
A Omitted Proofs

In this section we include all the proofs deferred from the main body. For the convenience of the
reader, all claims will be restated. Before we proceed with the proof of Theorem 2.3, let us point out
some additional notational conventions. First, with a standard abuse of notation, we overload

ui :
p×

i=1

∆(Ai) ∋ (x1, . . . ,xp) 7→ Ea∼x[ui(a)] =
∑
a∈A

ui(a1, . . . , ap)
∏
j∈[[p]]

xj(aj)

to denote the mixed extension of player’s i ∈ [[p]] utility function, where A :=×p

j=1
Aj . Furthermore,

for ai ∈ Ai we let

ui(ai,x−i) :=
∑

a−i∈A−i

ui(a1, . . . , ai, . . . , ap)
∏
j ̸=i

xj(aj),

where A−i :=×j ̸=i
Aj .

Theorem 2.3 (Folklore). Suppose that every player i ∈ [[p]] employs a no-regret learning algorithm
with regret RegTi up to time T ∈ N. Moreover, let µ(t) := x

(t)
1 ⊗ · · · ⊗ x

(t)
p be the correlated

distribution of play at time t ∈ [[T ]], and µ̄ := 1
T

∑T
t=1 µ

(t) be the average correlated distribution of
play up to time T . Then,

Ea∼µ̄ [ui(a
′
i,a−i)] ≤ Ea∼µ̄ [ui(a)] +

1

T
max
i∈[[p]]

RegTi .

Proof. By definition of regret (1), it follows that for any player i ∈ [[p]] and any possible deviation
a′i ∈ Ai,

T∑
t=1

ui(a
′
i,x

(t)
−i)−

T∑
t=1

ui(x
(t)) ≤ RegTi . (6)

Moreover,

Ea∼µ̄ [ui(a)] =
1

T

T∑
t=1

Ea∼µ(t) [ui(a)] =
1

T

T∑
t=1

ui(x
(t));

and

Ea∼µ̄ [ui(a
′
i,a−i)] =

1

T

T∑
t=1

Ea∼µ(t) [ui(a
′
i,a−i)] =

1

T

T∑
t=1

ui(a
′
i,x

(t)
−i).

Thus, the theorem follows directly from (6).

Corollary 3.1. Suppose that both players employ (OMD) with learning rate η > 0. Then,

RegTX ≤ ΩRX

η
+ η∥A∥2op

T∑
t=1

∥y(t) − y(t−1)∥2 − 1

4η

T∑
t=1

(
∥x(t) − x̂(t)∥2 + ∥x(t) − x̂(t−1)∥2

)
;

RegTY ≤ ΩRY

η
+ η∥B∥2op

T∑
t=1

∥x(t) − x(t−1)∥2 − 1

4η

T∑
t=1

(
∥y(t) − ŷ(t)∥2 + ∥y(t) − ŷ(t−1)∥2

)
.

Proof. First, the utility u
(t)
X observed by player X at time t ≥ 0 is equal to Ay(t). Thus, the claimed

bound for RegTX follows directly from Proposition 2.1 using the fact that ∥Ay(t) −Ay(t−1)∥∗ ≤
∥A∥op∥y(t)−y(t−1)∥. Similarly, the utility u

(t)
Y observed by player Y at time t ≥ 0 is tantamount to

B⊤x(t). As a result, the bound for RegTY follows from Proposition 2.1 and the fact that ∥B⊤x(t) −
B⊤x(t−1)∥∗ ≤ ∥B∥op∥x(t) − x(t−1)∥, since ∥B⊤∥op = ∥B∥op.

Proposition 3.2 (Approximate Fixed Points of OMD). Consider a bimatrix game (A,B), and
suppose that both players employ (OMD) with learning rate η > 0 and a G-smooth regularizer. Then,
if ∥x(t) − x̂(t−1)∥, ∥x̂(t) −x(t)∥ ≤ ϵη and ∥y(t) − ŷ(t−1)∥, ∥ŷ(t) −y(t)∥ ≤ ϵη, the pair (x(t),y(t))
is a (2ϵGmax{ΩX ,ΩY}+ ϵη)-approximate Nash equilibrium of (A,B).
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Proof. First, by definition of the Bregman divergence, the update rule of (OMD) can be equivalently
expressed as

x(t) := argmax
x∈X

{
⟨x,Ay(t−1)⟩ − 1

η
R(x) +

1

η

〈
x,∇R(x̂(t−1))

〉}
;

x̂(t) := argmax
x̂∈X

{
⟨x̂,Ay(t)⟩ − 1

η
R(x̂) +

1

η

〈
x̂,∇R(x̂(t−1))

〉}
.

Now the maximization problem associated with the update rule of the secondary sequence can be
equivalently cast in a variational inequality form (e.g., see [Facchinei and Pang, 2003]):〈

x̂− x̂(t),Ay(t) − 1

η

(
∇R(x̂(t))−∇R(x̂(t−1))

)〉
≤ 0, ∀x̂ ∈ X .

Thus,

⟨x̂− x̂(t),Ay(t)⟩ ≤ 1

η

〈
x̂− x̂(t),∇R(x̂(t))−∇R(x̂(t−1))

〉
≤ 1

η
∥x̂− x̂(t)∥∥∇R(x̂(t))−∇R(x̂(t−1))∥∗ (7)

≤ G

η
∥x̂− x̂(t)∥∥x̂(t) − x̂(t−1)∥ (8)

≤ 2ϵGΩX , (9)

for any x̂ ∈ X , where (7) derives from the Cauchy-Schwarz inequality; (8) follows since RX is
assumed to be G-smooth; and (9) uses that ∥x̂(t) − x̂(t−1)∥ ≤ 2ϵη, which in turn follows since
∥x̂(t) − x̂(t−1)∥ ≤ ∥x̂(t) − x(t)∥+ ∥x(t) − x̂(t−1)∥ ≤ 2ϵη (triangle inequality), as well as the fact
that, by definition, ∥x̂− x̂(t)∥ ≤ ΩX for any x̂ ∈ X . As a result, we have shown that for any x̂ ∈ X ,

⟨x̂(t),Ay(t)⟩ ≥ ⟨x̂,Ay(t)⟩ − 2ϵGΩX . (10)

Furthermore, by Cauchy-Schwarz inequality we have that

⟨x(t) − x̂(t),Ay(t)⟩ ≥ −∥x(t) − x̂(t)∥Ay(t)∥∗ ≥ −ϵη, (11)

where we used the normalization assumption ∥Ay(t)∥∗ ≤ 1. Thus, combing (11) with (10) yields
that

⟨x(t),Ay(t)⟩ ≥ ⟨x̂(t),Ay(t)⟩ − ϵη ≥ ⟨x̂,Ay(t)⟩ − 2ϵGΩX − ϵη, (12)
for any x̂ ∈ X . By symmetry, we analogously get that

⟨y(t),B⊤x(t)⟩ ≥ ⟨ŷ(t),B⊤x(t)⟩ − ϵη ≥ ⟨ŷ,B⊤x(t)⟩ − 2ϵGΩY − ϵη, (13)

for any ŷ ∈ Y . Thus, recalling Definition 2.5, the claim follows from (12) and (13).

Lemma 3.3. Suppose that both players in a bimatrix game (A,B) employ (OMD) with learning
rate η > 0. Then, for any T ∈ N,

T∑
t=1

∥y(t) − y(t−1)∥ ≥ 1

2η∥X∥∥A∥op

T∑
t=1

(
∥x(t) − x̂(t−1)∥2 + ∥x̂(t) − x(t)∥2

)
− 2

∥A∥op
;

T∑
t=1

∥x(t) − x(t−1)∥ ≥ 1

2η∥Y∥∥B∥op

T∑
t=1

(
∥y(t) − ŷ(t−1)∥2 + ∥ŷ(t) − y(t)∥2

)
− 2

∥B∥op
.

Proof. By 1-strong convexity of RX with respect to ∥ · ∥,

⟨x(t),Ay(t−1)⟩ − 1

η
DRX (x

(t) ∥ x̂(t−1))− ⟨x̂(t−1),Ay(t−1)⟩ ≥ 1

2η
∥x(t) − x̂(t−1)∥2, (14)

where we used the definition of the update rule of the primary sequence of (OMD). Similarly,

⟨x̂(t),Ay(t)⟩− 1

η
DRX (x̂

(t) ∥ x̂(t−1))−⟨x(t),Ay(t)⟩+1

η
DRX (x

(t) ∥ x̂(t−1)) ≥ 1

2η
∥x̂(t)−x(t)∥2.

(15)

18



Hence, summing (14) and (15) yields that

⟨x(t),A(y(t−1)−y(t))⟩ ≥ 1

2η

(
∥x(t) − x̂(t−1)∥2 + ∥x̂(t) − x(t)∥2

)
−⟨x̂(t),Ay(t)⟩+⟨x̂(t−1),Ay(t−1)⟩,

where we used that DRX (x̂
(t) ∥ x̂(t−1)) ≥ 0. Thus, a telescopic summation over all t ∈ [[T ]] implies

that
T∑

t=1

⟨x(t),A(y(t−1) − y(t))⟩ ≥ 1

2η

T∑
t=1

(
∥x(t) − x̂(t−1)∥2 + ∥x̂(t) − x(t)∥2

)
− 2∥X∥, (16)

since −⟨x̂(T ),Ay(T )⟩ ≥ −∥x̂(T )∥∥Ay(T )∥∗ ≥ −∥X∥ and ⟨x̂(0),Ay(0)⟩ ≥ −∥x̂(0)∥∥Ay(0)∥∗ ≥
−∥X∥, where we used the normalization assumption. Furthermore,

⟨x(t),A(y(t−1) − y(t))⟩ ≤ ∥x(t)∥∥A(y(t) − y(t−1))∥∗ ≤ ∥X∥∥A∥op∥y(t) − y(t−1)∥.
Thus, combining this inequality with (16) implies that

T∑
t=1

∥y(t) − y(t−1)∥ ≥ 1

2η∥X∥∥A∥op

T∑
t=1

(
∥x(t) − x̂(t−1)∥2 + ∥x̂(t) − x(t)∥2

)
− 2

∥A∥op
.

This completes the first part of the claim. The second part follows analogously by symmetry.

Lemma 3.5 (Stability of OMD). Suppose that both players employ (OMD) with learning rate η > 0.
Then, for any t ∈ N,

∥x(t) − x(t−1)∥ ≤ 3η;

∥y(t) − y(t−1)∥ ≤ 3η.

Proof. Fix any t ∈ N. By definition of the primary sequence of (OMD),

⟨x(t),Ay(t−1)⟩ − 1

η
DR(x(t) ∥ x̂(t−1))− ⟨x̂(t−1),Ay(t−1)⟩ ≥ 1

2η
∥x(t) − x̂(t−1)∥2,

where we used the 1-strong convexity of the regularizer RX with respect to ∥ · ∥. In turn, this implies
that

⟨x(t) − x̂(t−1),Ay(t−1)⟩ ≥ 1

η
∥x(t) − x̂(t−1)∥2,

since DRX (x
(t) ∥ x̂(t−1)) ≥ 1

2∥x(t)−x̂(t−1)∥2 (by 1-strong convexity of RX ). Thus, an application
of Cauchy-Schwarz inequality yields that

∥x(t) − x̂(t−1)∥2 ≤ η∥x(t) − x̂(t−1)∥∥Ay(t−1)∥∗ =⇒ ∥x(t) − x̂(t−1)∥ ≤ η, (17)

since ∥Ay(t−1)∥∗ ≤ 1 by the normalization assumption. Similar reasoning applied for the secondary
sequence of (OMD) implies that for any t ∈ N,

∥x̂(t) − x̂(t−1)∥ ≤ η. (18)

Now if t = 1, it follows from (17) that ∥x(t) − x(t−1)∥ = ∥x(t) − x̂(t−1)∥ ≤ η since x(0) = x̂(0).
Otherwise, for t ≥ 2, applying the triangle inequality yields that ∥x(t)−x(t−1)∥ ≤ ∥x(t)− x̂(t−1)∥+
∥x(t−1) − x̂(t−2)∥+ ∥x̂(t−1) − x̂(t−2)∥ ≤ 3η by (17) and (18). This completes the first part of the
proof. Analogously, we conclude that ∥y(t) − y(t−1)∥ ≤ 3η for any t ∈ N.

Theorem A.1 (Linear Decay of Regret; Full Version of Theorem 3.4). Suppose that both players in a
bimatrix game (A,B) employ (OMD) with G-smooth regularizer, learning rate η > 0 such that

η ≤ min

{
1

4max{∥A∥op, ∥B∥op}
,

ϵ2

96∥A∥op∥B∥op max{∥X∥, ∥Y∥}

}
and

T ≥ max

{
16max{∥X∥, ∥Y∥}

ϵ2η
,
32max{ΩRX ,ΩRY}

ϵ2η2
,
2048max{ΩRY∥X∥2∥A∥2op,ΩRX ∥Y∥2∥B∥2op}

ϵ4η2

}
,

for some fixed ϵ > 0. Then, if the dynamics do not reach a (2ϵGmax{ΩX ,ΩY}+ ϵη)-approximate
NE, then

max{RegTX ,RegTY} ≤ −min

{
ϵ2η

32
,

ϵ4η

2048max{∥X∥2∥A∥2op, ∥Y∥2∥B∥2op}

}
T.
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Proof. Suppose that there exists t ∈ [[T ]] such that(
∥x(t) − x̂(t)∥2 + ∥x(t) − x̂(t−1)∥2

)
+
(
∥y(t) − ŷ(t)∥2 + ∥y(t) − ŷ(t−1)∥2

)
≤ ϵ2η2.

This would imply that ∥x(t)−x̂(t)∥, ∥x(t)−x̂(t−1)∥ ≤ ϵη and ∥y(t)−ŷ(t)∥, ∥y(t)−ŷ(t−1)∥ ≤ ϵη. In
turn, by Proposition 3.2 it follows that the pair of strategies (x(t),y(t)) is a (2ϵGmax{ΩX ,ΩY}+ϵη)-
approximate Nash equilibrium, contradicting our assumption. As a result, we conclude that for all
t ∈ [[T ]],(

∥x(t) − x̂(t)∥2 + ∥x(t) − x̂(t−1)∥2
)
+
(
∥y(t) − ŷ(t)∥2 + ∥y(t) − ŷ(t−1)∥2

)
≥ ϵ2η2.

Summing over all t ∈ [[T ]] yields that

T∑
t=1

(
∥x(t) − x̂(t)∥2 + ∥x(t) − x̂(t−1)∥2

)
+

T∑
t=1

(
∥y(t) − ŷ(t)∥2 + ∥y(t) − ŷ(t−1)∥2

)
≥ ϵ2η2T.

(19)
We distinguish between two cases. First, we treat the case where

T∑
t=1

(
∥x(t) − x̂(t)∥2 + ∥x(t) − x̂(t−1)∥2

)
≥

T∑
t=1

(
∥y(t) − ŷ(t)∥2 + ∥y(t) − ŷ(t−1)∥2

)
. (20)

Then, by virtue of (19),

T∑
t=1

(
∥x(t) − x̂(t)∥2 + ∥x(t) − x̂(t−1)∥2

)
≥ ϵ2η2

2
T. (21)

Further, by the triangle inequality and Young’s inequality,

∥y(t) − y(t−1)∥2 ≤ 2∥y(t) − ŷ(t−1)∥2 + 2∥ŷ(t−1) − y(t−1)∥2,
and summing over all t ∈ [[T ]] yields that

T∑
t=1

∥y(t) − y(t−1)∥2 ≤ 2

T∑
t=1

∥y(t) − ŷ(t−1)∥2 + 2

T∑
t=1

∥ŷ(t−1) − y(t−1)∥2

≤ 2

T∑
t=1

∥y(t) − ŷ(t−1)∥2 + 2

T∑
t=1

∥ŷ(t) − y(t)∥2,

where the last inequality follows since ŷ(0) = y(0). Hence, combining the latter bound with (20)
implies that

T∑
t=1

(
∥x(t) − x̂(t)∥2 + ∥x(t) − x̂(t−1)∥2

)
≥ 1

2

T∑
t=1

∥y(t) − ŷ(t−1)∥2. (22)

Now we are ready to bound the regret of player X . By Corollary 3.1,

RegTX ≤ ΩRX

η
+ η∥A∥2op

T∑
t=1

∥y(t) − y(t−1)∥2 − 1

4η

T∑
t=1

(
∥x(t) − x̂(t)∥2 + ∥x(t) − x̂(t−1)∥2

)
.

(23)
But (22) implies that

η∥A∥2op
T∑

t=1

∥y(t) − y(t−1)∥2 − 1

8η

T∑
t=1

(
∥x(t) − x̂(t)∥2 + ∥x(t) − x̂(t−1)∥2

)
≤
(
η∥A∥2op − 1

16η

) T∑
t=1

∥y(t) − y(t−1)∥2 ≤ 0,
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since η ≤ 1
4∥A∥op

. From this we conclude that

RegTX ≤ ΩRX

η
− 1

8η

T∑
t=1

(
∥x(t) − x̂(t)∥2 + ∥x(t) − x̂(t−1)∥2

)
≤ ΩRX

η
− ϵ2η

16
T ≤ −ϵ2η

32
T, (24)

for T ≥ 32ΩRX
ϵ2η2 , where we used (21). Next, we focus on the regret of player Y . By (21) and

Lemma 3.3,
T∑

t=1

∥y(t) − y(t−1)∥ ≥ ϵ2η

4∥X∥∥A∥op
T − 2

∥A∥op
≥ ϵ2η

8∥X∥∥A∥op
T, (25)

since T ≥ 16∥X∥
ϵ2η . Further, by Cauchy-Schwarz inequality,

T∑
t=1

∥y(t) − y(t−1)∥2 ≥ 1

T

(
T∑

t=1

∥y(t) − y(t−1)∥
)2

≥ ϵ4η2

64∥X∥2∥A∥2op
T. (26)

Now from Corollary 3.1, the regret of player Y can be bounded as

RegTY ≤ ΩRY

η
+ η∥B∥2op

T∑
t=1

∥x(t) − x(t−1)∥2 − 1

4η

T∑
t=1

(
∥y(t) − ŷ(t)∥2 + ∥y(t) − ŷ(t−1)∥2

)
≤ ΩRY

η
+ η∥B∥2op

T∑
t=1

∥x(t) − x(t−1)∥2 − 1

8η

T∑
t=1

∥y(t) − y(t−1)∥2,

where we used that
T∑

t=1

∥y(t) − y(t−1)∥2 ≤ 2

T∑
t=1

∥y(t) − ŷ(t−1)∥2 + 2

T∑
t=1

∥ŷ(t) − y(t)∥2.

Furthermore, by Lemma 3.5 and (26),

η∥B∥2op
T∑

t=1

∥x(t) − x(t−1)∥2 ≤ 9η3∥B∥2opT ≤ ϵ4η

1024∥X∥2∥A∥2op
T ≤ 1

16η

T∑
t=1

∥y(t) − y(t−1)∥2,

for η ≤ ϵ2(96∥X∥∥A∥op∥B∥op)−1. As a result, (26) implies that

RegTY ≤ ΩRY

η
− 1

16η

T∑
t=1

∥y(t)−y(t−1)∥2 ≤ ΩRY

η
− ϵ4η

1024∥X∥2∥A∥2op
T ≤ − ϵ4η

2048∥X∥2∥A∥2op
T,

for T ≥ 2048ΩRY ∥X∥2∥A∥2
op

ϵ4η2 . Similarly, let us treat the case where

T∑
t=1

(
∥y(t) − ŷ(t)∥2 + ∥y(t) − ŷ(t−1)∥2

)
≥

T∑
t=1

(
∥x(t) − x̂(t)∥2 + ∥x(t) − x̂(t−1)∥2

)
.

Then, for η ≤ 1
4∥B∥op

and T ≥ 32ΩRY
ϵ2η2 ,

RegTY ≤ ΩRY

η
− 1

8η

T∑
t=1

(
∥y(t) − ŷ(t)∥2 + ∥y(t) − ŷ(t−1)∥2

)
≤ ΩRY

η
− ϵ2η

16
T ≤ −ϵ2η

32
T.

Moreover, for T ≥ 16∥Y∥
ϵ2η ,

T∑
t=1

∥x(t) − x(t−1)∥2 ≥ ϵ4η2

64∥Y∥2∥B∥2op
T.

Thus, for η ≤ ϵ2(96∥Y∥∥A∥op∥B∥op)−1,

η∥A∥2op
T∑

t=1

∥y(t) − y(t−1)∥2 ≤ 9η3∥A∥2opT ≤ ϵ4η

1024∥Y∥2∥B∥2op
T ≤ 1

16η

T∑
t=1

∥x(t) − x(t−1)∥2.
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Finally, for T ≥ 2048ΩRX ∥Y∥2∥B∥2
op

ϵ4η2 ,

RegTX ≤ ΩRX

η
− 1

16η

T∑
t=1

∥x(t)−x(t−1)∥2 ≤ ΩRX

η
− ϵ4η

1024∥Y∥2∥B∥2op
T ≤ − ϵ4η

2048∥Y∥2∥B∥2op
T.

Next, we state the implication of Theorem A.1 in normal-form games under (OGD). In that setting,
it holds that ∥X∥, ∥Y∥ = 1; ΩX ,ΩY ≤

√
2; ΩRX ,ΩRY ≤ 1; and G = 1. Thus, we obtain the

following simplified statement.

Corollary A.2 (OGD in Normal-Form Games). Suppose that both players in a bimatrix game (A,B)
employ (OGD) with learning rate η > 0 such that

η ≤ min

{
1

4max{∥A∥op, ∥B∥op}
,

ϵ2

96∥A∥op∥B∥op

}
and

T ≥ max

{
16

ϵ2η
,
32

ϵ2η2
,
2048max{∥A∥2op, ∥B∥2op}

ϵ4η2

}
,

for some fixed ϵ > 0. Then,

• Either there exists t ∈ [[T ]] such that the pair of strategies (x(t),y(t)) ∈ X × Y constitutes
an ϵ(3 + η)-approximate Nash equilibrium;

• Or, otherwise, the average correlated distribution of play after T repetitions of the game is a

min

{
ϵ2η

32
,

ϵ4η

2048max{∥A∥2op, ∥B∥2op}

}
− strong coarse correlated equilibrium.

Finally, we state an extension of Theorem 1.1 that establishes a dichotomy based on whether most of
the iterates are approximate Nash equilibria—not just a single iterate. The proof is almost identical to
the argument of Theorem A.1, and is therefore omitted.

Corollary A.3. Suppose that both players in a bimatrix game employ (OGD) with learning rate
η = O(ϵ2δ) and T = Ω

(
1

η2ϵ4δ2

)
repetitions, for a sufficiently small ϵ > 0 and δ ∈ (0, 1). Then,

• Either a 1− δ fraction of the iterates is an ϵ-approximate Nash equilibrium;

• Or, otherwise, the average correlated distribution of play is an Ω(ϵ4ηδ2)-strong CCE.

B Description of the Game Instances

In this section we provide a detailed description of the game instances we used in our experiments in
Section 4.2.

Liar’s Dice The first game we experimented on is Liar’s dice, a popular benchmark introduced
by Lisý et al. [2015]. In our instantiation, each of the two players initially privately roles a single
unbiased 4-face die. Then, the first player announces any face value up to 4, as well as the minimum
number of dice the player believes have that value (among the dice of both players). Subsequently,
each player in its own turn can either make a higher bid, or challenge the claim made by the previous
player by declaring that player a “liar”. In particular, a bid is higher than the previous one if either the
face value is higher, or if the claimed number of dices is greater. In case the current player challenges
the previous bid, all dice have to be revealed. If the claim was valid, the last bidder wins and receives
a reward of +1, while the challenger incurs a negative payoff of −1. Otherwise, the utilities obtained
are reversed.
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Sheriff Our second benchmark is a bargaining game inspired by the board game Sheriff of Not-
tingham, introduced by Farina et al. [2019b]. This game consists of two players: the smuggler and
the sheriff. In our instantiation, the smuggler initially selects a number n ∈ {0, 1, 2, 3, 4, 5} which
corresponds to the number of illegal items to be loaded in the cargo. Each illegal item has a fixed
value of 1. Next, 2 rounds of bargaining between the two players follow. At each round, the smuggler
decides on a bribe ranging from 0 to b := 3 (inclusive), and the sheriff must decide whether or not
the cargo will be inspected given the bribe amount. The sheriff’s decision is binding only in the last
round of bargaining: if the sheriff accepts the bribe, the game stops with the smuggler obtaining a
utility of n minus the bribe amount b proposed in the last bargaining round, while the sheriff receives
a utility equal to b. In contrast, if the sheriff does not accept the bribe in last bargaining round and
decides to inspect the cargo, there are two possible alternatives:

• If the cargo has no illegal items (i.e. n = 0), the smuggler receives the fixed amount of 3,
while sheriff incurs a negative payoff of −3;

• Otherwise, the utility of the smuggler is set to −2n, while the utility of the Sheriff is 2n.

Battleship Our next benchmark is Battleship, a parametric version of the popular board game
introduced in [Farina et al., 2019b]. At the beginning, each player secretly places its ships on separate
locations on a grid of size 2× 2. Every ship has size 1 and a value of 4, and the placement is such
that there is no overlap with any other ship. After the placement, players take turns at “firing” at their
opponent’s ships. The game proceeds until either one player has sunk all of the opponent’s ships, or
each player has completed r = 2 rounds of firing. At the end of the game, each player’s payoff is the
sum of the values of the opponent’s ships that were sunk, minus the sum of the values of the ships
that the player has lost multiplied by two. The latter modification makes the game general-sum, and
incentivizes players to be more risk-averse.

Goofspiel Our final benchmark is Goofspiel, introduced by Ross [1971]. In this game every player
has a hand of cards numbered from 1 to h, where in our instantiation h := 3. An additional stack of
h cards is shuffled and singled out as winning the current prize. In every turn a prize card is revealed,
and players privately choose one of their cards to bid. The player with the highest card wins the
current prize, while in case of a tie the prize card is discarded. Due to this tie-breaking mechanism,
even two-player instances are general-sum. After the completion of h turns, players obtain the sum
of the values of the prize cards they have won. Further, the instances we consider are of limited
information—the actions of the other player are observed only at the end of the game. This makes the
game strategically more involved as each player has less information about the opponent’s actions.

23


	Omitted Proofs
	Description of the Game Instances

