

mL
y (x∗) = α+

1

2
m̃y(x∗)

2 (42)

= α+
1

2
yT K−1

XXK(X, x∗)K(x∗,X)K−1
XXy (43)

= α+
1

2

∑
i,j

ωiωjK(Xi, x∗)K(x∗, Xj) (44)

= α+
∑
i,j

wm
ijN

(
x∗;

Xi +Xj

2
,

W
2

)
(45)

where
Woodbury vector: ω = K−1

XXy,
mean weight: wm

ij = 1
2v

2ωiωjN (Xi;Xj , 2W)

3.3.2 Variance

CL
y (x∗, x

′

∗) = m̃y(x)C̃y(x, x
′)m̃y(x

′)

= [K(x∗,X)ω]
⊤
[
K(x∗, x

′

∗)−K(x∗,X)K−1
XXK(X, x

′

∗)
] [

K(x
′

∗,X)ω
]

= ω⊤K(X, x∗)K(x∗, x
′

∗)K(x
′

∗, X)ω

− ω⊤K(X, x∗)K(x∗,X)K−1
XXK(X, x

′

∗)K(x
′

∗,X)ω

=
∑
i,j

ωiωjK(Xi, x∗)K(x∗, x
′

∗)K(x
′

∗, Xj)

−
∑
i,j

ωiωj

∑
k,l

ΩklK(Xj , x∗)K(x∗, Xi)K(Xk, x
′

∗)K(x
′

∗, Xl)

=
∑
i,j

wv
ijCv(i, j)−

∑
i,j

∑
k,l

wvv
ijklCvv(i, j, k, l)

(46)

where
The inverse kernel weight: Ωkl = K−1

XX(k, l)
the first variance weight: wv

ij = v3ωiωj

the second variance weight: wvv
ijkl = v4ωiωjΩkl

the first variance Gaussian variable

9



Cv(i, j) = N

x∗
x

′

∗
x

′

∗

 ;

[
Xi

Xj

x∗

]
,

[W 0 0
0 W 0
0 0 W

]
the second variance Gaussian variable

Cvv(i, j, k, l) = N



x∗
x∗
x

′

∗
x

′

∗

 ;

Xi

Xj

Xk

Xl

 ,

W 0 0 0
0 W 0 0
0 0 W 0
0 0 0 W
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3.3.3 Symmetric variance

Here we consider x∗ = x′
∗ and x∗ is a sample with dimension d:

CL
y (x∗, x∗) = CL

y (x∗)

= ω⊤K(X, x∗)K(x∗, x∗)K(x∗,X)ω

− ω⊤K(X, x∗)K(x∗,X)K−1
XXK(X, x∗)K(x∗,X)ω

=
∑
i,j

ωiωjK(Xi, x∗)K(x∗, x∗)K(x∗, Xj)

−
∑
i,j

ωiωj

∑
k,l

ΩklK(Xj , x∗)K(x∗, Xi)K(Xk, x∗)K(x∗, Xl)

=
v√

|2πW|

∑
i,j

ωiωjK(Xi, x∗)K(x∗, Xj)

−
∑
i,j

ωiωj

∑
k,l

ΩklK(Xj , x∗)K(x∗, Xi)K(Xk, x∗)K(x∗, Xl)

=
v3√
|2πW|

∑
i,j

ωiωjN (Xi;Xj , 2W)N
(
x∗;

Xi +Xj

2
,

W
2

)

− v4
∑
i,j

ωiωj

∑
k,l

{
ΩklN (Xl;Xi, 2W)N

(
x∗;

Xl +Xi

2
,

W
2

)

·N (Xk;Xj , 2W)N
(
x∗;

Xk +Xj

2
,

W
2

)}]
=
∑
i,j

w
′v
ijN

(
x∗;

Xi +Xj

2
,

W
2

)
−
∑
i,j

∑
k,l

w
′vv
ijklN

(
x∗;

Xi +Xj +Xk +Xl

4
,

W
4

)
(47)

where
w

′v
ij = h3√

|2πW|
ωiωjN (Xi;Xj , 2W)

w
′vv
ijkl = h4ωiωjΩklN (Xl;Xi, 2W)N (Xk;Xj , 2W)N

(
Xk+Xj

2 ; Xi+Xl

2 ,W
)

3.4 Model evidence

The distribution over integral Z is given by:

p(Z|y) =
∫

p
(
Z|ℓ(x∗)

)
p
(
ℓ(x∗)|y

)
dx (48)

= p
(
Z|ℓ(x∗)

)
N
(
ℓ(x∗);m

L
y (x∗), C

L
y (x∗)

)
(49)

= N
(
Z;E

[
Z|y
]
, var

[
Z|y
])

(50)
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3.4.1 Mean of the integral

E
[
Z|y
]
= E

[
mL

y

]
(51)

=

∫
mL

y (x∗)π(x∗)dx∗ (52)

= α+
1

2

∫
m̃2

y(x∗)π(x∗)dx∗ (53)

= α+
∑
i,j

wm
ij

∫
N
(
x∗;

Xi +Xj

2
,

W
2

)
N (x∗;µπ,Σπ)dx∗ (54)

= α+
∑
i,j

wm
ijN

(
Xi +Xj

2
;µπ,

W
2

+Σπ

)
(55)

3.4.2 Variance of the integral

var
[
Z|y
]
= var

[
CL

y
]

=

∫∫
π(x∗)C

L
y (x∗, x

′

∗)π(x
′

∗)dx∗dx
′

∗

=

∫∫ (
ω⊤K(X, x∗)K(x∗, x

′

∗)K(x
′

∗,X)ωπ(x∗)π(x
′

∗)

−ω⊤K(X, x∗)K(x∗,X)K−1
XXK(X, x

′

∗)K(x
′

∗,X)ωπ(x∗)π(x
′

∗)
)
dx∗dx

′

∗

=
∑
i,j

ωiωj

∫∫
K(Xi, x∗)K(x∗, x

′

∗)K(x
′

∗, Xj)π(x∗)π(x
′

∗)dx∗dx
′

∗

−
∑
i,j

ωiωj

∑
k,l

Ωkl

∫∫
K(Xj , x∗)K(x∗, Xi)K(Xk, x

′

∗)K(x
′

∗, Xl)π(x∗)π(x
′

∗)dx∗dx
′

∗

=
∑
i,j

ωiωjh
3

∫ [
N (x

′

∗;µπ,Σπ)N (x
′

∗;Xj ,W)

∫
N (x∗;Xi,W)N (x∗;x

′

∗,W)N (x∗;µπ,Σπ)dx∗

]
dx

′

∗

−
∑
i,j

∑
k, lωiωjΩklh

4

∫
N (x∗;Xj ,W)N (x∗;Xi,W)N (x∗;µπ,Σπ)dx∗

·
∫

N (x
′

∗;Xk,W)N (x
′

∗;xl,W)N (x
′

∗;µπ,Σπ)dx
′

∗

=
∑
i,j

ωiωjh
3

∫
N (x

′

∗;µπ,Σπ)N (x
′

∗;Xj ,W)N (x
′

∗;Xi,W)N

(
Xi + x

′

∗
2

;µπ,
W
2

+Σπ

)
dx

′

∗

−
∑
i,j

∑
k, lωiωjΩklh

4

[
N (Xj ;Xi, 2W )N

(
Xi +Xj

2
;µπ,

W
2

+Σπ

)]

·
[
N (Xk;xl, 2W )N

(
Xk +Xl

2
;µπ,

W
2

+Σπ

)]
=
∑
i,j

ωiωjh
3

∫
N (x

′

∗;µπ,Σπ)N (x
′

∗;Xi,W)N (x
′

∗;Xj ,W)2dN
(
x

′

∗; 2µπ −Xi/2, 2W + 4Σπ

)
dx

′

∗

−
∑
i,j

∑
k,l

wvv
ijklKvv(i, j, k, l)

=
∑
i,j

2dwv
ijKv(i, j)−

∑
i,j

∑
k,l

wvv
ijklKvv(i, j, k, l)

(56)
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where

Kv(i, j) = N (Xi;Xj , 2W)N
(
Xi +Xj

2
;µπ,

W
2

+Σπ

)
(57)

N
[(
2W−1 +Σ−1

π

)−1 (W−1(Xi +Xj) +Σ−1
π µπ

)
; 2µπ − Xi

2
,
(
2W−1 +Σ−1

π

)−1
+ 2W + 2Σπ

]
(58)

Kvv(i, j, k, l) =

[
N (Xj ;Xi, 2W)N

(
Xi +Xj

2
;µπ,

W
2

+Σπ

)][
N (Xk;Xl, 2W)N

(
Xk +Xl

2
;µπ,

W
2

+Σπ

)]
(59)

3.5 Posterior inference

3.5.1 Joint posterior

p(x) =
mL

y (x)π(x)

E[Z|y]
(60)

3.5.2 Marginal posterior

The marginal posterior can be on obtained from Gaussian mixture form of joint posterior. Thanks to
the Gaussianity, marginal posterior can be easily derived by extracting the d-th element of matrices in
the following mixture of Gaussians.

p(x) =
α

E[Z|y]
+
∑
i,j

wp
ijN (x∗;µp,Σp) (61)

where
wp

ij =
wm

ij

E[Z|y]N
(

Xi+Xj

2 ;µπ,
W
2 +Σπ

)
Σp = (2W−1 +Σ−1

π )−1

µp = Σp(W−1(Xi +Xj) +Σ−1
π µπ)

3.5.3 Conditional posterior

The conditional posterior p (x; d = d | d = D \ D(≥ d)) can be derived from the Gaussian mixture
form of joint posterior. We can obtain the conditional posterior via applying the following relationship
to each Gaussian: Assume x ∼ N (x;µ,Σ) where

x =

[
xa
xb

]
µ =

[
µa
µb

]
Σ =

[
Σa Σc

Σ⊤
c Σb

]
(62)

Then

p(xa)|p(xb) = N (xa; µ̂a, Σ̂a)

{
µ̂a = µa +ΣcΣ

−1
b (xb − µb)

Σ̂a = Σa −ΣcΣ
−1
b Σ⊤

c

(63)

p(xb)|p(xa) = N (xb; µ̂b, Σ̂b)

{
µ̂b = µb +ΣcΣ

−1
a (xa − µa)

Σ̂b = Σb −ΣcΣ
−1
a Σ⊤

c

(64)

4 Uncertainty sampling

4.1 Analytical form of acquisiton function

4.1.1 Acquisiton function as Gaussian Mixture

We set the acquisition function A(x) as the product of the variance and the prior. As is shown in Eq.
(47), When we provide the predictive samples x∗:
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A(x∗) = CL
y (x∗, x∗)π(x∗) (65)

= CL
y (x∗)π(x∗) (66)

=

∑
i,j

w
′v
ijN

(
x∗;

Xi +Xj

2
,

W
2

)
−
∑
i,j

∑
k,l

w
′vv
ijklN

(
x∗;

Xi +Xj +Xk +Xl

4
,

W
4

)
(67)

· N (x∗;µπ,Σπ) (68)

=
∑
i,j

w
′A
ij N

(
x∗;µ

A
ij ,ΣA

)
−
∑
i,j

∑
k,l

w
′AA
ijklN

(
x∗;µ

AA
ijkl,ΣAA

)
(69)

where
ΣA = (2W−1 +Σ−1

π )−1

µA
ij = ΣA

(
W−1(Xi +Xj) +Σ−1

π µπ

)
w

′A
ij = w

′v
ijN

(
Xi+Xj

2 ;µπ,
W
2 +Σπ

)
ΣAA = (4W−1 +Σ−1

π )−1

µAA
ijkl = ΣA

(
W−1(Xi +Xj +Xk +Xl) +Σ−1

π µπ

)
w

′AA
ijkl = w

′vv
ijklN

(
Xi+Xj+Xk+Xl

4 ;µπ,
W
4 +Σπ

)
4.1.2 Normalising constant and PDF

The normalising constant can be obtained via the integral:

ZA =

∫
A(x∗)dx∗

=
∑
i,j

w
′A
ij −

∑
i,j

∑
k,l

w
′AA
ijkl

(70)

Thus, the normalised acquisition function as PDF pA is as follows:

pA(x∗) = Ã(x∗) (71)

=
CL

y (x∗)π(x∗)

ZA
(72)

=
∑
i,j

wA
ijN (x∗;µ

A
ij ,ΣA)−

∑
i,j

∑
k,l

wAA
ijklN (x∗;µ

AA
ijkl,ΣAA) (73)

where wA
ij = w

′A
ij /ZA

wAA
ijkl = w

′AA
ijkl /ZA

4.1.3 Factorisation trick

The factorisation trick is set in the conditions where the likelihood is |ℓ̃(x)|, the distribution of interest
f(x) is |ℓ̃(x)|π(x), and the acquiition function is C̃y(x, x)π(x). We will derive the Gaussian mixture
form of this acquisition function.

A(x) = C̃y(x, x)π(x) (74)

=
v√

|2πW|
N (x;µπ,Σπ)− v2

∑
ij

ΩijN (x;µf ,Σf ) (75)

where
Σf =

(
2W−1 +Σ−1

π

)−1

µf = Σf
(
W−1(Xi +Xj) +Σ−1

π µπ

)
14



Then, normalising constant is:

Zf
A =

∫
A(x)dx =

v√
|2πW|

− v2
∑
ij

Ωij (76)

Therefore, the acquisition function as a probability distribution function pA(x) is:

pA(x) =
v

Zf
A

√
|2πW|

N (x;µπ,Σπ)−
v2

Zf
A

∑
ij

ΩijN (x;µf ,Σf ) (77)

4.2 Efficient sampler

4.2.1 Acquisition function as sparse Gaussian mixture sampler

Eq. (77) clearly explains the acquisition function can be written as a Gaussian mixture, but it also
contains negative components. The first term is obviously positive, and the second term is a mixture
of positive and negative components. The condition where the second term becomes positive is
Ωij < 0. By checking the negativity of the element Ωij , we can reduce the number of components
by half on average. Then, when we consider sampling from this non-negative acquisition function,
the following steps will be performed: First, we sample the index of the component from weighted
categorical distribution Π(x), and the weights are the one in Eq. (77). Then, we sample from the
normal distribution that has the same index identified in the first process. These sampling will be
repeated until the accumulated number of the sample reaches the same as the recombination sample
size N . This means the component whose weight is lower than 1/N is unlikely to be sampled even
once. Therefore, we can dismiss these components with the threshold of 1/N . Interestingly, the
weights of Gaussians vary exponentially. The reduced number of Gaussians is much lower than n2.
As such, we can construct the efficient sparse Gaussian mixture sampler of the acquisition function
p′A(x).

4.2.2 Sequential Monte Carlo

Recall from the Eqs (8) - (10) in the main paper, we wish to sample from g(x) = (1−r)π(x)+rpA(x).
We have the efficient sampler p′A(x), but p′A(x) ̸= pA(x) because p′A(x) is the function which is
constructed from only positive components of pA(x). Thus, we need to correct this difference via
sequential Monte Carlo (SMC). The idea of SMC is simple:

1. sample x ∼ p′A(x), x ∈ RrN

2. calculate weights wsmc = pA(x)/p′A(x)
3. resample from the categorical distribution of the index of x based on wsmc

If pA(x) ≈ p′A(x), the rejected samples in the procedure 3 is minimised. As we formulate p′A(x)
can approximate pA(x) well, the number of samples to be rejected is negligibly small. Thus, the
number of samples from pA(x) is slightly smaller than rN . The number of samples for π(x) in g(x)
is adjusted to this fluctuation to keep the partition ratio r.

5 Other BQ modelling

5.1 Non-Gaussian Prior

Non-Gaussian prior distributions can be applied via importance sampling.∫
ℓ(x)π(x) =

∫
ℓ(x)

π(x)

g(x)
g(x)dx (78)

=

∫
ℓ′(x)g(x)dx (79)

where π(x) is the arbitrary prior distribution of interest, g(x) is the proposal distribution of Gaussian
(mixture), ℓ′(x) = ℓ(x)π(x)/g(x) is the modified likelihood. Then, we set the two independent GPs
on each of ℓ(x) and ℓ′(x). Then, both the model evidence Z =

∫
ℓ′(x)g(x)dx, and the posterior

p(x) = ℓ(x)π(x)/Z becomes analytical.
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5.2 Non-Gaussian kernel

WSABI-BQ methods are limited to the squared exponential kernel in the likelihood modelling.
However, other BQ modelling permits the selection of different kernels. For instance, there are the
existing works on tractable BQ modelling with kernels of Matérn [7], Wendland [16], Gegenbauer
[7], Trigonometric (Integration by parts), splines [20] polynomial [6], and gradient-based kernel [15].
See details in [7].

5.3 RCHQ for Non-Gaussian prior and kernel

RCHQ permits the integral estimation via non-Gaussian prior and/or kernel without bespoke mod-
elling like the above techniques.

Xquad,wquad = RCHQ(BQmodel, sampler) (80)

E[ℓ(x)π(x)] = wquadm
L
y (Xquad) (81)

Var[ℓ(x)π(x)] = w⊤
recC

L
y (xrec, xrec)wrec − 2w⊤

recC
L
y (xrec, xquad)wquad + w⊤

quadC
L
y (xquad, xquad)wquad

(82)

5.4 Vanilla BQ model (VBQ)

5.4.1 Expectation ∫
mℓ0(x)π(x)dx = v

∫
N (x;X,W)N (x;µπ,Σπ)dxω (83)

= vN (X;µπ,W +Σπ)ω (84)
(85)

5.4.2 Acquisition function

Aunnormalised(x) = C(x, x)π(x) (86)

= K(x, x)π(x)−K(x,X)K(X,X)−1K(X, x)π(x) (87)

= N (x;x,W)N (x;µπ,Σπ)− v2N (x;µπ,Σπ)N (x;X,W)K(X,X)−1N (x;X,W)⊤

(88)

=
v√

|2πW|
N (x;µπ,Σπ)− v2

∑
i,j

ΩijN (µπ;Xi,W +Σπ)N (x;X ′
i,W′)N (x;Xj ,W)

(89)

=
v√

|2πW|
N (x;µπ,Σπ)− v2

∑
i,j

ΩijN (µπ;Xi,W +Σπ)N (Xj ;X
′
i,W + W′)N (x;X ′′

ij ,W′′)

(90)

=
v√

|2πW|
N (x;µπ,Σπ)−

∑
i,j

wijN (x;X ′′
ij ,W′′) (91)

(92)

where
Ωij := K(X,X)−1 (93)

wi := v2ΩijN (µπ;Xi,W +Σπ)N (Xj ;X
′
i,W + W′) (94)

W′ = (W−1 +Σ−1
π )−1 (95)

X ′
i = W′(W−1Xi +Σ−1

π µπ) (96)

W′′ =
(
W′−1 + W−1

)−1
(97)

X ′′
ij = W′′ (W′−1X ′

i + W−1Xj

)
(98)

(99)
(100)
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Then, the normalised acquisition function pA(x) as a probability distribution is as follows:

PA(x) := Aunnormalised(x)/ZA (101)

=
v

ZA

√
|2πW|

N (x;µπ,Σπ)−
∑
i,j

wi

ZA
N (x;X ′′

ij ,W′′) (102)

(103)

where

ZA =

∫
Aunnormalised(x)dx (104)

=
v√

|2πW|

∫
N (x;µπ,Σπ)dx− v2

∑
i,j

ΩijN (µπ;Xi,W +Σπ)

∫
N (x;X ′

i,W′)N (x;Xj ,W)dx

(105)

=
v√

|2πW|
− v2

∑
i,j

ΩijN (µπ;Xi,W +Σπ)N (Xj ;X
′
i,W + W′) (106)

(107)

5.5 Log-GP BQ modelling (BBQ)

5.5.1 BBQ modelling

The doubly-Bayesian quadrature (BBQ) is modelled with log-warped GPs as follows (see details in
the paper [17]):

Set three GPs

p(ℓ0|D) ∼ GP(ℓ0;mℓ0(x), Cℓ0(x, x
′)) (108)

p(log ℓ0|D) ∼ GP(log ℓ0;mlog ℓ0(x), Clog ℓ0(x, x
′)) (109)

p(∆log ℓ0 |D) ∼ GP(∆log ℓ0 ;m∆(x), C∆(x, x
′)) (110)

(111)

Definitions

exp(log ℓ(x)) ≈ exp(log ℓ0(x)) + exp(log ℓ0(x))(log ℓ(x)− log ℓ0(x)) (112)
ℓ0 := mℓ0 (113)

∆log ℓ0 := mlog ℓ0 − log ℓ0 = mlog ℓ0 − log(mℓ0) (114)
mℓ = mℓ0 +mℓ0m∆(x) (115)

Expectation

E[Z|D] =

∫
mℓ0(x)π(x)dx+

∫
mℓ0(x)m∆(x)π(x)dx (116)

(117)

The first term is as follows:∫
mℓ0(x)π(x)dx = v

∫
N (x;X,W)N (x;µπ,Σπ)dxω (118)

= vN (X;µπ,W +Σπ)ω (119)
(120)

where

ω = K(X,X)−1ℓ0(X) (121)
K(x,X) = vN (x;X,W) (122)
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The second term is as follows:∫
mℓ0(x)∆log ℓ0(x)p(x)dx (123)

= vv∆ω⊤
∫

N (x;X,W)⊤N (x;X∆,W∆)N (x;µπ,Σπ)dxω
∆ (124)

= vv∆ω⊤N (X⊤ − X∆, 0,W + W∆)

∫
N (x;µ∆,Σ∆)N (x;µπ,Σπ)dxω

∆ (125)

= vv∆ω⊤N (X⊤ − X∆, 0,W + W∆)N (µ∆;µπ,Σπ +Σ∆)ω∆ (126)
(127)

where

ω∆ = K(X∆,X∆)−1∆log ℓ0(X
∆) (128)

µ∆ = [W−1 + W∆,−1]−1(W−1X + W∆,−1X∆) (129)

Σ∆ = [W−1 + W∆,−1]−1 (130)
(131)

X∆ is the observed data for the correlation factor ∆log ℓ0 , which includes not only X but also the
additional data points via mlog ℓ0 − log(mℓ0), with GPs calculation.

5.5.2 Sampling for BBQ

We apply BASQ-VBQ sampling scheme for log-GP logℓ0, then calculate the others as post-process.
Therefore, the sampling cost is similar to the VBQ, whereas the integral estimation as post-process is
more expensive than VBQ.

6 Experimental details

6.1 Synthetic problems

6.1.1 Quadrature hyperparameters

The initial quadrature hyperparameters are as follows:
A kernel length scale l = 2
A kernel variance v′ = 2
Recombination sample size N = 20, 000
Nyström sample size M = N/100
Supersample ratio rsuper = 100
Proposal distribution g(x) partition ratio r = 0.5

The supersample ratio rsuper is the ratio of supersamples for SMC sampling of acquisition function
against the recombination sample size N .

A kernel length scale and a kernel variance are important for selecting the samples in the first batch.
Nevertheless, these parameters are updated via type-II MLE optimisation after the second round.
Nyström sample size must be larger than the batch size n, and the recombination sample size is
preferred to satisfy N ≫ M . Larger N and M give more accurate sample selection via kernel
quadrature. However, larger subsamples result in a longer wall-time. We do not need to change the
values as long as the integral converged to the designated criterion. When longer computational time
is allowed, or likelihood is expensive enough to regard recombination time as negligible, larger N ,
M will give us a faster convergence rate.

The partition ratio r is the only hyperparamter that affects the convergence sensitively. The optimal
value depends the integrand and it is challenging to know the optimal value before running. As we
derived in Lemma 1,

√
CL

y π(x) gives the optimal upper bound. r = 0.5 is a good approximation of

this optimal proposal distribution: g(x) = (1− r)π(x)+ rCL
y π(x) =

{
(1− r) + rCL

y
}
π(x). Here,
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the linearisation gives the approximation
√

CL
y =

√
1 + (CL

y − 1) ≈ 1 +
CL

y −1

2 = 0.5 + 0.5CL
y .

Therefore, (0.5 + 0.5CL
y )π(x) ≈

√
CL

y π(x). Thus, r = 0.5 is a safe choice.

6.1.2 Gaussian mixture

The likelihood function of the Gaussian mixture used in Figure 1 in the main paper is expressed as:

ℓtrue(x) =

n∑
i=1

wiN (x;µi,Σi) (132)

wi = N (µi;µπ,Σi +Σπ)
−1 (133)

Ztrue =

∫
ℓtrue(x)π(x)dx, (134)

=

n∑
i=1

wi

∫
N (x;µi,Σi)N (x;µπ,Σπ)dx (135)

=

n∑
i=1

wiN (µi;µπ,Σi +Σπ) (136)

= 1 (137)

where
µπ = 0
Σπ = 2I
π(x) = N (x;µπ,Σπ)

The prior is the same throughout the synthetic problems.

6.1.3 Branin-Hoo function

The Branin-Hoo function in Figure 2 in the main paper is expressed as:

ℓtrue(x) =

2∏
i=1

[
sin(xi) +

1
2 cos(3xi)

]2
( 12xi)2 +

3
10

, x ∈ R2 (138)

Ztrue =

∫
ℓtrue(x)π(x)dx (139)

= 0.9557282 (140)
≈ 0.913416 (141)

6.1.4 Ackley function

The Ackley function in Figure 2 in the main paper is expressed as:

ℓtrue(x) = −20 exp

−1

5

√√√√1

2

2∑
i=1

x2
i

+ exp

(
1

2

2∑
i=1

cos(2πxi)

)
+ 20, x ∈ R2 (142)

Ztrue =

∫
ℓtrue(x)π(x)dx (143)

≈ 5.43478 (144)
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Figure 2: Performance comparison with N-dimensional Gaussian mixture likelihood function. (a)
dimension study, (b) convergence rate, and (c) wall time vs MAE of integral. (a) varies from 2 to 16
dimensions, (b) and (c) are 10 dimensional Gaussian mixture.

6.1.5 Oscillatory function

The Oscillatory function in Figure 2 in the main paper is expressed as:

ℓtrue(x) = cos

(
2π + 5

2∑
i=1

xi

)
+ 1, x ∈ R2 (145)

Ztrue =

∫
ℓtrue(x)π(x)dx (146)

= 1 (147)

6.1.6 Additional experiments

Dimensional study in Gaussian mixture likelihood Figure 2(a) shows the dimension study of
Gaussian mixture likelihood. The BASQ and BQ are conditioned at the same time budget (200
seconds). The higher dimension gives a more inaccurate estimation. From this result, we recommend
using BASQ with fewer than 16 dimensions.

Ablation study We investigated the influence of the approximation we adopted using 10 dimen-
sional Gaussian mixture likelihood. The compared models are as follows:

1. Exact sampler (without factorisation trick)

2. Provable recombination (without LP solver)

The exact sampler without the factorisation trick is the one that exactly follows the Eqs. (8) - (10) of
the main paper. That is, the distribution of interest f(x) is the prior π(x). In addition, the kernel for
the acquisition function is an unwarped CL

y , which is computationally expensive. Next, the provable
recombination algorithm is the one introduced in [19] with the best known computational complexity.
As explained in the Background section of the main paper, our BASQ implementation is based on an
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Figure 3: Qualitative evaluation of posterior inference in synthetic problems

LP solver (Gurobi [31] for this time) with empirically faster computational time. We compared the
influence of these approximations.

Figure 2(b) illustrates that these approximations are not affecting the convergence rate in the sample
efficiency. However, when compared to the wall-clock time (Figure 2(c)), the exact sampler without
the factorisation trick is apparently slow to converge. Moreover, the provable recombination algorithm
is slower than an LP solver implementation. Thus, the number of samples the provable recombination
algorithm per wall time is much smaller than the LP solver. Therefore, our BASQ standard solver
delivers solid empirical performance.

Qualitative evaluation of posterior inference Figure 3 shows the qualitative evaluation of joint
posterior inference after 200 seconds passed against the analytical true posterior. The estimated
posterior shape is exactly the same as the ground truth.

6.2 Real-world problems

6.2.1 Battery simulator

Background Single Particle Model with electrolyte dynamics (SPMe) is a commonly-used lithium-
ion battery simulator to predict the voltage response at given excitation current time-series data.
Estimating SPMe parameters from observations are well known for ill-conditioned problem because
this model is overparameterised [5]. In the physical model, we need to separate the anode and cathode
internal states to represent actual cell components. However, when it comes to predicting the voltage
response, this separation into two components is redundant. Except for extreme conditions such
as low temperature, most voltage responses can be expressed with a single component. Therefore,
the parameters of cathode and anode often have a perfect negative correlation, meaning an arbitrary
combination of cathode and anode parameters can reconstruct the exactly same voltage profile. As
such, point estimation means nothing in these cases. Bayesian inference can capture this negative
correlation as covariance. Therefore, Bayesian inference is a natural choice for parameter estimation
in the battery simulator. Moreover, there are many plausible battery simulators with differing levels
of approximation. Selecting the model satisfying both predictability and a minimal number of
parameters is crucial for faster calculation, particularly in setting up the control simulator. Therefore,
Bayesian model selection with model evidence is essential. The experimental setup is basically
following [2].

Problem setting We wish to infer the posterior distribution of 3 simulation parameters
(Dn, Dp, σn), where Dn is the diffusivity on anode, Dp is the diffusivity on cathode, σn is the
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noise variance of the observed data. We have the observed time-series voltage y and exciation profiles
i as training dataset.

The parameter inference is modelled as follows:

y∗ = Sim(x∗, i∗) (148)
π(x∗) = Lognormal(x∗;µπ,Σπ) (149)

ℓtrue(x∗) = N [Sim(x∗, i); y, σnI] (150)

where
µπ = [1.38, 0,−20.25]
Σπ = diag([0.03, 0.001, 0.001])
in the logarithmic space.

Parameters The observed data y and i are generated by the simulator with multiharmonic sinusoidal
excitation current defined as:

i = 0.132671 [sin(1/5πt) + sin(2πt) + sin(20πt) + sin(200πt)] (151)
y = Sim(xtrue, i) +

√
σnU [0, 1] (152)

where
t is discretised for 10 seconds with the sampling rate of 0.00025 seconds, resulting in 40,000 data
points.
xtrue = [ exp(1.361)× 10−14, exp(0)× 10−13, exp(−20.25)× 10−10 ]

Metric The posterior distribution is evaluated via RMSE between true and inferred conditional
posterior on each parameter. The RMSE is calculated on 50 grid samples for each dimension so as to
slice the maximum value of the joint posterior. Each 50 grid samples are equally-spaced and bounded
with the following boundaries:
bounds = [1.1, 1.7], [−0.075, 0.08], [−20.3,−20.2]
where the boundaries are given by [lower, upper] in the logarithmic space.

6.2.2 Phase-field model

Background The PFM is a flexible time-evolving interfacial physical model that can easily in-
corporate the multi-physical energy [13]. In this dataset, the PFM is applied to the simulation of
spinodal decomposition, which is the self-organised nanostructure in the bistable Fe-Cr alloy at high
temperatures. Spinodal decomposition is an inherently stochastic process, making characterisation
challenging [14]. Therefore, Bayesian model selection is promising for estimating its parameter and
determining the model physics component.

Problem setting We wish to infer the posterior distribution of 4 simulation parameters
(T, LcT , nB , Lg), where T is the temperature, LcT is the interaction parameter that defines the
interaction between composition and temperature, nB is the number of Bohr magnetons per atom,
and Lg is the gradient energy coefficient. We have the observed time-series 2-dimensional images y.

The parameter inference is modelled as follows:

y∗ = Sim(x∗) (153)
π(x∗) = Lognormal(x∗;µπ,Σπ) (154)

ℓtrue(x∗) = N [Sim(x∗); y, σnI] (155)

where
σn = 10−4

µπ = [1.91, 0.718, 0.798, 0.693]
Σπ = diag([0.0003, 0.00006, 0.0001, 0.0001])
in the logarithmic space.
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Parameters The observed data y is generated by the simulator defined as:

y = Sim(xtrue) +
√
σnU [0, 1] (156)

where
y is discretised in both spatially and time-domain. Time domain is discretised for 5000 seconds with
the sampling rate of 1 seconds, resulting in 5,000 data points. 2-dimensional space is discretised for
64× 64 nm2, with 64× 64 nm2 pixels. The total data points are 64× 64× 5, 000 = 20, 480, 000.
xtrue = [ exp(1.90657514) × 102, exp(0.71783979) × 104, exp(0.7975072), exp(0.69314718) ×
10−15 ]

Metric The posterior distribution is evaluated via RMSE between true and inferred conditional
posterior on each parameter. The RMSE is calculated on 50 grid samples for each dimension so as to
slice the maximum value of the joint posterior. Each 50 grid samples are equally-spaced and bounded
with the following boundaries:
bounds = [1.87, 1.94], [0.69, 0.73], [0.77, 0.83], [0.68, 0.73]
where the boundaries are given by [lower, upper] in the logarithmic space.

6.2.3 Hyperparameter marginalisation of hierarchical GP

Background The hierarchical GP model was designed for analysing the large-scale battery time-
series dataset from solar off-grid system field data all over the African continent [1]. The field data
contains the information of time-series operating conditions (I, T, V ), where I is the excitation
current, T is the temperature, and V is the voltage. We wish to estimate the state of health (SoH)
from these field data, achieving the preventive battery replacement before it fails for the convenience
of those who rely on the power system for their living. However, estimating the state of health is
challenging because the raw data (I, T, V ) is not correlated to the battery health. There are several
definitions of SoH, but the internal resistance of a battery R is adopted in [1]. In the usual circuit
element, resistance can be easily calculated from R = V/I via Ohm’s law. However, the battery
internal resistance R is way more complex. Battery internal resistance R is a function of (t, I, T, c),
where t is time, c is the acid concentration. Furthermore, there are two factors of resistance variation;
ionic polarisation and aging. To incorporate these physical insights to the machine learning model, [1]
is adopted the hierarchical GP model. First, they adopted the additive kernel of a squared exponential
kernel and a Wiener velocity kernel to divide the ionic polarisation effect and aging effect. Second,
they adopted the hierarchical GPs to model V to divide into R-dependent GP and non-R-dependent
GP to incorporate the Open Circuit Voltage-State of Charge (OCV-SOC) relationship.

Problem setting We wish to infer the hyperposterior distribution of 5 GP hyperparameters
(lT , lI , lc, σ0, σ1), where lT , lI , lc are the a squared exponential kernel lengthscale of temperature T ,
current I , and acid concentration c, respectively, and σ0, σ1 are the kernel variances of a squared
exponential kernel and a Wiener velocity kernel, respectively. We have the observed time-series
dataset of (I, T, V ) as y.

The hyperposterior inference is based on the energy function Φ(x) (The details can be found in [1],
Equation (15) in the Appendix information).

Φx = − log p(y|x)− log p(x) (157)

= − log p(x) +
1

2

∑
t

log |St(x)|+
1

2

∑
t

eT
tSt(x)

−1et +
∑
t

nt

2
log 2π (158)

where
p(x) = Lognormal(x∗;µπ,Σπ) is a hyperprior.
et is the error vector for each charging segment.
nt is the number of observations in the charging segment.
St(x) is the innovation covariance for the segment.
µπ = [3.96, 1.94, 2.79, 2.26, 0.34]
Σπ = diag([1, 1, 1, 1, 1])
in the logarithmic space.
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Metric The posterior distribution is evaluated via RMSE between true and inferred conditional
posterior on each parameter. The RMSE is calculated on 50 grid samples for each dimension so as to
slice the maximum value of the joint posterior. Each 50 grid samples are equally-spaced and bounded
with the following boundaries:
bounds = [−10, 10], [−10, 10], [−10, 10], [−10, 10], [−10, 10]
where the boundaries are given by [lower, upper] in the logarithmic space.

7 Technical details; Q & A

Q1: How does BASQ enable RCHQ to perform the batch selection? A1: The trick that achieves
parallelisation is the alternately subsampling in section 4.1, not RCHQ itself. While BQ aims to
calculate the target integral Z =

∫
ℓtrue(x)π(x)dx, RCHQ over a single iteration aims to calculate

the empirical integral Z =
∫
ℓ(x)πemp(x)dx over empirical measure defined by N subsamples

Xrec. At each iteration, we greedily select the batch candidates via RCHQ that can minimise the
integral variance over the current empirical measure. As we gather more observation data points and
update the kernel (GP), the above two integrals approach the same. In other words, any KQ method,
including kernel herding, can be applied to the batch selection via this alternately subsampling
scheme. Secondly, such a dual quadrature scheme tends to be computationally demanding, but
tractable computation and superb sample efficiency of RCHQ permit scalable batch parallelisation.

Q2: Why does RCHQ outperform the kernel herding? A2: The reason why RCHQ converges
faster than herding is that RCHQ exploits more information than herding. While herding greedily
optimises sequentially, RCHQ explicitly exploits the information of the spectral decay of the kernel
and the probability distribution, both of which herding neglects. Exploiting the spectral decay
corresponds to capturing the approximately finite dimensionality of the kernel. RCHQ adopts the
Nyström method for its approximation. This convergence rate superiority can be confirmed in figure
2(a) in [11]. ("N. + emp + opt" refers to RCHQ.) While RCHQ exponentially decays, herding does
not show such fast decay in the Gaussian setting. Therefore, BQ with RCHQ can converge faster
than BQ with kernel herding, allowing scalable and sample-efficient batch selection.

Q3: Are there some potential areas, if any, where the proposed method performs worse than
existing ones? A3: Probably yes, there is. The advantage of herding over RCHQ is the computation
cost. In the small batch size setting, the difference in the level of convergence between herding and
RCHQ is much smaller than in the large batch size n. Therefore, herding might perform better than
RCHQ in the small batch with a very cheap likelihood case as herding might earn more samples than
RCHQ. The comparison against other KQ methods is summarised in table 1 in [11]. RCHQ gives a
small theoretical bound of the worst-case error with tractable computation cost compared to herding,
DPP, CVS, and vanilla BQ.

Q4: What are the pros and cons of RCHQ over the Determinantal Point Process (DPP)? DPP
considers the correlation correctly, whereas RCHQ assumes i.i.d. However, DPP requires prohibitive
computation. Table 1 in [11] compares DPP-based KQ [4] and RCHQ ("N. + empirical" refers to
RCHQ), which clearly shows that RCHQ provides not only tractable computation but also competitive
theoretical bound of worst-case error with mathematical proof.

Q5: Why Nyström? Other low-rank approximation possibilities? A5: Because Nyström is
advantageous to derive convergence based on spectral decay asymptotically and theoretically. The
only requirement for the RCHQ is a finite sequence of good test functions, so finite dimensional
approximations such as random Fourier features can also be used.

Q6: Theorem 1 does not apply to WSABI-transformed BASQ but to a variant which uses vanilla
BQ. Is that correct? A6: Yes. Theorem 1 is under the assumptions which the BQ is modelled
with vanilla BQ, without batch and hyperparameter updates. However, if we accept the linearisation
of WSABI-L and assume that the ℓ(x) is (approximately) in the GP over the current iteration, the
theoretical analysis is correct.
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Figure 4: Performance comparison with 1-dimensional Gaussian mixture likelihood function.

Q7: Why is the coefficient 0.8 used in the definition of alpha? A7: We inherit the coefficient of
0.8 from the original paper [10]. However, they said the performance is insensitive to the choice of
this coefficient, so it is not limited to 0.8 in general.

Q8: Can we apply WSABI for negative integral? A8: Yes. α can take negative value, so WSABI
transformation can be applied to negative integral case when we apply WSABI to general function
integration.

7.1 Detailed description of the difference between RCHQ and batch WSABI

Figure 4 shows the performance comparison between the kernel recombination (RCHQ) and the
uncertainty sampling (batch WSABI). Firstly, the true likelihood ℓtrue was modelled with the mixture
of one-dimensional Gaussians, which was generated under the procedure described in footnote 4 in
the main paper. Prior π(x) is a broader one-dimensional Gaussian, and the posterior p(x) is also
the mixture of Gaussians, thanks to the Gaussianity. While we can access the information of the
prior distribution function π(x), we cannot access the ones of the posterior p(x) or true likelihood
function ℓtrue. However, we can query the true likelihood value at a given location ℓtrue(Xquad) with
a large batch (n = 16 in this case). Now, we have four observations n = 4 with black dots. We
have constructed the WSABI-L GPs with the given four observations (X, y). The mean dotted line
represents the mean of posterior predictive distributions mL

y (x), the blue shaded area shows the mean
± corrected variance CL

y (x, x)π(x). A myriad of blue lines represents the functions sampled from
GP ℓ ∼ GP(ℓ;mL

y (x), C
L
y (x, x)). The above problem setting is shared with both algorithms.

On the one hand, batch WSABI adopts local penalisation with multi-start optimisation. The
acquisition function A(x) for batch WSABI is the uncertainty sampling Var[ℓ(x)π(x)] =
π(x)2Cy(x)my(x)

2] as shown in purple dotted line. We can see four peaks corresponding to the
positions of larger variance in WSABI-L GP. Multi-start optimisation generates 100 random samples
from prior as multi-starting points, then run a gradient-based optimisation algorithm (L-BFGS) to
find the maxima. Then, we take the largest point amongst the solutions. After taking the largest point,
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we locally penalise the point with Lipschitz Cone. Then the largest peak is split into two peaks with
smaller heights. Then, the multi-start optimisation will be applied again to find the next maxima. We
will iterate this greedy selection for n = 16. The selected points are depicted with red dots. The
WSABI-L GPs are updated with the given 16 observations. As we can see, the selected 16 batch
candidates are concentrated around the largest peak in the acquisition function, resulting in a higher
integration error. This is mainly because the local penalisation tends to aggregate around the large
peak, where the newly generated penalised peaks still have significant heights. When compared the
acquisition function A(x) with the true posterior p(x), we can find that the peak positions between
A(x) and p(x) are not so correlated. In other words, local penalisation trusts the acquisition function
too much, although the early-stage acquisition function A(x) is not such a reliable information source.
Moreover, the multi-start optimisation requires the optimisation loop per the number of seeds, which
is computationally demanding. In addition, the possibility of finding the global optima becomes
exponentially lower when the dimension is scaled up. Thus, the multi-start optimisation requires
exponentially increasing the number of random seeds, although there are still no guarantees to find
the global maxima of acquisition function A(x). Therefore, batch WSABI is slow and inefficient in
selecting the batch candidates.

On the other hand, RCHQ using the linearised IVR proposal distribution g(x) = (1−r)π(x)+rA(x).
This is mixed with the prior and GP variance, so it is less dependent on the early-stage A(x). The
subsampled histogram depicted with blue bars has similar peaks with A(x), but still, there is room
for the possibility of selecting other regions. Then, RCHQ constructs the empirical measure based
on these N subsamples and resamples M samples for the Nyström method to construct the finite
test functions. The test functions are applied to construct the metric to evaluate the worst-case error.
Then, RCHQ selects n batch candidates to minimise the worst-case error over the empirical measure
with the kernel recombination. As we can see, the selected 16 batch candidates are sparser and
well-captured the true likelihood peaks than local penalisation, resulting in a smaller integration error.
Such subsampling is done faster than multi-start optimisation thanks to the efficient sampler, and
recombination is also tractable with single LP solver iteration. As such, the RCHQ can select sparser
candidates than local penalisation within more tractable computation time.
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