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Abstract

In neural network literature, angular similarity between feature vectors is frequently
used for interpreting or re-using learned representations. However, the inner prod-
uct in neural networks partially disperses information over the scales and angles
of the involved input vectors and weight vectors. Therefore, when using only
angular similarity on representations trained with the inner product, information
loss occurs in downstream methods, which limits their performance. In this pa-
per, we proposed the spherization layer to represent all information on angular
similarity. The layer 1) maps the pre-activations of input vectors into the specific
range of angles, 2) converts the angular coordinates of the vectors to Cartesian
coordinates with an additional dimension, and 3) trains decision boundaries from
hyperplanes, without bias parameters, passing through the origin. This approach
guarantees that representation learning always occurs on the hyperspherical sur-
face without the loss of any information unlike other projection-based methods.
Furthermore, this method can be applied to any network by replacing an exist-
ing layer. We validate the functional correctness of the proposed method in a
toy task, retention ability in well-known image classification tasks, and effective-
ness in word analogy test and few-shot learning. Code is publicly available at
https://github.com/GIST-IRR/spherization_layer

1 Introduction

The inner product is a key element constituting layers in deep neural networks with a nonlinear acti-
vation function. The inner product with the Euclidean norms and the angle, that is, ∥w𝑖 ∥∥x 𝑗 ∥ cos θ𝑖 𝑗 ,
has been analyzed in terms of the norms ∥w𝑖 ∥∥x 𝑗 ∥ and the angle cos θ𝑖 𝑗 , independently [14, 15, 37].
All factors of the inner product learn distinct information. Therefore, using only one factor results in
information loss when re-using or understanding the information in downstream tasks. This problem
is termed as dispersion problem. The angular similarity between features is frequently used. How-
ever, this technique causes the dispersion problem in advanced methods in neural network literature
such as decoupled network [15], representation learning [6, 7, 23, 24, 34], regularization [35, 36],
zero-shot learning [26], and generative model [3, 27]. To mitigate the dispersion problem, numerous
angle-based learning approaches [1, 12, 13, 16, 18, 17, 35, 36, 38] have been proposed. However,
these studies are based on projection onto the hyperspherical surface. In this projection method,
distinction by the scale of features is ignored. Therefore, information loss occurs.

We proposed the spherization layer as an explicit solution for the dispersion to completely eliminate
the interference of the norms in training without drawbacks. This layer is used to locate all represen-
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Figure 1: Overview of spherization layer. The red box indicates the existing fully connected layer to
be replaced with the spherization layer in the blue box. After replacement, the pre-activations from
(𝑙 − 1)th layer are passed to the angularization function, not activation function. These pre-activations
are converted to angular coordinates in (1). Through (2), spherized representations are located on
the (𝑛 + 1)-spherical surface. Finally, a hidden layer without bias parameters is trained on these
spherized representations for using only the angles in (3). These relations of the input and output
of the stage (1), (2), and (3) are illustrated as graphs, which are clearly defined in Eq. 3, Eq. 6, and
Eq. 9, respectively. The right side displays how to generate angular coordinates and convert them to
Cartesian coordinates in a 3-dimensional space on MNIST

tations onto a constrained region on the hyperspherical surface and train hyperplanes passing through
the origin to learn representations with only the angles.

The spherization layer consists of three main components: Angularization function that converts the
pre-activations from the previous hidden layer to angles; Conversion from spherical coordinates to
Cartesian coordinates located on the hyperspherical surface; No-bias layer, a hidden layer without
bias parameters, that determines decision boundaries by using only the angles. Figure 1 illustrates
the design of the spherization layer. Through spherization, representations are located on the
hyperspherical surface and the effect of the norms in representation learning is completely eliminated.
Thus, neural networks are enforced to express all representations differently by using only the angles.

We experimentally verified the functional correctness of the spherization layer in a toy task and
its applicability to feedforward and convolutional neural networks by evaluating performance on
image classification tasks. The results reveal that the training ability of original networks is preserved
after applying the spherization layer. Furthermore, we analyzed the sensitivity to width and depth,
the effect of projection in the spherization layer, and the influence of the spherization layer on the
gradient flows in training. Finally, we investigated the effect of the proposed method in downstream
tasks through visualization, word analogy test, and few-shot learning.

In summary, our contributions are three-fold:

• To address the dispersion problem, we propose the spherization layer to represent all feature
vectors on the hyperspherical surface and learn the representations with only the angles.

• We validate the wide-applicability and scalability of the spherization layer without any loss of
performance through experiments on various well-known networks.

• We empirically show that the spherization layer can be used in many applications in which
angular similarity is a critical metric.
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2 Background

Conversion Spherical to the Cartesian Coordinate System In most neural networks, all input
samples on the n-dimensional space are represented as Cartesian coordinates, in which i-th column
value denotes the distance from the origin along the i-th axis, and neural networks train them by using
neurons in which the inner product between the input and weight vector occurred. The pre-activations
from neurons are used to determine whether neurons should be activated by using the following
activation function. In this process, the pre-activations are calculated by using weight and bias
parameters, represented as Cartesian coordinates. These Cartesian coordinates can be converted from
spherical coordinates. Given a vector s represented as Cartesian coordinates on the n-dimensional
space, s can be defined as spherical coordinates 𝛉 = [𝑟, 𝛗], composed of a radial coordinate r and
n-1 angular coordinates 𝛗 = [φ1, φ2, ..., φ𝑛−1]. In this case, the k-th axis of s can be computed from
𝛉 with Eq. 1

s = [𝑟 cos φ1, · · · , 𝑟 cos φ𝑘

∏𝑘−1
𝑖=1 sin φ𝑖 , · · · , 𝑟

∏𝑛−1
𝑖=1 sin φ𝑖] (1)

, where 𝑠1<𝑘<𝑛 = 𝑟 cos φ𝑘

∏𝑘−1
𝑖=1 sin φ𝑖 .

Generally, the spherical coordinate system is a 3-dimensional version of the polar coordinate system.
However, the spherical coordinate system in the followings indicates all n-dimensional versions of
the polar coordinate system, where n is greater than or equal to 2.

3 Spherization Layer

We proposed the spherization layer as shown in Figure 1 to locate feature vectors on the hyperspherical
surface without any loss of information and learn hyperplanes by using only the angles. In this
method, a layer of an original network is selected to learn representations by angular similarity.
Next, the layer is replaced to a spherization layer through three sequential stages: Angularization,
Conversion to Cartesian, and No-bias training notated as 𝑓 , 𝑔, and ℎ functions, respectively. The
final form of spherization layer 𝑓𝑠𝑝ℎ is expressed as Eq. 2.

𝑓𝑠𝑝ℎ = (ℎ ◦ 𝑔 ◦ 𝑓 ) , 𝑓𝑠𝑝ℎ : R𝑛 → R𝑚 (2)

After training with the layer, we can obtain the representations on the (𝑛 + 1)-spherical surface,
namely spherized representations, as the outputs of (𝑔 ◦ 𝑓 ) operations.

The common goal of all stages is to preserve the training ability of the original network while the
spherization layer trains all information on the (𝑛 + 1)-spherical surface. The angularization locates
all pre-activations on the safe spherical surface. The conversion to Cartesian results in the generation
of compatible representations to the ordinary layer. No-bias training enforces training by only the
angles. In the followings, we elaborate each stages more detail and only annotate the (𝑙 − 2)th and
(𝑙)th layer as [𝑙 − 2] and [𝑙], respectively, for the simplicity.

3.1 Angularization

𝛗 = 𝑓 (z), 𝑓 : R𝑛 → R𝑛 (3)
Angularization is the stage to map a pre-activation vector z , passed from (𝑙 − 1)th layer, to angular
coordinates 𝛗. The 𝑛 indicates the dimension of the pre-activation vector. The role of this stage is to
configure the shape of the mapped region on the (𝑛 + 1)-spherical surface for resolving training and
computational difficulty.

Angularization 𝑓 is implemented by applying the following element-wise function to all coordinates
of z as an activation function, and 𝑓 is illustrated as Eq. 4.

𝑓 (z) =
(
𝜋
2 − 𝜑𝐿

)
· 𝜎(𝛼 · z) + 𝜑𝐿 (4)

, where the terms and form are used by three following motivations.

Converting Pre-Activation to the Angular Coordinate The first step is to convert the input vector
into angular coordinates. To ensure the conversion as bijective mapping, we restrict the range of
the function as [0, 𝜋

2 ]. To allow unrestricted input representations on the real-valued domain, the
sigmoid function 𝜎(·) is used with weight 𝜋

2 for the range setting. As the sigmoid function used,
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the input vector should be pre-activations, not activations because when activations from ReLU or
another sigmoid are passed to the angularization, inefficient use of the spherical surface or gradient
amplification, respectively, may occur. After converting pre-activations to angular coordinates, the
representations on the hyperspherical surface in the same range were located by setting a consistent
radius over all inputs. This radius scale is controlled in the conversion-to-Cartesian stage.

Tailoring Angular Representation Space In the conversion from angular to Cartesian coordinates,
the last coordinate can be an extremely small value because trigonometric values in [0, 1] are
multiplied many times. This scale descent can map all values in the axis to only a single value by the
limit of the floating point data type. To reduce this effect in the angularization, we introduce a lower
bound 𝜑𝐿 of angles to guarantee distinguishable values in its corresponding converted Cartesian
coordinates as the following equation (Eq. 5):

𝜑𝐿 = sin−1 (
𝛿1/𝑛) (5)

, where 𝛿 is a minimal trigonometric value to guarantee the distinguishable representations. The
details are presented in Appendix A. We set 𝛿 to the empirically obtained proper value 10−6, for all
experiments.

Scaling Pre-Activations In angularization, the activations are concentrated onto the small region
because of the lower bound. This concentration renders training difficult with the decrease in the
variance. To reduce the effect, we set a learnable parameter 𝛼 as a weight of z, which controls the
variance of z. Using this scale factor, the generated angular representations become abundant.

3.2 Conversion-to-Cartesian

s = 𝑔(𝛗), 𝑔 : R𝑛 → R𝑛+1 (6)

In the Conversion-to-Cartesian stage, the angular coordinates of the previous stage are converted
to Cartesian coordinates on the (𝑛 + 1)-spherical surface. This conversion ensures the consistency
between the output of angularization (polar coordinate system) and the input of the following no-bias
layer (Cartesian coordinate system), and enables the layer to be trained in the same way as general
neural networks. Furthermore, an additional dimension makes the spherization layer have enough
capacity to be compatible with the ordinary layer. This implementation is based on Eq. 1 with the
modified range of angles as the following equation (Eq. 7).

𝑔(𝛗) = [𝑟 cos φ1, · · · , 𝑟 cos φ𝑘

∏𝑘−1
𝑖=1 sin φ𝑖 , · · · , 𝑟

∏𝑛
𝑖=1 sin φ𝑖], φ𝑖 ∈

[
𝜑𝐿 ,

𝜋
2
]

(7)

Calculation Trick Implementation of Eq. 7 as a tensor operation requires the trick defined in the
following equation (Eq. 8):

𝛟 = W⊺
𝜑𝛗

s = 𝑟 · exp
(
W⊺

𝜙
ln (sin 𝛟) + ln

(
cos

(
𝛟 + b𝜙

) ) ) (8)

, where 𝛟 is a dimension-expended vector in R𝑛+1 and 𝜙𝑛+1 = 𝜙𝑛, and 𝑟 is a constant to control
radius. Here, W𝜑 , W𝜙 , and b𝜙 are constant matrices and vector in R𝑛×(𝑛+1) , R(𝑛+1)×(𝑛+1) , and R(𝑛+1) ,
respectively. W𝜑 = [I𝑛; v], where v = [0; 1]⊺ ∈ R𝑛, is used for matching the dimension between 𝛗
and s. The other constants are used for calculating logarithm trigonometric values from expanded
angular coordinates in the way of matrix multiplication, where W𝜙 is an upper triangular matrix in
which all diagonals are zero and (W𝜙)𝑛,𝑛+1 is also zero, and b𝜙 = [0;− 𝜋

2 ]
⊺. See Appendix B for

detail hyperparameters and process.

3.3 No-bias Training

z[𝑙 ] = ℎ(s), ℎ : R𝑛+1 → R𝑚 (9)
Through angularization and conversion-to-Cartesian, all representations are located on the (𝑛 + 1)-
spherical surface. In this case, any update to the representations is determined by the change of
angular similarity. However, hyperplanes on the (𝑛 + 1)-dimensional space from the next layer may
not use only the angular similarity, which may assign semantic information to the Euclidean norm of
the spherized representation. To synchronize these parameters, we used no-bias training using only
the weight parameters W[𝑙 ] as illustrated in Eq. 10.

z[𝑙 ] = W[𝑙 ]⊺ s (10)
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Effect of No-Bias on Training In the ordinary layer, the problem of no-bias is that hyperplanes
passing through the origin cannot be shifted to another parallel hyperplanes. However, the problem
disappears when all feature vectors are located on the (𝑛 + 1)-spherical surface because the decision
boundary can be shifted by only the angle changes of (𝑛 + 1)-dimensional hyperplanes even though
they pass through the origin.

3.4 Optimization with Overall Process

A training loss 𝐿 is calculated in the same manner as the original network. The gradient of 𝐿 for the
spherization layer is calculated by multiplying the following partial derivative 𝜕𝐿

𝜕W to the original
backpropagation step from the (𝑙 − 2)th to (𝑙)th layer, as illustrated in Eq. 11. The first term 𝜕𝐿

𝜕z[𝑙 ] is
calculated by the subsequent layers in the same way of the original network.

𝜕𝐿

𝜕W
=

𝜕𝐿

𝜕z[𝑙 ]
· 𝜕z[𝑙 ]

𝜕s
· 𝜕s
𝜕𝛗

· 𝜕𝛗
𝜕z

· 𝜕z
𝜕W

𝜕z
𝜕W

= a[𝑙−2]

𝜕𝛗
𝜕z

=

( 𝜋
2
− 𝜑𝐿

)
· 𝛼 · 𝜎′(𝛼 · z)

𝜕s
𝜕𝛗

= [−𝑟 sin φ1, · · · ,−𝑟
𝑘∏
𝑖=1

sin φ𝑖 , · · · , 𝑟 cos φ𝑛

𝑛−1∏
𝑖=1

sin φ𝑖]

𝜕z[𝑙 ]

𝜕s
= W[𝑙 ]

(11)

4 Experiments

First, we define two terms for simplicity on indicating two networks: one is the network before
applying the spherization layer, called original network, and the other is the network after substituting
an ordinary layer with the spherization layer, called spherized network. In the followings, we used
these two terms consistently. All experiments were performed five times with random seeds and their
training and test accuracy were evaluated except word analogy test and few-shot learning. The mean
` and standard deviation 𝜎 of accuracy are represented as ` ± 𝜎 in each table.

4.1 Functional Correctness Test on a Toy Task

Figure 2: Input samples
for the toy task

Implementation Details We verified the spherization layer for learning
decision boundaries on a simple binary classification task. We set up
the simple binary classification task: given (x𝑖 , 𝑦𝑖) pairs, where x𝑖 is the
i-th input sample in R2 and 𝑦𝑖 ∈ {0, 1} is the label of x𝑖 , we randomly
generated 100 input samples located around (0, 0) for the label 0, and the
other 100 samples for the label 1 around (1, 1), as shown in Figure 2. We
set a 2-layer neural network as the original network, and trained it with
the softmax function, cross-entropy, and SGD at a learning rate of 0.01.
We applied the proposed method to the original network by replacing the
last fully connected layer with the spherization layer. For comparison of representations in the same
dimensional space, we set the dimension of the spherization layer to 1, where it is 2 in the original
network. The other settings are identical to the original network. We trained both networks on the
input samples for 100 epochs with 16 mini-batches, where the networks converged and achieved
100% training accuracy.

Distribution of Representations Initially, all representations are randomly distributed into two
groups on a 2-dimensional space. After convergence, the feature vectors are divided into two dis-
jointed groups, as illustrated in Figure 3. This means the spherized network locates all representations
on the 2-spherical surface in both the initial and final epoch, whereas the original network spreads
them out.

2https://github.com/weiaicunzai/pytorch-cifar100
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Figure 3: Visualization of Hyperplanes, Decision Boundary, and Representations in the Toy Task. (w:
hyperplanes, boundary: decision boundary, red or green points: representations for label 0 or 1)

Table 1: Retention of the Training Ability on Image Classification with Various Datasets and Models
(Accuarcy(%): ` ± 𝜎)

Network Dataset Reference Reproduced Spherized

train test train test train test

SimpleFNN [8] MNIST − 98.47 99.99±0.01 98.58±0.03 99.99±0.01 98.65±0.04
LeNet-5 [11] − 99.05 99.55±0.09 99.10±0.05 99.79±0.09 99.14±0.04

VGG-11 [33]
F-MNIST − 94.70 99.24±0.18 94.36±0.06 98.92±0.36 94.34±0.17
CIFAR10 − 90.90 100.00±0.00 92.38±0.06 100.00±0.00 92.49±0.11
CIFAR100 − 66.80 99.71±0.03 68.42±0.12 99.82±0.02 69.03±0.24

Table 2: Retention of Training Ability on Image Classification with CIFAR100 in Various Network
Width and Depth Settings (Accuarcy(%): ` ± 𝜎)

Depth Width Reference2 Reproduced Spherized

train test train test train test

VGG-11

16/32/64/128 − − 79.23±5.94 60.17±0.21 77.48±5.60 60.40±0.35
32/64/128/256 − − 98.34±0.37 64.89±0.38 96.98±3.67 65.38±0.28
64/128/256/512 − − 99.71±0.03 68.42±0.12 99.82±0.02 69.03±0.24

128/256/512/1024 − − 99.90±0.00 70.53±0.35 99.93±0.00 70.89±0.19
256/512/1024/1024 − − 99.90±0.01 71.43±0.22 99.93±0.01 71.94±0.19

VGG-11
64/128/256/512

− 68.64 99.71±0.03 68.42±0.12 99.82±0.02 69.03±0.24
VGG-16 − 72.93 99.39±0.07 72.51±0.26 99.54±0.05 72.53±0.17
VGG-19 − 72.23 97.95±0.81 71.53±0.32 99.30±0.06 72.17±0.33

Hyperplanes Hyperplanes and decision boundary in the feature space are defined as follows with
the parameters of the output layer:

W1 : w1 · x + b1 = 0
W2 : w2 · x + b2 = 0
D12 : (w1 − w2) · x + (b1 − b2) = 0

, where W𝑖 is the hyperplane determined by weight parameter w𝑖 and bias b𝑖 , and D𝑖 𝑗 is a linear
decision boundary whose points satisfy 0.5 confidence for both labels. In the spherized network, all
bias terms are eliminated. In Figure 3, the hyperplanes are illustrated as yellow lines and the decision
boundary as a gray line. In the spherized network, hyperplanes and decision boundary pass through
the origin from the initial to the last epoch, unlike the original network. The results imply that the
spherization layer can learn the correct decision boundary by changing only the angles of hyperplanes
passing through the origin.

4.2 Retention of Training Ability on Image Classification Benchmarks

Implementation Details In this task, we empirically verified that replacing an existing layer to a
spherization layer still maintains the training ability of the original networks on well-known image
classification tasks. We reproduced all networks and their performance on the image classification
tasks with each dataset. Then, we validated our proposed method on the same settings with them,
where only the last fully connected layer replaced by the spherization layer. See Appendix C for the
detail about networks and datasets.
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Table 3: Analysis on the Effect of Projection on Image Classification with CIFAR10 (acc.(%):
accuracy, # err.: the number of errors in overlapping samples, # ovlp.: the number of overlapping
samples, ratio(%): ratio of # err. to # ovlp.) (the number of test data = 10000)

Role Operator No-bias Train Test

acc. acc. # err. # ovlp. (ratio)

base Original Conv. 99.47 ± 0.42 92.46 ± 0.10 0 ± 0 0 ± 0 ( 0.00 ± 0.00 %)

direct
Sigmoid 81.74 ± 4.48 79.03 ± 2.71 1097 ± 266 5222 ± 391 (20.75 ± 3.70 %)
Linear 74.71 ± 1.06 72.15 ± 0.32 1631 ± 39 6849 ± 286 (23.84 ± 0.63 %)
Cosine 77.41 ± 0.89 76.15 ± 0.86 776 ± 132 3170 ± 330 (24.39 ± 2.66 %)

indirect
SW-Softmax ! 98.32 ± 0.07 91.51 ± 0.19 167 ± 9 7925 ± 58 ( 2.11 ± 0.11 %)
LW-Softmax ! 86.74 ± 4.06 82.12 ± 3.82 946 ± 374 7669 ± 66 (12.30 ± 4.84 %)
CW-Softmax ! 99.66 ± 0.04 92.29 ± 0.18 80 ± 5 7051 ± 134 ( 1.14 ± 0.05 %)

proposed Spherization ! 99.66 ± 0.05 92.38 ± 0.14 0 ± 0 499 ± 106 ( 0.00 ± 0.00 %)

Results and Analysis The accuracy results of original and spherized networks are compared in
Table 1. The reference and reproduced results of each setting are similar. The accuracy results of
the spherized networks implemented on the reproduced code are similar or slightly higher on both
training and test data than those of the original networks. These results imply that the spherization
layer maintains the training ability of the original network. In Table 2, the accuracy results of original
and spherized networks are shown in various width and depth settings. The spherized network
consistently exhibits similar or higher test accuracy over all width and depth settings. The results
reveal that the spherization layer again preserves the training ability of the original network.

4.3 Analysis: Effect of Projection

Implementation Details We compared the method with another angle-based approach to analyze
the effect of reducing information loss by projection. For comparison, we used 9-layer CNN, namely
CNN-9, with the same experimental setup of [19] but reproduced in PyTorch. To apply a spherization
layer, we changed the last fully connected layer in each model. We considered samples overlapped
when their cosine similarity is greater than or equal to (1 − 10−6).

Results and Analysis After training, we extracted representations from the target layer and analyzed
the effect of projection. First, we count the number of representations overlapping at least one another
representation. Then, we get the total errors caused by the incorrectly classified and overlapping
representations. Finally, we calculate the ratio of the incorrectly classified representations to the
overlapping representations. The results of them are shown in Table 3: # ovlp., # err., and (ratio),
respectively. As the result, large proportion of representations suffer the overlap problem from
projection approach, and most significant errors are caused by the overlapping representations.
Furthermore, representation learning relying on bias parameters (direct projection case) causes more
significant errors than no-bias layer (indirection projection case) because the representations are
more difficult to be distinguished than those of no-bias layer. In comparison, the spherization layer
removes the errors and decreases the upperbound of errors measured by the number of overlapping
representations.

4.4 Analysis: Gradient Flows

Implementation Details The replacement of a hidden layer and the operations in the spherization
layer, such as angularization function and conversion-to-Cartesian, might make the gradient flow
unstable in the original networks. To empirically verify how the spherization layer affects to the
gradients during training, we qualitatively compare the gradient flows of original and spherized
VGG-11. They were trained on the image classification with CIFAR100. We used the same setting
with Section 4.2.

Results and Analysis As shown in Figure 4, the average of absolute gradients in the original and
spherized network are not very different during the whole training. Furthermore, the results show
similar flows not only at the last fully connected layer (fc3 or sph_fc3) but at the previous layers.
This result implies the spherization layer does not destroy the gradient flows.
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(a) Avg. of Absolute Gradients at Each Layer (b) Histograms

Figure 4: Analysis of Gradient Flow from Image Classification Model trained on CIFAR100. (a)
The y-axis means the average of absolute gradients which occurred at each layer. The left side
shows the gradient flow in VGG-11 (VGG11), and the right side shows the spherized VGG-11
(SpherizedVGG11), where the last fully connected layer is substituted with the spherization layer. (b)
The histograms show the frequency of the average of absolute gradients in VGG-11 (red) and the
spherized VGG-11 (cyan), respectively.

(a) Original 2D (b) Original 3D (c) Spherized 3D

Figure 5: Visualization of Feature Representations on MNIST. (a) and (b) are the visualization results
of 2D and 3D feature vectors in the original networks, and (c) is the result in the spherized network

4.5 Downstream Tasks: Visualization

Implementation Details To investigate the spherization layer locates feature vectors on the (𝑛 +
1)-spherical surface, we implemented a simple CNN to learn 3-dimensional feature vectors for
visualization. This technique is called CNN-Vis3D, which generates 3-dimensional feature vectors
and shows those representations as a graph. Detailed configurations are presented in Appendix C.
In the spherized network, the second fully connected layer was replaced by the spherization layer,
which is located at the previous of the last fully connected layer. After training, the pre-activations
before the no-bias layer were used to visualization.

Results and Analysis The results of visualization are illustrated in Figure 5. In the 2D and
3D feature visualization results of the original network, the representations are distributed over
wide ranges of both scale and angles, as shown in Figure 5a and 5b. As illustrated in decoupled
network [15], the angle accounts for semantic difference and the Euclidean norm accounts for intra-
class variation. In the spherized network, all representations are placed on the 3-spherical surface, as
shown in Figure 5c. Based on these spherized representations and the following no-bias layer, all the
roles are expressed by the angle change on the hyperspherical surface. Thus, in the spherization layer,
all trained information can be used in angular similarity-based interpretation.
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Table 4: Performance on the Word Analogy Test (𝑆𝑝𝑝𝑙/𝑆𝑝𝑚𝑖/𝑆𝑚𝑝𝑝𝑙 ↑)
Model SAT U2 U4 Google BATS Avg.

BERT 29.4/28.5/28.8 36.0/36.0/36.8 38.7/34.7/34.3 33.0/33.8/33.0 32.3/35.0/33.2 33.9/33.6/33.2
BERT + sph 29.1/29.4/27.9 37.3/39.0/36.0 36.8/35.9/35.4 32.4/32.6/32.2 34.0/34.2/33.8 33.9/34.2/33.1

RoBERTa 29.4/31.2/29.7 35.5/35.5/36.4 33.6/34.3/34.5 32.8/33.2/30.8 30.9/31.6/30.9 32.4/33.1/32.5
RoBERTa + sph 29.1/29.4/30.0 36.4/35.5/34.2 34.0/34.3/33.3 34.2/33.6/32.8 35.0/33.9/34.8 33.7/33.3/33.0

Table 5: Performance of few-shot learning on Mini-ImageNet. Euclidean and Cosine mean euclidean
distance and cosine similarity, respectively, which are the distance metrics that used in the experiments.
(Accuarcy(%): ` ± 𝜎)

Model Test Acc. Model Test Acc.
Euclidean Cosine Euclidean Cosine

ConvNet 50.29±0.18 52.87±0.18 ResNet 37.63±0.15 33.41±0.15
ConvNet + sph 43.41±0.16 53.74±0.16 ResNet + sph 31.77±0.13 38.71±0.16

4.6 Downstream Tasks: Word Analogy Test

Implementation Details We used BERT [5] and RoBERTa [20] to conduct the word analogy test,
in which angular similarity is used to predict a relation type between words. The settings were
identical with [31]. We applied the spherization layer to the last fully connected layer of the encoder
in each model. Next, we trained them on WikiText [22] for 3 epochs with 8 mini-batches, the softmax
function following cross-entropy, SGD at a learning rate 0.0001 on masked-language modeling.

Results and Analysis Table 4 presents the performance evaluated with three metrics [31]. Applying
the spherization layer to BERT and RoBERTa improves most average scores. The improvement
implies that the spherized representations provide accurate information for angle-based distinction of
word relations.

4.7 Downstream Tasks: Few-shot Learning

Implementation Details We used ProtoNet [29] with ConvNet and ResNet for few-shot learning
on Mini-ImageNet [32], in which several feature vectors are compared with the feature vector of an
input image by using distance metric. This task was performed according to the guidelines in [2].

Results and Analysis Table 5 details the performance results in few-shot learning [2]. Generally,
the Euclidean distance is used to discriminate feature vectors. However, the Eucliean distance also
has the dispersion problem. To focus on only the angles, we trained the models with cosine similarity
and compared the performances. As shown in Table 5, all spherized models with cosine similarity
outperform the other models. This improvement indicates the spherized representations are useful for
the angle-based metric such as cosine similarity.

5 Related Works

Semantic Analysis on the Inner Product The inner product is a crucial operator in current neural
networks, in which the distance between input vector x and weight vector w is encoded. At the
decoupled networks [15], the inner product is reparametrized with the norms and the angle, and the
intra-class variation and the semantic difference are modeled in neural networks by decoupling them.
Furthermore, the substitutes of the inner product have been proposed, where the direction of gradient
or the similarity between kernels are used as the key factor instead of the inner product [14, 37]. The
spherization layer can be considered to be the substitute of the inner product, which normalizes the
input vectors by locating them on the hyperspherical surface. However, the spherization layer is a
direct and specific method to convert feature vectors focused on the angles without information loss.

Angle-based Approach The semantic analysis on the inner product has revealed that the streams
focuses on the information in the angles. The angle is a crucial factor, in which the most abundant
and discriminative information is preserved [1, 12, 13, 18]. In SphereFace variants [13, 16, 17, 38],
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the angular softmax that enables CNNs to learn discriminative features on angular separability was
used. Furthermore, some of this angular information have been used for regularization [35, 36].
In most angle-based studies, the angular information was used indirectly by the objective function
or regularization. In contrast, the spherization layer ensures the model directly learns the angular
information on the hyperspherical surface.

Hyperspherical Representation Learning In some angle-based approaches, input vectors were
directly projected onto the hyperphserical surface [15, 19, 21]. These hyperspherical representation
learning methods normalized the input vectors to ensure models are dependent on only the angles.
However, this normalization is the projection onto the hyperspherical surface, and it can be less
discriminative when some points overlap after the projection. The spherization layer locates the input
vectors on the hyperspherical surface without the overlap problem through the spherization.

6 Conclusion

We introduced the dispersion problem of trained information to the Euclidean norm and angle on
representations. To address the dispersion problem, we proposed the spherization layer to learn
representations by using only the angles without information loss. We used the angularization
for using pre-activations as angular coordinates, conversion-to-Cartesian for locating them on the
(𝑛+ 1)-spherical surface, and no-bias training to learn representations by using only the angles. In the
experiments on toy, image classification benchmarks, few-shot learning, and word analogy test, the
proposed method achieved accurate learning of the decision boundary and retention of the original
training ability, and improved performance in downstream tasks using angle-based information re-
used or interpreted. The proposed method can be applied to numerous network layers and downstream
applications. A limit of this approach is that the spherization layer should be inserted to networks
in a training step to fully utilize its advantage, which restricts the use of pre-trained models trained
without it. Recovering trained information on representations with sampling should be investigated
in the future.
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A Lower bound 𝜑𝐿

To prevent the last coordinate from an extremely small value, we set a lower bound 𝜑𝐿 of angles.
When we assume that the trigonometric value of all angular coordinates is 𝛼, sin 𝜑 = 𝛼. Based on
this assumption, the lower bound 𝜑𝐿 can be obtained as illustrated in Eq. 12.

𝑤ℎ𝑒𝑛 sin 𝜑 = 𝛼, 𝛼𝑛 ≥ 𝛿 ⇔ 𝛼 = 𝛿1/𝑛

𝜑 = sin−1 𝛼 ≥ sin−1 (
𝛿1/𝑛)

∴ 𝜑𝐿 = sin−1 (
𝛿1/𝑛) (12)

B Calculation Trick

To convert the angular coordinates 𝛗 ∈ R𝑛 to Cartesian coordinates s ∈ R𝑛+1, we first expand the
dimension of 𝛗 by using the constant matrix W𝜑 = [I𝑛; v] ∈ R𝑛×(𝑛+1) , where v = [0; 1]⊺ ∈ R𝑛 and
[·; ·] means concatenation. Then, we can get the expanded angular vector 𝛟 as illustrated in Eq. 8.

When we define s′ as illustrated in Eq. 13 from Eq. 8, we calculate the 𝑖-th coordinate s𝑖 as shown in
Eq. 14 , where b𝜙 = [0;− 𝜋

2 ]
⊺ ∈ R𝑛+1 and W𝜙 ∈ R(𝑛+1)×(𝑛+1) is an upper triangular matrix in which

all diagonals are zero, (W𝜙)𝑛,𝑛+1 is also zero, and the other elements are ones.

s′ = W⊺
𝜙

ln (sin 𝛟) + ln
(
cos

(
𝛟 + b𝜙

) )
(13)

s′1<𝑘<𝑛+1 =

𝑘−1∑︁
𝑖=1

ln (sin φ𝑖) + ln (cos φ𝑘)

= ln

(
cos φ𝑘

𝑘−1∏
𝑖=1

sin φ𝑖

)
s′1 = ln (cos φ1)

s′𝑛+1 = ln

(
𝑛∏
𝑖=1

sin φ𝑖

)
(14)

Finally, we get the Cartesian coordinates s from this calculation trick as illustrated in Eq. 15.

s = 𝑟 · exp(s′)

= [𝑟 cos φ1, · · · , 𝑟 cos φ𝑘

𝑘−1∏
𝑖=1

sin φ𝑖 , · · · , 𝑟
𝑛∏
𝑖=1

sin φ𝑖]
(15)

C Implementation Details

Image Classification We conducted image classification experiments on MNIST [4], Fashion-
MNIST [40], CIFAR10, and CIFAR100 [10]. For MNIST, we used a 3-layer neural network [8] and
LeNet-5 [11]. We followed the settings in [8] and in [11], and the architectures of them are illustrated
in Table 6 SimpleFNN and LeNet-5, respectively. Unlike [8], we used 256 mini-batches, Adam at a
learning rate of 0.001 and weight decay of 5e-5 at the 3-layer neural network. At LeNet-5, we set
128 mini-batches, Adam at a learning rate of 0.001, and the other settings are same with [11]. For
Fashion-MNIST, CIFAR10, and CIFAR100, we used VGG variants [28] with batch normalization [9]
denoted as VGG-N. ReLU, 128 mini-batches, and SGD with momentum of 0.9 and with weight
decay of 5e-4 were used as default in three datasets. The number of epochs was set to 100, 300,
and 200, respectively. For Fashion-MNIST, the learning rate was initially 0.01 and it was divided
by 2 at every 20 epochs. For CIFAR10, we set the initial learning rate as 0.05 and reduced it to
half at every 30 epochs. For CIFAR100, the learning rate was initially 0.1 and divided by 5 at 60th,
120th, and 160th epochs. The last fully connected layer of the backbone network was replaced by
the spherization layer for each task. As pre-activations used for generating angular coordinates, the
range of angles was reduced when dropout. To resolve this problem, we removed the dropout in
front of the spherization layer. For analysis of robustness of the spherization layer to width and depth
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Table 6: Network configurations. The convolutional layer parameters are denoted as "conv(receptive
field size)-(number of channels)", and the ReLU activation function is not shown for brevity [28].
The fully connected layer parameters are denoted as "FC-(number of neurons)". In CNN-Vis3D, 𝑁 is
set as 2 or 3 to get the feature vectors for visualization. In VGG-11 (C), 𝐶 = [𝐶1, 𝐶2, 𝐶3, 𝐶4] means
the number of channels at each convolutional block. 𝑁𝑜𝑢𝑡 is set as the number of classes in each
image classification task. The highlighted layer means where it is replaced by the spherization layer
in the spherized network.

SimpleFNN

FC-500
FC-300
FC-10

soft-max

LeNet-5

conv5-6
conv5-16
FC-120
FC-84
FC-10

soft-max

CNN-Vis3D

conv3-32
conv3-32
maxpool
conv3-64
conv3-64
maxpool

conv3-128
conv3-128

FC-256
FC-N
FC-10

soft-max

CNN-9

conv3-128
conv3-128
conv3-128
maxpool

conv3-192
conv3-192
conv3-192
maxpool

conv3-256
conv3-256
conv3-256
maxpool
FC-256
FC-10

soft-max

VGG-11 (C) VGG-16 VGG-19

conv3-𝐶1 conv3-64 conv3-64
conv3-64 conv3-64

maxpool
conv3-𝐶2 conv3-128 conv3-128

conv3-128 conv3-128
maxpool

conv3-𝐶3 conv3-256 conv3-256
conv3-𝐶3 conv3-256 conv3-256

conv3-256 conv3-256
conv3-256

maxpool
conv3-𝐶4 conv3-512 conv3-512
conv3-𝐶4 conv3-512 conv3-512

conv3-512 conv3-512
conv3-512

maxpool
conv3-𝐶4 conv3-512 conv3-512
conv3-𝐶4 conv3-512 conv3-512

conv3-512 conv3-512
conv3-512

maxpool
FC-4096
FC-4096
FC-𝑁𝑜𝑢𝑡

soft-max

configurations, we used the VGG backbone again and changed the convolutional configuration of it
on CIFAR100. To generate variations on width, we set the number of channels at Conv1.x, Conv2.x,
Conv3.x, and Conv4.x to 16/32/64/128, 32/64/128/256, 64/128/256/512, 128/256/512/1024 and
256/512/1024/1024, respectively. The filter in Conv5.x has same number with the filter in Conv4.x
(see Table 6). To give variations on depth, we used VGG-11, VGG-16, and VGG-19.

Visualization CNN-Vis3D is composed of three convolutional layer blocks whose kernel size are
32, 64, and 128, as shown in Table 6. To obtain 3-dimensional feature vectors, we set the number of
neurons at the second fully connected layer, which locates before the last fully connected layer, as 3
in the original network. For a fair comparison, we replaced this layer with the spherization layer and
changed the number of neurons to 2, and visualized 2-dimensional feature vectors from the original
network, in which the number of neurons at the second fully connected layer is 2. In the CNN-Vis3D
for 2D and 3D, named Original 2D and Original 3D respectively, batch normalization, ReLU, 64
mini-batches, cross-entropy, and Adam at a learning rate 0.001 were used as default. Unlike the
original network, we set 32 mini-batches in the spherized CNN-Vis3D, called Spherized 3D. We
trained original 2D, original 3D, and Spherized 3D for 20 epochs, and they converged and achieved
the training accuracies(%) 98.87, 99.48, and 99.13, respectively.
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D Effect of Fine-tuning

Table 7: Performance on Word Analogy Test (fine-tuning) (𝑆𝑝𝑝𝑙/𝑆𝑝𝑚𝑖/𝑆𝑚𝑝𝑝𝑙 ↑)
Model SAT U2 U4 Google BATS Avg.

BERT 29.7/32.3/29.4 37.3/36.0/34.2 39.1/34.7/34.6 44.8/44.4/44.2 44.1/41.3/40.7 39.0/37.7/36.6
BERT + sph 29.1/29.1/30.0 36.8/35.1/33.3 38.2/32.6/33.3 44.6/45.8/44.4 40.8/38.8/39.3 37.9/36.3/36.1

RoBERTa 40.7/38.0/40.1 43.4/47.8/45.6 41.2/43.3/42.1 83.0/84.0/83.2 68.1/68.5/69.3 55.3/56.3/56.0
RoBERTa + sph 41.5/42.1/42.7 49.6/50.4/47.8 46.3/46.8/46.5 88.0/87.0/88.4 71.0/70.7/70.9 59.3/59.4/59.3

Table 8: Performance of Few-shot Learning on Mini-ImageNet (fine-tuning) (Accuarcy(%): ` ± 𝜎)

Model Test Acc. Model Test Acc.
Euclidean Cosine Euclidean Cosine

ConvNet 67.80±0.17 66.60±0.17 ResNet 77.73±0.15 78.86±0.15
ConvNet + sph 51.56±0.17 61.77±0.17 ResNet + sph 72.18±0.15 74.57±0.15

In neural networks, the fine-tuning technique is used in natural language processing [25, 39] and
computer vision [30, 41]. In this method, the pre-trained model is used and re-trained on a new target
domain. Fine-tuning can achieve excellent performance. However, for spherization, a layer in the
architecture should be replaced with the spherization layer, and this spherized network should be
trained from scratch. If not, a mismatch between the learned representations and spherization unex-
pectedly affects the performance of the fine-tuned model. To verify this phenomenon, we investigated
fine-tuning on the word analogy test and few-shot learning. We used the pre-trained weights from [39]
for BERT and RoBERTa, and from [2] for ConvNet and ResNet. For synchronizing with spher-
ized features, we loaded the pre-trained models and fine-tuned them on WikiText dataset [22] and
Mini-ImageNet [32], respectively. See the experimental details and results on following subsections.

D.1 Word Analogy Test

Implementation Details Unlike the few-shot learning, there are no data to re-train the pre-trained
weights in word analogy test because they use language models to evaluate the performance on word
analogy test. To resolve this problem, we used WikiText [22] to make fine-tuned language models.
We loaded pre-trained weights BERT and RoBERTa, respectively, and trained them on WikiText for
3 epochs, 8 mini-batches, softmax function following cross-entropy, SGD at a learning rate 0.0001.
For spherization, we replaced the last fully connected layer of encoder in each network with the
spherization layer.

Result and Analysis The results of fine-tuning on word analogy test are illustrated in Table 7.
In the original networks, the performances of both are obviously increased. The spherized BERT
also have improvements but not much as the original network, while the spherized RoBERTa shows
greater improvement. This result means that the angular information in the pre-trained representations
might be more helpful enough to overcome the information collapse.

D.2 Few-shot Learning

Implementation Details The implementation details were used according to the method presented
in Section 4.7. For fine-tuning, we obtained the pre-trained weights [2] for ConvNet and ResNet,
respectively. In the spherized networks, the part of last fully connected layer was substituted with the
spherization layer when loading these weights. Thus, the pre-trained weights of this layer were not
necessary anymore.

Result and Analysis The results of fine-tuning on few-shot learning are shown in Table 8. In
the original networks, the performances increase considerably. The spherized networks exhibit
improvements but not as much as the original networks. This result indicates that there are some
information collapse when training the spherization layer on pre-trained representations but it is not
that fine-tuning is not helpful at all. To the best of our knowledge, the angular information in the
pre-trained representations might be helpful to train spherized representations.
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