
Controllable 3D Face Synthesis with Conditional
Generative Occupancy Fields

–Supplementary Material–

Keqiang Sun1∗, Shangzhe Wu2∗, Zhaoyang Huang1,
Ning Zhang3, Quan Wang3, Hongsheng Li1,4

1CUHK MMLab 2Oxford VGG 3SenseTime Research
4Centre for Perceptual and Interactive Intelligence Limited

kqsun@link.cuhk.edu.hk, szwu@robots.ox.ac.uk, hsli@ee.cuhk.edu.hk

1 Implementation Details

Network Architectures. This project is based on the released code of pi-GAN [2] and
Deep3DFaceRecon [4]. We use the same architectures for the generator and discriminator, as well
as the main training process from the pi-GAN. To implement our proposed conditional Generative
Occupancy Field (cGOF), we integrate a deep 3D face reconstruction model Deep3DFaceRecon [4]
to reconstruct 3DMM parameters from the generated images for the 3DMM reconstruction parameter
loss Lrecon. We follow [4] to adopt the popular 2009 Basel Face Model [9] for shape and texture bases,
and use the expression bases of [6], built from FaceWarehouse [1]. The expression components are
the PCA model of the offsets between the expression meshes and the neutral meshes of individual
persons.

Coordinate System Alignment. We align the 3DMM meshes to pi-GAN to impose the 3D losses.
We first use the pre-trained pi-GAN to generate multi-view images of various face instances in
the canonical viewpoint and use the Deep3DFaceRecon to reconstruct 3DMM meshes M for the
generated faces, on which we define a set of landmarks l3D. Let Krecon and Erecon be the intrinsic
and extrinsic matrices for 3DMM, and Kpigan and Epigan the counterparts for pi-GAN respectively.
Let TR2P be the transformation matrix from 3DMM to pi-GAN that we would like to estimate. We
directly optimize this transformation matrix by minimizing the difference of 2D projections of a set
of landmarks obtained from the original mesh M and the transformed mesh M ′ = TR2P ·M , denoted
as l2D and l′2D:

T ∗
R2P = argmin

TR2P

∥l2D − l′2D∥1,

where l2D = Krecon · Erecon · l3D,

l′2D = Kpigan · Epigan · TR2P · l3D.

(1)

Background Modeling. We model the background by setting the weight of the last sample point
along each ray to be wN = 1−

∑N−1
i=1 wi, where wi = Ti · (1− exp (−σiδi)) is weight of the rest

of the sample points along the ray, including both the mesh-guided samples and the volume samples.

Hyper-Parameters and Volume Sampling. Tab. 1 summarizes all hyper-parameters. We sample
12 coarse points evenly in the volume to and obtain Nvol = 12 fine points as introduced in [8]. Only
Nvol = 12 fine points and the Nsurf = 12 points sampled around the 3DMM input mesh are used for
rendering and optimization with gradient backpropagation. The final model is trained for 72 hours on
8 GeForce GTX TITAN X GPUs.
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Parameter Value/Range

Optimizer Adam
Generator learning rate 6× 10−5

Discriminator learning rate 2× 10−4

Number of iterations 80, 000
Batch size 64
Nsurf 12
Nvol 12
training image size 64

Loss weight λgan 1
Loss weight λrecon 4
Loss weight λd 10000
Loss weight λldmk 10
Loss weight λwarp 10
Loss weight λnorm

smooth 1000

Loss weight λdepth
smooth 500

z N 411(0, 1)
Ray length (0.88, 1.12)
Yaw N (0, 17.19◦)
Pitch N (0, 8.88◦)
Field of view (FOV) 12◦

Table 1: Training details and hyper-parameter settings.

To determine loss weights λs, we start from the original Pi-GAN and add the proposed components
one-by-one, as in ?? in the main paper. For each component, we first initialize the hyperparameter
lambda as 1, and empirically find a reasonable value before taking a fine-grained search.

2 Additional Quantitative Results

2.1 Further Comparison with DiscoFaceGAN

In ?? in the main paper, we have compared with DiscoFaceGAN [3] in terms of Disentangle Scores.
To directly compare the 3DMM conditioning methods proposed in our paper with those in the
DiscoFaceGAN [3], we introduce the conditioning methods of DiscoFaceGAN, i.e. imitative loss,
and contrastive loss, into Pi-GAN to build the “Pi-GAN + DiscoFaceGAN” model.

Comparison results are shown in the Tab. 2. Row 1 shows the Disentangle Scores of the officially
released DiscoFaceGAN model concerning shapes, expressions, and poses. Row 2 corresponds to
the constructed “Pi-GAN + DiscoFaceGAN” method. Comparing Row 1 and 2, we find the Pi-GAN
backbone enhances the disentanglement of head pose and face shape while harming the expression
disentanglement. Row 3 indicates the performance of our method, which outperforms the “Pi-GAN +
DiscoFaceGAN” model in all metrics by a large margin, demonstrating the efficiency of the proposed
conditioning method against the DiscoFaceGAN [3].

2.2 User Study

We conduct a user study to add to the comparison. We follow the experiment setting of ?? in the
main paper. Specifically, we provide the control results of five methods, and ask a total of 21 users to
rank the results according to their image quality and the controlling effects.

Tab. 3 summarizes the results, where the "Average Ranking / Average Score / Ranking 1st Ratio"
are reported for each method with respect to concerning factors, i.e. identity, expression, pose. Our
model achieves the highest average ranking and scores for all aspects, indicating our model produces
more perceptually compelling results and achieves better 3D controllability than other counterparts.
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Index Loss CD ↓ LD ↓ LC ↑ DSs ↑ DSe ↑ DSp ↑
1 Pi-GAN 1.09 5.04 2.04 2.13 2.54 7.16
2 DiscoFaceGAN [3] - - - 5.97 15.70 5.23
3 Pi-GAN + DiscoFaceGAN 1.32 2.40 32.55 6.16 7.63 12.13
4 Ours 0.27 1.26 92.88 23.24 29.13 23.45

Table 2: Comparison with “Pi-GAN + DiscoFaceGAN”.
DiscoFaceGAN [3] GAN-Control [10] Pi-GAN [2] + Lrecon HeadNeRF [7] cGOF (Ours)

Id 3.1 / 59.1 / 9.52% 2.6 / 68.6 / 0.00% 3.3 / 53.3 / 9.52% 4.7 / 26.7 / 0.0% 1.4 / 92.4 / 81.0%
Exp 2.3 / 74.3 / 19.1% 3.8 / 43.8 / 9.52% 3.2 / 56.2 / 0.00% 4.3 / 34.3 / 0.0% 1.4 / 91.4 / 71.4%
Pose 2.6 / 68.6 / 14.3% 3.7 / 45.7 / 0.00% 3.8 / 43.8 / 4.76% 3.7 / 46.7 / 0.0% 1.2 / 95.2 / 81.0%
IQ 2.1 / 78.1 / 9.52% 2.9 / 62.9 / 4.76% 3.9 / 42.9 / 0.00% 5.0 / 20.0 / 0.0% 1.2 / 96.2 / 85.7%

Table 3: User Study on the Disentangle Performance and Image Quality. Each cell contains "Average
Ranking / Average Score / Ranking 1st Ratio". Id: Identity, Exp: Expression, IQ: Image Quality.

3 Additional Qualitative Results

3.1 Additional Results with Pose Variations

We present large pose results for GAN-Control [10] in Fig. 1, DiscoFaceGAN [3] in Fig. 2, Head-
NeRF [7] in Fig. 3 and pi-GAN [2] in Fig. 4. Previous methods fail to generate plausible face images
when the camera pose gets larger (e.g. > 60◦), including NeRF-based methods (HeadNeRF and
pi-GAN). Nevertheless, as shown in Fig. 5, our method produces plausible 3D consistent face images
even in extremely large poses. Note that, to get rid of the view-dependent effect, we follow [5, 7] and
remove the dependence of the radiance colors on the viewing direction by setting the view direction
to a constant (0, 0,−1) when evaluating the radiance colors of the sample points.

3.2 Additional Results with Expression Variations

We present more results on the expression control, comparing our method against two state-of-
the-art controllable face synthesis methods, one attribute-guided GAN-Control [10], and the other
3DMM-guided DiscoFaceGAN [3]. Figs. 6 to 8 show the generated faces using GAN-Control,
DiscoFaceGAN and our method respectively. For each figure, the first column shows a reference
image, columns 2 to 5 show images generated with mild expressions, and columns 6 to 9 show images
generated with wilder expressions. Each row corresponds to the same person, and each column
corresponds to the same expression.

In Fig. 6, we can see that GAN-Control fails to preserve the identity as well as other factors of the
face image (e.g. background) when changing only the facial expression code. A few examples are
highlighted in red. Moreover, we observe that with the original range of the expression parameters,
the model results in only a small variation of expressions, whereas with increased perturbations,
it leads to much more significant shape and identity inconsistencies. We also notice the “smiling”
attribute tends to strongly correlate with the “female” and “long-hair” attributes.

In Fig. 7, we can see that the DiscoFaceGAN fails to impose consistent expression control over the
faces. The blue boxes highlight a few examples, where the same expression code produces different
expressions in different faces. Moreover, the images generated with wild expressions may appear
unnatural, such as ‘exp 5’ in Fig. 7.

In Fig. 8, we show that our model generates compelling photo-realistic face images with highly
consistent, precise expression control. In each row, only expressions change while other properties
remain unchanged, such as identity (shape and texture), hair, and background. In each column, all
instances follow the same expression.

In addition, in Fig. 9, we present examples of images generated by our model with out-of-distribution
expressions, such as frowning, pouting, curling lips, smirking etc. Despite images with such
expressions hardly existing in the training data, our model is still able to generate highly plausible
images.
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Figure 1: Images generated by DiscoFaceGAN [3] with different poses.
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Figure 2: Images generated by GAN-Control [10] with different poses.
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Figure 3: Images generated by HeadNeRF [7] with different poses.
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Figure 4: Images generated by the original Pi-GAN [2] with different poses.
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Figure 5: Images generated by our proposed cGOF with different poses.
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Reference Common Expressions Wilder Expressions

exp1 exp2 exp3 exp4 exp5 exp6 exp7 exp8

background and the facial shape inconsistency 

Figure 6: Images generated by GAN-Control [10] with different expressions. Each row is generated
with the same parameters except the expression code, and each column shares the same expression
code. Red boxes highlight examples where GAN-Control produces severe inconsistencies in the
identity and background when only the expression is supposed to change. Moreover, we notice the
“smiling” attribute tends to strongly correlate with the “female” and “long-hair” attributes.
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Reference Common Expressions Wilder Expressions

exp1 exp2 exp3 exp4 exp5 exp6 exp7 exp8

expression inconsistency among different subjects

Figure 7: Images generated by DiscoFaceGAN [3] with different expressions. Each row is generated
with the same parameters except the expression code, and each column shares the same expression
code. Blue boxes highlight some examples where DiscoFaceGAN fails to produce consistent
expressions among different instances.
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Reference Common Expressions Wilder Expressions

Figure 8: Images generated by our proposed cGOF with different expressions. Our model generates
photo-realistic face images with highly consistent, precise expression control.
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Reference Out-of-Distribution Expressions

exp1 exp2 exp3 exp4 exp5 exp6 exp7 exp8

Figure 9: Images generated by our proposed cGOF with out-of-distribution expressions. Our method
is capable of synthesizing unseen expressions like raising eyebrow, pouting, curling lips, smirking
etc.
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