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Abstract

Large sequence models (SM) such as GPT series and BERT have displayed out-
standing performance and generalization capabilities in natural language process,
vision and recently reinforcement learning. A natural follow-up question is how to
abstract multi-agent decision making also as an sequence modeling problem and
benefit from the prosperous development of the SMs. In this paper, we introduce a
novel architecture named Multi-Agent Transformer (MAT) that effectively casts co-
operative multi-agent reinforcement learning (MARL) into SM problems wherein
the objective is to map agents’ observation sequences to agents’ optimal action
sequences. Our goal is to build the bridge between MARL and SMs so that the mod-
eling power of modern sequence models can be unleashed for MARL. Central to our
MAT is an encoder-decoder architecture which leverages the multi-agent advantage
decomposition theorem to transform the joint policy search problem into a sequen-
tial decision making process; this renders only linear time complexity for multi-
agent problems and, most importantly, endows MAT with monotonic performance
improvement guarantee. Unlike prior arts such as Decision Transformer fit only pre-
collected offline data, MAT is trained by online trial and error from the environment
in an on-policy fashion. To validate MAT, we conduct extensive experiments on
StarCraftII, Multi-Agent MuJoCo, Dexterous Hands Manipulation, and Google Re-
search Football benchmarks. Results demonstrate that MAT achieves superior per-
formance and data efficiency compared to strong baselines including MAPPO and
HAPPO. Furthermore, we demonstrate that MAT is an excellent few-short learner
on unseen tasks regardless of changes in the number of agents. See our project
page at https://sites.google.com/view/multi-agent-transformer(1).

1 Introduction

Multi-agent reinforcement learning (MARL) [44, 8] is a challenging problem for its difficulty which
arises not only from identifying each individual agent’s policy improvement direction, but also from
combining agents’ policy updates jointly which should be beneficial for the whole team. Recently,
such difficulty in multi-agent learning has been eased owing to the introduction of centralized

training for decentralized execution (CTDE) [11, 45], which allows agents to access the global
information and opponents’ actions during the training phase. This framework enables successful
developments of methods that directly inherit single-agent algorithms. For examples, COMA replaces
the policy-gradient (PG) estimate with a multi-agent PG (MAPG) counterpart [11], MADDPG

(1)†Corresponding to <yaodong.yang@pku.edu.cn>. The source code could be accessed directly with this link
https://github.com/PKU-MARL/Multi-Agent-Transformer.
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extends deterministic policy gradient into multi-agent settings with a centralized critic [20, 34],
QMIX leverages deep Qnetworks for decentralized agents and introduces a centralized mixing
network for Q-value decomposition [29, 36, 26]. MAPPO endowing all agents with the same set
of parameters and then training by trust-region methods [46]. PR2 [42] and GR2 [43] methods
conduct recursive reasoning under the CTDE framework. These methods, however, cannot cover the
whole complexity of multi-agent interactions; in fact, some of them are shown to fail in the simplest
cooperative task [15]. To resolve this issue, the multi-agent advantage decomposition theorem was
proposed [15, Theorem 1] which captures how different agents contribute to the return and provides
an intuition behind the emergence of cooperation through a sequential decision making process
scheme. Based on it, HATRPO and HAPPO algorithms [15, 17, 16] were derived which, thanks to the
decomposition theorem and sequential update scheme, established new state-of-the-art methods for
MARL. However, their limitation is that the agents’ policies are unaware of the purpose to develop
cooperation and still rely on a carefully handcrafted maximization objective. Ideally, a team of agents
should be aware of the jointness of their training by design, thereby following a holistic and effective
paradigm—an ideal solution that is yet to be proposed.

In recent years, sequence models (SM) have made a substantial progress in natural language pro-

cessing (NLP) [27]. For example, GPT series [3] and BERT models [9], built on autoregressive
SMs, have demonstrated remarkable performance on a wide range of downstream tasks and achieved
strong performance on few-shot generalization tasks. Although SM are mostly used in language
tasks due to its natural fitting with the sequential property of languages, the sequential approaches
are not confined to NLP only, but is instead a widely applicable general foundation model [2]. For
example, in computer vision (CV), one can split an image into sub-images and align them in a
sequence as if they were tokens in NLP tasks [9, 10, 12]. Although the idea of solving CV tasks by
SM is straightforward, it serves as the foundation to some of the best-performing CV algorithms
[38, 41, 39]. Furthermore, sequential methods are starting to spawn powerful multi-modal visual
language models such as Flamingo [1], DALL-E [28], and GATO [30] in the recent past.

Coming with effective and expressive network architectures such as Transformer [40], sequence
modeling techniques have also attracted tremendous attention from the RL community, which results
in a series of successful offline RL developments based on the Transformer architecture [5, 14, 30, 23].
These methods show great potentials in tackling some of the most fundamental RL training problems,
such as long-horizon credit assignment and reward sparsity [37, 24, 25]. For example, by training
autoregressive models on pre-collected offline data in a purely supervised way, Decision Transformer
[5] bypasses the need for computing cumulative rewards through dynamic programming, but rather
generates future actions conditioning on the desired returns, past states and actions. Despite their
remarkable successes, none of these methods have been designed to model the most difficult (also
unique to MARL) aspect of multi-agent systems—the agents’ interactions. In fact, if we were
to simply endow all agents with a Transformer policy and train them independently, their joint
performance still could not be guaranteed to improve [15, Proposition 1]. Therefore, while a myriad
of powerful SMs are available, MARL—an area that would greatly benefit from SM—has not truly
taken advantage of their performance benefit. The key research question to ask is then

How can we model MARL problems by sequence models ?
In this paper, we take several steps to provide an affirmative answer to the above research question.
Our goal is to enhance MARL studies with powerful sequential modeling techniques. To fulfill that,
we start by proposing a novel MARL training paradigm which establishes the connection between
cooperative MARL problems and sequence modeling problems. Central to the new paradigm are
the multi-agent advantage decomposition theorem and sequential update scheme, which effectively
transform multi-agent joint policy optimization into a sequential policy search process. As a nat-
ural outcome of our findings, we introduce Multi-Agent Transformer (MAT), an encoder-decoder
architecture that implements generic MARL solutions through SM. Unlike Decision Transformer [5],
MAT is trained online based on trials and errors in an on-policy fashion; therefore, it does not require
collecting demonstrations upfront. Importantly, the implementation of the multi-agent advantage
decomposition theorem ensures MAT to enjoy monotonic performance improvement guarantee during
training. MAT establishes a new state-of-the-art baseline model for cooperative MARL tasks. We
justify such a claim by evaluating MAT on the benchmarks of StarCraftII, Multi-Agent MuJoCo,
Dexterous Hands Manipulation, and Google Research Football; results show that MAT achieves
superior performance over strong baselines, such as MAPPO [46], HAPPO [15], QMIX [29] and
UPDeT [13]. Finally, we show that MAT possesses great potentials in task generalizations, which
holds regardless of the agent number in new tasks.
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2 Preliminaries

In this section, we first introduce the cooperative MARL problem formulation and the multi-agent
advantage decomposition theorem, which serves as the cornerstone of our work. We then review
existing MARL methods that relate to MAT, and finally familiarize the reader with the Transformer.

2.1 Problem Formulation

Cooperative MARL problems are often modeled by Markov games hN ,O,A, R, P, �i [19]. N =
{1, . . . , n} is the set of agents, O =

Qn
i=1 O

i is the product of local observation spaces of the
agents, namely the joint observation space, A =

Qn
i=1 A

i is the product of the agents’ action
spaces, namely the joint action space, R : O ⇥A ! [�Rmax, Rmax] is the joint reward function,
P : O ⇥A⇥O ! R is the transition probability function, and � 2 [0, 1) is the discount factor. At
time step t 2 N, an agent i 2 N observes an observation oit 2 O

i (2) (o = (o1, . . . , on) is a “joint”
observation) and takes an action ait according to its policy ⇡i, which is the ith component of the agents’
joint policy ⇡. At each time step, all agents take actions simultaneously based on their observation
with no sequential dependencies. The transition kernel P and the joint policy induce the (improper)
marginal observation distribution ⇢⇡(·) ,

P1
t=0 �

tPr(ot = o|⇡). At the end of each time step, the
whole team receives a joint reward R(ot,at) and observe ot+1, whose probability distribution is
P (·|ot,at). Following this process infinitely long, the agents earn a discounted cumulative return of
R� , P1

t=0 �
tR(ot,at).

2.2 Multi-Agent Advantage Decomposition Theorem

The agents evaluate the value of actions and observations with Q⇡(o,a) and V⇡(o), defined as

Q⇡(o,a) , Eo1:1⇠P,a1:1⇠⇡

⇥
R�

|o0 = o,a0 = a
⇤
, (1)

V⇡(o) , Ea0⇠⇡,o1:1⇠P,a1:1⇠⇡

⇥
R�

|o0 = o
⇤
.

The jointness of the objective causes difficulties associated with the credit assignment problem—
having received a shared reward, individual agents are unable to deduce their own contribution to
the team’s success or failure [4]. Indeed, applying traditional RL methods which simply employ the
above value functions leads to obstacles in training, such as the growing variance of multi-agent
policy gradient (MAPG) estimates [17]. Hence, to tackle these, notions of local value functions [21]
and counterfactual baselines [11] have been developed. In this paper, we work with the most general
notions of this kind—the multi-agent observation-value functions [15]. That is, for arbitrary disjoint,
ordered subsets of agents i1:m = {i1, . . . , im} and j1:h = {j1, . . . , jh}, for m,h  n, we define the
multi-agent observation-value function by

Q⇡(o,a
i1:m) , E

⇥
R�

|oi1:n
0 = o,ai1:m0 = ai1:m

⇤
, (2)

which recovers the original state-action value function in Equation (1) when m = n, and the original
observation-value function when m = 0 (i.e., when the set i1:m is empty). Based on Equation (2),
we can further measure the contribution of a chosen subset of agents to the joint return and define the
multi-agent advantage function by

Ai1:m
⇡ (o,aj1:h ,ai1:m) , Qj1:h,i1:m

⇡ (o,aj1:h ,ai1:m)�Qj1:h
⇡ (o,aj1:h). (3)

The above quantity describes how much better/worse than average the joint action a will be if agents
i1:m take the joint action ai1:m , once j1:h have taken aj1:h . Again, when h = 0, the advantage
compares the value of ai1:m to the baseline value function of the whole team. This value-functional
representation of agents’ actions enables studying interactions between them, as well to decompose
the joint value function signal, thus helping alleviate the severity of the credit assignment problem
[29, 35, 22]. The insights of Equation (3) is accomplished by means of the following theorem.

(2)For notation convenience, we omit defining agents’ observation functions that take the global state as the
input and outputs a local observation for each agent, but rather define agents’ local observations directly.
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Theorem 1 (Multi-Agent Advantage Decomposition [17]). Let i1:n be a permutation of agents. Then,

for any joint observation o = o 2 O and joint action a = ai1:n 2 A, the following equation always

holds with no further assumption needed,

Ai1:n
⇡

�
o,ai1:n

�
=

nX

m=1

Aim
⇡

�
o,ai1:m�1 , aim

�
.

Importantly, this theorem provides an intuition guiding the choice of incrementally improving actions.
Suppose that agent i1 picks an action ai1 with positive advantage, Ai1

⇡ (o, ai1) > 0. Then, imagine
that for all j = 2, . . . , n, agent ij knows the joint action ai1:j�1 of its predecessors. In this case, it
can choose an action aij for which the advantage A

ij
⇡ (o,ai1:j�1 , aij ) is positive. Altogether, the

theorem assures that the joint action ai1:n has positive advantage. Furthermore, notice that the joint
action has been chosen in n steps, each of which searched an individual agent’s action space. Hence,
the complexity of this search is additive,

Pn
i=1 |A

i
|, in the sizes of the action spaces. If we were to

perform the search directly in the joint action space, we would browse a set of multiplicative size,
|A| =

Qn
i=1 |A

i
|. Later, we will build upon this insight to design a SM that optimizes joint policies

efficiently, agent by agent, without the necessity of considering the joint action space at once.

2.3 Existing Methods in MARL

We now briefly summarize two state-of-the-art MARL algorithms. Both of them build upon Proximal

Policy Optimization (PPO) [33]—a RL method famous for its simplicity and its performance stability.

MAPPO [46] is the first, and the most direct, approach for applying PPO in MARL. It equips all
agents with one shared set of parameters and use agents’ aggregated trajectories for the shared policy’s
update; at iteration k + 1, it optimizes the policy parameter ✓k+1 by maximizing the clip objective of

nX

i=1

Eo⇠⇢⇡✓k
,a⇠⇡✓k


min

✓
⇡✓(ai|o)
⇡✓k (ai|o)

A⇡✓k
(o,a), clip

✓
⇡✓(ai|o)
⇡✓k (ai|o)

, 1± ✏

◆
A⇡✓k

(o,a)

◆�
,

where the clip operator clips the input value (if necessary) so that it stays within the interval [1�✏, 1+✏].
However, enforcing parameter sharing is equivalent to putting a constraint ✓i = ✓j , 8i, j 2 N on
the joint policy space, which can lead to an exponentially-worse sub-optimal outcome [15]. This
motivates a more principled development of heterogeneous-agent trust-region methods, e.g., HAPPO.

HAPPO [15] is currently one of the SOTA algorithm that fully leverages Theorem (1) to implement
multi-agent trust-region learning with monotonic improvement guarantee. During an update, the
agents choose a permutation i1:n at random, and then following the order in the permutation, every
agent im picks ⇡im

new = ⇡im that maximizes the objective of

E
o⇠⇢⇡old ,a

i1:m�1⇠⇡
i1:m�1
new ,aim⇠⇡im

old

h
min

�
r(⇡im)Ai1:m

⇡old (o,ai1:m), clip(r(⇡im), 1± ✏)Ai1:m
⇡old (o,ai1:m)

�i
,

where r(⇡im) = ⇡im(aim |o)/⇡im
old (a

im |o). Note that the expectation is taken over the newly-updated
previous agents’ policies, i.e, ⇡i1:m�1

new ; this reflects an intuition that, under Theorem (1), the agent im
reacts to its preceding agents i1:m�1. However, one drawback of HAPPO is that agent’s policies has
to follow the sequential update scheme in the permutation, thus it cannot be run in parallel.

2.4 The Transformer Model

Transformer [40] was originally designed for machine translation tasks (e.g., input English, output
French). It maintains an encoder-decoder structure, where the encoder maps an input sequence of
tokens to latent representations and then the decoder generates a sequence of desired outputs in
an auto-regressive manner wherein at each step of inference, the Transformer takes all previously
generated tokens as the input. One of the most essential component in Transformer is the scaled
dot-product attention, which captures the interrelationship of input sequences. The attention function
is written as Attention(Q,K,V) = softmax

�QKT
p
dk

�
V, where the Q,K,V corresponds to the vector

of queries, keys and values, which can be learned during training, and the dk represent the dimension
of Q and K. Self-attentions refer to cases when Q,K,V share the same set of parameters.
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Figure 1: Conventional multi-agent learning paradigm (left) wherein all agents take actions simultane-
ously vs. the multi-agent sequential decision paradigm (right) where agents take actions by following
a sequential order, each agent accounts for decisions from preceding agents as red arrows suggest.

Inspired by the attention mechanism, UPDeT [13] handles various observation sizes by decoupling
each agent’s observations into a sequence of observation-entities, matching them with different action-
groups, and modeling the relationship between the matched observation-entities with a Transformer-
based function for better representation learning in MARL problems. Apart from this, based on the
sequential property described in the Theorem (1) and the principle behind HAPPO [15], it is intuitive
to think about another Transformer-based implementation for multi-agent trust-region learning. By
treating a team of agents as a sequence, the Transformer architecture allows us to model teams
of agents with variable numbers and types, while avoiding drawbacks of MAPPO/HAPPO. We will
describe in more details how a cooperative MARL problem can be solved by a sequence model.

3 The Surprising Connection Between MARL and Sequence Models

To establish the connection between MARL and sequence models, Theorem (1) provides a new angle
of understanding the MARL problem from a SM perspective. If each agent knows its predecessors’
actions with an arbitrary decision order, the sum of agents’ local advantages Aij

⇡ (o,ai1:m�1 , aim) will
be exactly equal to the joint advantages Ai1:n

⇡ (o,ai1:n). This orderly decision setting across agents
simplifies the update of their joint policy, where maximizing each agent’s own local advantage is
equivalent to maximizing the joint advantage. As such, agents do not need to worry about interference
from other agents anymore during the policy update; the local advantage functions have already
captured the relationship between agents. This property revealed by Theorem (1) inspires us to
propose a multi-agent sequential decision paradigm for MARL problems as show in Figure (1), where
we assign agents with an arbitrary decision order (one permutation for each iteration); each agent can
access its predecessors’ behaviors, based on which it then takes the optimal decision. This sequential
paradigm motivates us to leverage a sequential model, e.g., Transformer, to explicitly capture the
sequential relationship between agents described in Theorem (1).

Underpinned by Theorem (1), sequence modeling reduces the complexity growth of MARL problems
with the number of agents from multiplicative to additive, thus rendering linear complexity. With
the help of the Transformer architecture, we can model policies of heterogeneous agents with an
unified network but treat each agent discriminatively with different position, and thus ensuring high
sample efficiency while avoiding the exponentially-worse outcome that MAPPO is facing. Besides,
in order to guarantee the monotonic improvement of joint policies, HAPPO has to update each policy
one-by-one during training, by leveraging previous update results of ⇡i1 , ...,⇡im�1 to improve ⇡im ,
which becomes critical in computational efficiency at large size of agents. By contrast, the attention
mechanism of Transformer architectures allows for batching the ground truth actions ai0t , ..., ain�1

t in
the buffer to predict ai1t , ..., aint and update policies simultaneously, which significantly improves the
training speed and makes it feasible for large size of agents. Furthermore, in cases that the number
and the type of agents are different, SM can incorporates them into an unified solution through its
capability on modeling sequences with flexible sequence length, rather than treat different agent
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Figure 2: The encoder-decoder architecture of MAT. At each time step, the encoder takes in a sequence of
agents’ observations and encodes them into a sequence of latent representations, which is then passed into
the decoder. The decoder generate each agent’s optimal action in a sequential and auto-regressive manner.
The masked attention blocks ensures agents can only access its preceding agents’ actions during training. We
list the full pseudocode of MAT in Appendix A and a video that shows the dynamic data flow of MAT in
https://sites.google.com/view/multi-agent-transformer.

numbers as different tasks. To realize the above idea, we introduce a practical architecture named
Multi-Agent Transformer in the next section.

4 The Multi-Agent Transformer

To implement the sequence modeling paradigm for MARL, our solution is Multi-Agent Transformer

(MAT). The idea of applying the Transformer architecture comes from the fact that the mapping
between the input of agents’ observation sequence (oi1 , . . . , oin) and the output of agents’ action
sequence (ai1 , . . . , ain) are sequence modeling tasks similar to machine translations. As eluded by
Theorem (1), the action aim depends on all previous agents’ decisions ai1:m�1 . Hence, our MAT
in Figure (2) consists of an encoder, which learns representations of the joint observations, and a
decoder which outputs actions for each individual agent in an auto-regressive manner.

The encoder, whose parameters we denote by �, takes a sequence of observations (oi1 , . . . , oin) in
arbitrary order and passes them through several computational blocks. Each such block consists of a
self-attention mechanism and a multi-layer perceptron (MLP), as well as residual connections to
prevent gradient vanishing and network degradation with the increase of depth. We denote the output
encoding of the observations as (ôi1 , . . . , ôin), which encodes not only the information of agents
(i1, . . . , in) but also the high-level interrelationships that represent agents’ interactions. In order to
learn expressive representations, in the training phase, we make the encoder to approximate the value
functions, whose objective is to minimize the empirical Bellman error by

LEncoder(�) =
1

Tn

nX

m=1

T�1X

t=0

h
R(ot,at) + �V�̄(ô

im
t+1)� V�(ô

im
t )

i2
, (4)

where �̄ is the target network’s parameter, which is non-differentiable and updated every few epochs.

The decoder, whose parameters we denote by ✓, passes the embedded joint action ai0:m�1 ,m =
{1, . . . n} (where ai0 is an arbitrary symbol indicating the start of decoding) to a sequence of decoding
blocks. Crucially, every decoding block comes with a masked self-attention mechanism, where the
masking makes sure that, for every ij , attention is computed only between the ith

r and the ith
j action

heads wherein r < j so that the sequential update scheme can be maintained. This is then followed

6
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(a) HalfCheetah (b) CatchOver2Underarm (c) DoorOpenInward (d) DoorCloseOutward

Figure 3: Demonstrations of the Bi-DexHands and the HalfCheetah environments.

Figure 4: Performance comparisons on the Multi-Agent MuJoCo and the Bi-DexHands benchmarks.

by a second masked attention function, which computes the attention between the action heads and
observation representations. Finally, the block finishes with an MLP and skipping connections. The
output to the last decoder block is a sequence of representations of the joint actions, {âi0:i�1

}
m
i=1.

This is fed to an MLP that outputs the probability distribution of im’s action, namely, the policy
⇡im
✓ (aim |ôi1:n ,ai1:m�1). To train the decoder, we minimize the following clipping PPO objective of

LDecoder(✓) = �
1

Tn

nX

m=1

T�1X

t=0

min
⇣

rimt (✓)Ât, clip(rimt (✓), 1± ✏)Ât

⌘
, (5)

rimt (✓) =
⇡im
✓ (aimt |ôi1:n

t , âi1:m�1

t )

⇡im
✓old

(aimt |ôi1:n
t , âi1:m�1

t )
,

where Ât is an estimate of the joint advantage function. One can apply generalized advantage

estimation (GAE) [32] with V̂t =
1
n

Pn
m=1 V (ôimt ) as a robust estimator for the joint value function.

Notably, the action generation process is different between the inference and the training stage. In
the inference stage, each action is generated auto-regressively, in the sense that aim will be inserted
back into the decoder again to generate aim+1 (starting with ai0 and ending with ain�1 ). While during
the training stage, the output of all actions, ai1:n can be computed in parallel simply because ai1:n�1

have already been collected and stored in the replay buffer.

The attention mechanism, which lies in the heart of MAT, encodes observations and actions
with a weight matrix calculated by multiplying the embedded queries, (qi1 , . . . , qin), and keys,
(ki1 , . . . , kin), where each of the weight w(qir , kij ) = hqir , kij i. The embedded values
(vi1 , . . . , vin) are multiplied with the weight matrix to output representations. While the un-
masked attention in the encoder uses a full weight matrix to extract the interrelationship between
agents, i.e., ôi1:n , the masked attentions in the decoder capture ai1:m with triangular matrices where
w(qir , kij ) = 0 for r < j (see an visual illustration in Appendix A). With the properly masked
attention mechanism, the decoder can safely output the policy ⇡im+1

✓ (aim+1 |ôi1:n ,ai1:m), which
finishes the implementation of Theorem (1).

The monotonic improvement guarantee. An MAT agent im optimizes a trust-region objective
that is conditioned on new decisions of agents i1:m�1 by means of conditioning its policy ratio on
them (see Equation (5)). As such, it increases the joint return monotonically like if it followed the
sequential update scheme of HAPPO [15, Theorem 2]. However, as oppose to that method, the MAT
model does not require im to wait until its predecessors make their updates, nor it uses their updated
action distribution for importance sampling calculations. In fact, as actions of all agents are outputs
of MAT, their clipping objectives can be computed in parallel (during training), thus dominating
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Table 1: Performance evaluations of win rate and standard deviation on the SMAC benchmark, where UPDeT’s
official codebase supports several Marine-based tasks only.

Task Difficulty MAT MAT-Dec MAPPO HAPPO QMIX UPDeT Steps

3m Easy 100.0(1.8) 100.0(1.1) 100.0(0.4) 100.0(1.2) 96.91.3 100.0(5.2) 5e5
8m Easy 100.0(1.1) 97.5(2.5) 96.8(2.9) 97.5(1.1) 97.71.9 96.3(9.7) 1e6

1c3s5z Easy 100.0(2.4) 100.0(0.4) 100.0(2.2) 97.5(1.8) 96.9(1.5) / 2e6
MMM Easy 100.0(2.2) 98.1(2.1) 95.6(4.5) 81.2(22.9) 91.2(3.2) / 2e6

2c vs 64zg Hard 100.0(1.3) 95.9(2.3) 100.0(2.7) 90.0(4.8) 90.3(4.0) / 5e6
3s vs 5z Hard 100.0(1.7) 100.0(1.3) 100.0(2.5) 91.9(5.3) 92.3(4.4) / 5e6

3s5z Hard 100.0(1.9) 100.0(3.3) 72.5(26.5) 90.0(3.5) 84.3(5.4) / 3e6
5m vs 6m Hard 90.6(4.4) 83.1(4.6) 88.2(6.2) 73.8(4.4) 75.8(3.7) 90.6(6.1) 1e7
8m vs 9m Hard 100.0(3.1) 95.0(4.6) 93.8(3.5) 86.2(4.4) 92.6(4.0) / 5e6

10m vs 11m Hard 100.0(1.4) 100.0(2.0) 96.3(5.8) 77.5(9.7) 95.8(6.1) / 5e6
25m Hard 100.0(1.3) 86.9(5.6) 100.0(2.7) 70.1(8.1) 90.2(9.8) 2.8(3.1) 2e6

27m vs 30m Hard+ 100.0(0.7) 95.3(2.2) 93.1(3.2) 5.6(2.8) 39.2(8.8) / 1e7
MMM2 Hard+ 93.8(2.6) 91.2(5.3) 81.8(10.1) 68.8(13.7) 88.3(2.4) / 1e7
6h vs 8z Hard+ 98.8(1.3) 93.8(4.7) 88.4(5.7) 0.3(0.4) 9.7(3.1) / 1e7

3s5z vs 3s6z Hard+ 96.5(1.3) 85.3(7.5) 84.3(19.4) 82.8(21.2) 68.8(21.2) / 2e7

Figure 5: Performance comparison on the Google Research Football tasks with 2-4 agents from left to
right respectively.

HAPPO on the time complexity. Lastly, to assure that the limiting joint policy is such that none of
the agents is incentivized to change its policy (Nash equilibrium), MAT requires permutating the
sequential order of updates at every iteration, which is inline with the discovery in HAPPO [15,
Theorem 3].

5 Experiments and Results

MAT provides a new solution paradigm for cooperative MARL problems. The key insights of MAT
are the sequential update scheme, which is inspired by Theorem (1), as well as the encoder-decoder
architecture, which provides a highly-efficient implementation for a sequence modeling perspective.
Importantly, MAT inherits the monotonic improvement guarantee, and agents’ policies can be learned
in parallel during training. We firmly believe MAT will become a game changer for MARL studies.

To evaluate if MAT meets our expectations, we test MAT on the StarCraftII Multi-Agent Challenge
(SMAC) benchmark [31] where MAPPO with parameter sharing [46] has shown superior performance,
and the Multi-Agent MuJoCo benchmark [7] where HAPPO [15] shows the current state-of-the-art
performance. SMAC and MuJoCo environments are common benchmarks in the MARL field. On
top of them, we also test MAT on the Bimanual Dexterous Hands Manipulation (Bi-DexHands) [6]
which provides a list of challenging bimanual manipulation tasks (see Figure (3)), and the Google
Research Football [18] benchmark with a series of cooperation scenarios in football game.

We apply the same hyper-parameters of baseline algorithms from their original paper to ensure their
best performance, and adopt the same hyper-parameter tuning process for our methods with details
in Appendix B. To ensure fair comparisons to CTDE methods, we also introduce a CTDE-variant
of MAT called MAT-Dec, which essentially adopts a fully decentralized actor for each individual
agent (rather than using the decoder proposed in MAT) while keeping the encoder fixed. The critic’s
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Figure 6: Performance on the HalfCheetah task with different disabled joints shown in Figure (3a).

loss for MAT-Dec is L(�) = 1
T

PT�1
t=0

⇥
R(ot,at) + � 1

n

Pn
m=1 V�̄(ô

im
t+1) �

1
n

Pn
m=1 V�(ô

im
t )

⇤2
,

and we apply the local advantage estimation At(ôimt , aim) to guide the subsequent policy update.

5.1 Performance on Cooperative MARL Benchmarks

According to Table (1) and Figure (4), MAPPO significantly outperforms HAPPO in SMAC with
higher sample efficiency. This verified the homogeneity of SMAC agents and the heterogeneity of
multi-agent MuJoCo agents, that are also discovered by Kuba et al. [15]. Take the SMAC task 25m

as an example, all the marines are equivalent and interchangeable so that agents can learn from their
teammate’s experience. Sharing parameters in this settings means leveraging 25 times more examples
to train each agents comparing with separated network of HAPPO, and thus enjoying higher learning
efficiency. On the other hand, with the heterogeneous settings of multi-agent MuJoCo, training
a "foot" agent with experience from a "thigh" agent can surely harm its performance since they
represent different functions on the Cheetah. However, MAT outperforms MAPPO and HAPPO in
almost all tasks in Table (1) and Figure (4), indicating its modeling capability on both homogeneous
and heterogeneous-agent tasks. MAT also enjoys the superior performance over MAT-Dec, which
emphasize the importance of the decoder architecture in the MAT design. On the Bi-DexHands tasks,
MAT outperforms MAPPO and HAPPO methods by a large margin. We save the Google Football
results to Figure (5), where the conclusion stays the same.

5.2 MAT as Excellent Few-short Learners

Since Transformer-based models often demonstrate strong generalization performance on few-short
tasks [3, 9], we believe MAT can possess strong generalization ability on unseen MARL tasks as
well. To validate such an assumption, we design zero-shot and few-shot experiments on SMAC and
multi-agent MuJoCo tasks. For SMAC tasks, we pre-train agents on eight tasks involving five types
of units (3m, 8m vs 9m, 10m vs 11m, 25m, 3s vs 3z, 2s3z, 3s5z, MMM ) with 10M examples in
total and then apply them on six separate and much harder tasks (5m vs 6m, 8m, 27m vs 30m, 2s

vs 1sc, 1c3s5z, MMM2 ) including seven types of units. This setting is designed to evaluate the
generalization ability of MAT when training on simple tasks but transferring to more diverse and
complex downstream tasks. In terms of multi-agent MuJoCo, we reuse the models trained on the
complete HalfCheetah robot as the pre-trained agent and then directly apply it to six new tasks, each
with a different leg being disfunctioned (see Figure (3a)). We investigate the generalization capability
of pre-trained models on each downstream task with 0% (zero-shot), 1%, 5%, 10% few-short new
examples, respectively. Note that common MARL baselines such as HAPPO assume fixed number of
agents during training, thus it cannot directly handle the cases with changing number of agents.
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Table 2: Median evaluation win rate and the standard deviation on the SMAC benchmark for pre-trained models
with different number of online examples.

Methods MAT MAPPO MAT-from scratch
#examples 0% 1% 5% 10% 0% 1% 5% 10% 0% 1% 5% 10%

5m vs 6m 0.0(0.0) 0.0(0.0) 5.8(3.1) 18.8(7.1) 0.0(0.0) 0.0(0.0) 4.3(3.8) 21.9(12.2) 0.0(0.0) 0.0(0.0) 1.9(1.3) 3.8(2.1)

8m 100(0.0) 100(1.2) 100(0.3) 100(2.1) 100(0.0) 100(1.4) 100(0.3) 100(1.4) 0.0(0.0) 10.6(23.8) 92.5(3.7) 100(1.4)

27m vs 30m 0.0(0.0) 6.3(2.4) 53.8(16.4) 71.2(8.2) 9.4(3.6) 15(5.9) 26.2(7.8) 26.8(9.7) 0.0(0.0) 0.0(0.0) 0.0(0.3) 0.3(15.6)

2s vs 1sc 0.0(0.0) 15.6(13.8) 100(9.7) 100(0.0) 0.0(0.0) 43.1(17.6) 100(1.1) 100(1.8) 0.0(0.0) 19.3(33.3) 96.3(6.2) 100(0.3)

1c3s5z 3.1(1.8) 5.6(5.0) 82.5(5.5) 100(2.7) 3.1(1.8) 4.3(4.9) 73.8(13.0) 97.5(2.1) 0.0(0.0) 7.5(4.8) 87.5(3.9) 100(1.4)

MMM2 0.0(3.6) 0.0(1.8) 33.8(13.7) 62.5(12.1) 0.0(0.0) 0.0(1.4) 13.8(7.0) 36.2(9.6) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.7)

Table 3: Average evaluation score and standard deviation on Multi-Agent MuJoCo for pre-trained models with
different number of online examples.

Methods MAT MAPPO MAT-from scratch
#examples 0% 1% 5% 10% 0% 1% 5% 10% 0% 1% 5% 10%

back foot 2100(89) 2837(95) 4691(235) 5646(79) 2936(301) 3017(135) 3221(119) 3304(129) -0.44(0.4) -5.18(11) 670(1098) 1635(1184)

back shin 4005(316) 4143(230) 6077(209) 7176(74) 2406(32) 2542(108) 2796(137) 2955(127) -0.31(0.1) -3.95(17) 743(537) 1252(1123)

back thigh 5361(45) 5641(150) 7101(119) 7460(61) 3043(79) 3060(143) 3217(33) 3353(71) -0.54(0.3) -4.87(7.7) 930(589) 2067(861)

fore foot 1313(512) 1955(232) 4856(146) 6054(172) 623(44) 970(185) 2025(371) 2480(239) -0.37(0.2) -2.25(7.9) 1821(157) 2877(106)

fore shin 2435(13) 2617(71) 3851(57) 4373(83) 1715(55) 2457(125) 3096(59) 3310(54) -0.15(0.06) -0.96(6.0) 1461(101) 3003(316)

fore thigh 5631(321) 6448(417) 7952(109) 8347(81) 3087(110) 3171(83) 3340(52) 3519(59) -0.29(0.3) 0.82(14) 1021(177) 2600(215)

We summarize the zero-shot and few-shot results of each algorithm in Table (2) and (3), where the
bold number indicates the best performance. We also provide the performance of MAT if it was
given the same amount of data but is trained from scratch, the "MAT-from scratch", as the control
group to demonstrate the effectiveness of pre-training process. As both tables suggest, bold numbers
are mainly located in the area of MAT, which justify MAT’s strong generalisation performance as a
few-short learner. Surprisingly, we find that the few-shot MAT with only 10% data show even higher
rewards than its counterpart that is purely trained on HalfCheetah with the same disabled joints (back

foot, back shin and back thigh ) and 100% full amount data, we believe it is because the pre-train
process offers initial weights that are not only closer to optimum but also less likely to stuck in bad
local optima than random initialization.

6 Conclusion

In the past five years, large sequence models have achieved remarkable successes on solving visual
language tasks. In this paper, we take the initial effort to build the connection between multi-agent
reinforcement learning (MARL) problems and generic sequence models (SM), with the ambition that
MARL researchers can hereafter benefit from the prosperous development on the sequence modeling
side. Specifically, we contribute by unifying a general solution to cooperative MARL problems into a
Transformer like encoder-decoder model. The proposed Multi-Agent Transformer (MAT) leverages
the multi-agent advantage decomposition theorem, which essentially transforms the joint policy
optimization process into a sequential decision making process that can be simply implemented by
an auto-regressive model. We have demonstrated MAT’s strong empirical performance on three
challenging benchmarks against current state-of-the-art MARL solutions including MAPPO and
HAPPO. Based on the established connection between MARL and SM, in the future, we plan to
bring multi-agent learning tasks into large multi-modal SM, chasing for more generally intelligent
models as the most recent success of GATO has already demonstrated [30].
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