
A Background on Stereo Matching

The left of Fig. 1 illustrates the stereo matching setup. The rectified left image is used as the reference
image to infer the disparity map. For each pixel in the left image, the goal of stereo matching is to
find the target pixel on the rectified epipolar line in the right image. The search range (i.e., disparity
levels) often is predefined and fixed to a sufficiently large value in the cost volume computation stage.
The matching is based on minimizing the cost between features centered at the source pixel and the
target pixel respectively. The challenge of stereo matching is to seek the globally optimal matching
for all pixels in the left reference image and to handle many uncertainties such as in the appearance
features (textureless regions and specularities), the cost function, and unknown repeated patterns and
occlusion situations.

Let ⇤ be an image lattice (e.g., 540⇥ 960) on which the rectified left and right images are defined,
denoted by I

L and I
R respectively. Denote by D(x, y) be the disparity map for the reference image

I
L. In traditional methods, stereo matching is formulated as an energy/cost minimization problem,

min
D

Ed(I
L
, I

R
, D) + � · Es(D), (7)

where the first term is the data energy/cost, Ed(IL, IR, D) =
P

(x,y)2⇤ Cost(FIL(x, y), FIR(x�
D(x, y), y)) capturing the matching cost between a source pixel (x, y) in the left reference image
and the target pixel (x �D(x, y), y) on the rectified epipolar line (i.e., the same row) in the right
image. The cost is measured based on features FIL and FIR extracted for the source and target
pixel respectively. The second term represents the prior/regularity of a disparity map such as the
pairwise smoothness assumption, Es(D) =

P
(u,v)2N S(D(u), D(v)) where u, v 2 ⇤ and N the

set of neighboring pixels (e.g., the 4-connected neighborhood). The challenges in the traditional
formulation are in two-fold: what are the good features and the cost functions in the data term?
And, what is the good prior that are sufficiently expressive to capture the disparity structures while
facilitating efficient optimization (e.g., by the dynamic programming algorithm or semi-global
method [35])?

Deep learning approaches mitigate the aforementioned challenges by exploiting the highly-expressive
representational power and the end-to-end learning capability of DNNs. As shown in the right-
bottom of Fig. 1, DNN-based stereo matching methods amortize the need of inducing proper priors
(inductive biases) and of designing global matching cost optimization algorithms, which often
consist of four components: (i) Extracting DNN features, FL and F

R for matching with the spatial
downsampling rate, s, (ii) Computing the 4D feature volume F by concatenating features FL(u, v)
and F

R(u� d, v) w.r.t. each disparity level d 2 [0, D

s
] where D is the predefined maximum disparity

level, (iii) Computing and aggregating the matching cost volume C for each disparity level at the
input resolution, which is typically realized via 3D convolution under an U-Net type of encoder-
decoder architecture, which represents the solution space with respect to the data term in Eqn. 7,
and (iv) Estimating the final disparity map D. The prior/regularity term of a disparity map is made
implicitly by the supervised loss function. The optimization algorithms (e.g., the traditional global
or semi-global methods [35]) are also implicitly realized by a head sub-network (e.g., the stacked
Hourglass sub-network in Fig. 5).

Census
Transform

 Hourglass
w/ 2D Conv

Census
Transform

Cost Volume

Hourglass
w/ 3D Conv

124 74 32

124 64 18

157 116 84

1 1 0

1 1 0

1 1 1

Stereo Images

Census Transform (Local Binary Pattern) Conv Conv stride 2 Deconv stride 2

Hourglass

Shortcut

3D Conv

Concat.

Figure 5: Network architecture.

15

B Network Architecture and Training Details

We show the detailed configuration of the proposed architecture in Table 7 with the workflow
reproduced in Fig. 5. Besides how layers are wired, one key difference is the down-sample scale
of the cost volume. While our method uses the same 1/3 scale as GANet, PSMNet uses 1/4 and
LEAStereo uses 1/6. Intuitively, a smaller down-sample size should lead to a stronger robustness,
because more perturbations are averaged out in the cost volume. Therefore, our method is not taking
advantage of the dowm-sampled size. In fact, it is much more robust than PSMNet and LEAStereo
with a finer resolution.

Implementation Details. Our method is implemented in PyTorch and trained end-to-end using
the Adam optimizer with �1 = 0.9 and �2 = 0.999. All images are preprocessed with color
normalization. During training, we use a batch size of 8 on four GPUs (Tesla V100) using 240⇥ 576
random crops. The maximum disparity level is set to 192 and any values larger than this threshold
will be ignored during training. For SceneFlow, we train our model from random initialization for 20
epochs with a constant learning rate of 0.001. For KITTI2015, we split the 200 training images into
a training set of 140 images and a validation set of 60 images. We fine-tune our model pretrained on
the SceneFlow with 600 epochs and use the validation set to select the best model.

Name Layer description Output dimension
input normalized image pairs H ⇥W ⇥ 3

Backbone for the left reference image

conv_start
3⇥ 3 Conv, stride 1
5⇥ 5 Conv, stride 3
3⇥ 3 Conv, stride 1

1/3H ⇥ 1/3W ⇥ 32

conv_1a 3⇥ 3 Conv, stride 2 1/6H ⇥ 1/6W ⇥ 48
conv_2a 3⇥ 3 Conv, stride 2 1/12H ⇥ 1/12W ⇥ 64
conv_3a 3⇥ 3 Conv, stride 2 1/24H ⇥ 1/24W ⇥ 64
deconv_1a 3⇥ 3 Deconv, stride 2, add conv_2a 1/12H ⇥ 1/12W ⇥ 64
deconv_2a 3⇥ 3 Deconv, stride 2, add conv_1a 1/6H ⇥ 1/6W ⇥ 48
deconv_3a 3⇥ 3 Deconv, stride 2, add conv_start 1/3H ⇥ 1/3W ⇥ 32
conv_1b 3⇥ 3 Conv, stride 2, add deconv_2a 1/6H ⇥ 1/6W ⇥ 48
conv_2b 3⇥ 3 Conv, stride 2, add deconv_1a 1/12H ⇥ 1/12W ⇥ 64
conv_3b 3⇥ 3 Conv, stride 2, add conv_3a 1/24H ⇥ 1/24W ⇥ 64
deconv_1b 3⇥ 3 Deconv, stride 2, add conv_2b 1/12H ⇥ 1/12W ⇥ 64
deconv_2b 3⇥ 3 Deconv, stride 2, add conv_1b 1/6H ⇥ 1/6W ⇥ 48
deconv_3b 3⇥ 3 Deconv, stride 2, add deconv_3a 1/3H ⇥ 1/3W ⇥ 32
backbone output repeat deconv_3b /̀3 times (dim=2) 1/3H ⇥ 1/3W ⇥ 1/3`⇥ 32

Multi-Scale Census Transform
census_transform census transform of the input with window size 11 H ⇥W ⇥ 120

Cost Volume
init_cost_volume the initial cost volume H ⇥W ⇥ `⇥ 9
conv_3d_0a 5⇥ 5 Conv3D, stride 3 1/3H ⇥ 1/3W ⇥ 1/3`⇥ 32
concat [optional] concatenate with the backbone output (as context) 1/3H ⇥ 1/3W ⇥ 1/3`⇥ 64
conv_3d_0b 3⇥ 3 Conv3D 1/3H ⇥ 1/3W ⇥ 1/3`⇥ 32

Cost Aggregation
conv_3d_1 [3⇥ 3 Conv3D, stride 1]⇥2 1/3H ⇥ 1/3W ⇥ 1/3`⇥ 32

conv_3d_2 3⇥ 3 Conv3D, stride 2
[3⇥ 3 Conv3D, stride 1]⇥2

1/6H ⇥ 1/6W ⇥ 1/6`⇥ 32

conv_3d_3 repeat above 1/12H ⇥ 1/12W ⇥ 1/12`⇥ 32
conv_3d_4 repeat above 1/24H ⇥ 1/24W ⇥ 1/24`⇥ 32
conv_3d_5 repeat above 1/48H ⇥ 1/48W ⇥ 1/48`⇥ 32
deconv_3d_1 3⇥ 3 Deconv, stride 2, add conv_3d_4 1/24H ⇥ 1/24W ⇥ 1/24`⇥ 32
deconv_3d_2 3⇥ 3 Deconv, stride 2, add conv_3d_3 1/12H ⇥ 1/12W ⇥ 1/12`⇥ 32
deconv_3d_3 3⇥ 3 Deconv, stride 2, add conv_3d_2 1/6H ⇥ 1/6W ⇥ 1/6`⇥ 32
cost_agg_1 3⇥ 3 Deconv, stride 2, add conv_3d_1 1/3H ⇥ 1/3W ⇥ 1/3`⇥ 32
cost_agg_2 repeat cost aggregation (input: cost_agg_1) 1/3H ⇥ 1/3W ⇥ 1/3`⇥ 32
cost_agg_3 repeat cost aggregation (input: cost_agg_2) 1/3H ⇥ 1/3W ⇥ 1/3`⇥ 32

Disparity Regression

output_1 5⇥ 5 Deconv, stride 3 (input: cost_agg_1)
disparity regression (Eqn. 1 in the submission) H ⇥W ⇥ 1

output_2 repeat above (input: cost_agg_2) H ⇥W ⇥ 1
output_3 repeat above (input: cost_agg_3) H ⇥W ⇥ 1

Table 7: Details of the proposed network architecture. All convolution (Conv and Conv3D) and
deconvolution (Deconv) layers are followed by batch normalization and ReLU.

16

Left image Right image Ground-truth disparity map

Error map by GANet-Deep Error map by LEAStereo Error map by our model

Figure 6: Illustration of adversarial vulnerability of deep stereo matching methods using a toy
example: GANet-Deep [10], LEAStereo [11], and the proposed method. See text for detail.

Clean / After Attack, (EPE [px])
Models ` =20 60 100 140 180
PSMNet 1.89/78.85 1.22/63.57 0.45/3.29 0.94/4.59 0.48/36.10
GANet 2.36/9.94 6.74/27.72 7.37/80.39 13.56/115.77 15.09/31.95
LEAStereo 0.54/31.86 0.32/1.13 0.36/1.18 0.33/98.23 0.96/146.68
Ours w/o ctx. 0.057/0.051 0.20/0.20 0.29/0.25 0.25/0.24 0.26/0.26
Ours 0.36/3.12 0.28/5.56 0.13/0.44 0.37/9.47 0.094/1.77

Table 8: Result comparisons on synthetic adversarial patches at different disparity levels `.

C More Results

C.1 A Toy Experiment

We conduct a toy experiment to show that state-of-the-art stereo matching methods can be easily
attacked even by the simplest form of stereo-constrained attack, i.e. shifted patches (Fig. 6).

We create five synthetic toy stereo image pairs. In a stereo pair, the left reference image is composed
by superposing a white-noise patch onto a constant background. The right image is created using
the same patch and the same background in which the patch is horizontally shifted with respect to a
given disparity level (such as ` = 20). So, the ground-truth disparity for the entire patch will be the
specified `. The background is excluded from the evaluation.

As shown in Table 8, for the clean synthetic images, state-of-the-art stereo matching methods work
very well using the SceneFlow trained model checkpoints. Our model shows better performance
for all disparity levels. After applying the proposed stereo-constrained PGD attack only to the

Disparity

E
P

E

0.10

0.50

1.00

5.00

10.00

50.00

25 50 75 100 125 150 175

PSMNet GANet LEAStereo Ours Ours (w/o backbone)

Figure 7: Test results of of shifting an adversarial patch on the left image at disparities from 10 to
180, while fixing the right image. Each point represents a testing pair with a different displacement.

17

patches (similar in spirit to the adversarial patches [36]), state-of-the-art methods’ performance drop
significantly except for the LEAStereo method [11] at two disparity levels (60 and 100). Fig. 7 further
shows the effects of applying the same adversarial patch at different disparity levels, showing that
this simplest form of attack has a certain transferability with different depth levels.

Through this toy experiment, we can observe: (i) Although not trained with this synthetic setting,
state-of-the-art stereo matching methods are capable of recovering matching results when no attacks
are applied. (ii) However, the matching capabilities are not stable even with respect to the much
weaker stereo-constrained attacks. This may indicate that state-of-the-art methods could learn shortcut
solutions in computing the cost volume, while our methods that directly utilize local rank information
in computing the cost volume are more robust, either with or without the feature backbone in
computing the cost volume.

C.2 Examples of Adversarial Patch Attacks

We show all of the 10 scenarios for adversarial patch attack in figures 8, 9, 10, 11, and 12. All
scenarios are selected where the adversarial patches can be put on more flat surfaces, but they are not
necessarily horizontal to the image plane. Note that the ground truth disparities of the patches are
the same as the corresponding part of the original image. The first row shows the attacked image
pairs for our method. Other methods will have patches on the same location but the texture will be
different. PSMNet [9], LEAStereo [11], and GANet [10], and our method are shown on the second,
third, fourth, and fifth row respectively. The first and the third columns are the after attack disparity
maps, and the second and the fourth columns are the after attack error maps from the ground truth.

From the results, we can see that our method is significantly more robust than others in this physically
realizable attack setting.

Figure 8: Illustration of the adversarial patch attack (1/5). The first row shows the attacked image
pairs. PSMNet [9], GANet [10], LEAStereo [11], and our method are shown on the second, third,
fourth, and fifth row respectively. The first and the third columns are the after attack disparity maps,
and the second and the fourth columns are the after attack error maps from the ground truth.

18

Figure 9: Illustration of the adversarial patch attack (2/5). The first row shows the attacked image
pairs. PSMNet [9], GANet [10], LEAStereo [11], and our method are shown on the second, third,
fourth, and fifth row respectively. The first and the third columns are the after attack disparity maps,
and the second and the fourth columns are the after attack error maps from the ground truth.

clean PGD Attack (✏ = 0.03)
Models EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0
Ours w/o CT. 0.38 4.24 0.34 2.13 56.34 15.23
fgsm 20-epoch 0.44 6.97 0.65 0.86 23.92 2.46
adv-3 20-epoch 0.45 7.67 0.72 0.79 20.91 1.91
adv-9 20-epoch 0.52 10.36 1.06 0.79 21.50 2.18
adv-9 50-epoch 0.52 10.36 1.06 0.74 19.26 1.98
Ours 0.36 3.61 0.27 0.88 21.20 3.75
Ours + adv. 0.41 5.77 0.52 0.61 13.46 1.39

Table 9: Stereo-constrained attack results under different adversarial training settings. The first 5
rows show the results of our modified version with two feature backbones.

C.3 Ablation Study on Adversarial Training

Here we modify our model by using two feature backbones while keeping other components fixed and
use this setting to study the effects of different PGD iteration steps and training epochs on adversarial
training in Table 9. Our method is not suitable for justifying these hyper-parameters since it has
significantly stronger robustness.

In this experiment, we test the modified counterpart under FGSM attack, the unconstrained PGD
attacks with different iterations (3 and 9) and training epochs (20 and 50). In order for adversarial
training to be effective, the attack should be as strong as possible [3]. Table 9 shows that all the
model trained with PGD attacks are indeed more robust than the one with FGSM attack. However, it
does not make much difference for using 9 iterations or 50 epochs, showing that 3 iterations with 20
epochs are sufficient for the adversarial training.

Besides justifying the hyper-parameters, this result also shows that our method is indeed more robust
than its counterpart as it uses the proposed multi-scale Census Transform for the matching.

19

Figure 10: Illustration of the adversarial patch attack (3/5). The first row shows the attacked image
pairs. PSMNet [9], GANet [10], LEAStereo [11], and our method are shown on the second, third,
fourth, and fifth row respectively. The first and the third columns are the after attack disparity maps,
and the second and the fourth columns are the after attack error maps from the ground truth.

Clean Synthetic Patch Attack
Models EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0
PSMNet 0.28 2.30 0.21 0.80 15.41 4.46
GANet-Deep 0.25 1.46 0.12 1.84 12.52 9.09
LEAStereo 0.41 5.60 0.69 1.34 20.32 6.18
Ours 0.40 4.79 0.46 0.54 7.58 0.85
Ours w/o ctx. 0.46 5.51 0.63 0.48 6.42 0.81
PSMNet + adv. 0.58 12.56 1.44 1.44 26.55 8.59
GANet + adv. 0.55 11.24 1.32 2.31 23.5 11.98
LEAStereo + adv. 0.71 15.87 2.24 1.96 30.88 11.72
Ours w/o ctx. + adv. 0.52 8.95 1.03 0.54 9.45 1.18
Ours + adv. 0.53 11.25 1.17 0.58 12.01 1.40

Table 10: Adversarial Patch Attack Results in the KITTI2015 training dataset with photometric
consistency retained in attack.

C.4 Supplementary Results on the Experiments

Here we provide the EPE and Bad 1.0 for the adversarial patch attack and the transferability of
adversarial robustness experiments. From Tables 10 and 11, our method shows significantly stronger
robustness also in EPE and Bad 1.0, especially in Bad 1.0.

In addition, we show two different versions of the unconstrained attacks in KITTI2015, where one use
the ground truth to attack, and the other use the original neural network prediction. Results are shown
in Table 12. It shows that using prediction is weaker than using the ground truth for unconstrained
attacks.

C.5 Occluded Regions

For the proposed stereo-constrained PGD attack, we disallow to attack and evaluate occluded regions
of the reference image, which prevents the perturbation to attack the regions where the estimation

20

Figure 11: Illustration of the adversarial patch attack (4/5). The first row shows the attacked image
pairs. PSMNet [9], GANet [10], LEAStereo [11], and our method are shown on the second, third,
fourth, and fifth row respectively. The first and the third columns are the after attack disparity maps,
and the second and the fourth columns are the after attack error maps from the ground truth.

Clean PGD Attack (✏ = 0.03) PGD Attack (✏ = 0.06)
Models EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0
PSMNet + adv. 0.8 18.24 3.03 1.37 33.87 6.72 2.07 51.00 12.28
GANet + adv. 0.80 18.82 3.03 1.45 36.79 7.75 2.29 54.07 15.42
LEAStereo + adv. 0.85 20.17 3.56 1.48 38.24 8.60 2.3 55.67 16.24
Ours w/o ctx. 0.49 6.40 1.23 1.58 26.69 9.66 1.92 32.52 12.87
Ours 0.46 6.07 1.00 1.37 22.45 7.29 1.80 29.61 10.50
Ours w/o ctx. + adv. 0.65 11.18 2.25 1.28 24.62 6.64 1.48 28.93 8.31
Ours + adv. 0.56 10.14 1.73 0.89 18.35 4.14 1.09 22.64 5.95

Table 11: Transferrability of Adversarial Robustness: stereo-constrained 20-step PGD Attack Results
in the KITTI2012 training dataset using adversarially trained neural networks on KITTI2015.

does not rely on matching. Nonetheless, it is still possible to make perturbation on the occluded
regions of the right image to hinder the matching, e.g. by creating false positive correspondence. We
also consider this situation and experiment with an even weaker attack such that the occluded regions
of both the left and right images will not be attacked.

The results are shown in Table 13 Table 15, which are consistent with those reported in the submission.
Our methods are the best in all metrics except for EPE in ScenFlow with ✏ = 0.03.

C.6 Results in SceneFlow

We first compare the adversarial robustness. Table 14 and Table 15 shows the comparisons: our
models are much more robust than the prior art. As the original SceneFlow dataset does not
have ground truth occlusion, we use a subset provided by the same authors [5] with occlusions. We
randomly select 1, 000 images from the test data. Our methods show significantly better robustness
against attacks. In fact, our methods are the best in all metrics except for EPE in ScenFlow with
✏ = 0.03 in Table 15. We note that if we do not allow to use the proposed differentiable approximation

21

Figure 12: Illustration of the adversarial patch attack (5/5). The first row shows the attacked image
pairs. PSMNet [9], GANet [10], LEAStereo [11], and our method are shown on the second, third,
fourth, and fifth row respectively. The first and the third columns are the after attack disparity maps,
and the second and the fourth columns are the after attack error maps from the ground truth.

PGD Attack (✏ = 0.03) w/ GT PGD Attack (✏ = 0.03) w/ Prediction
Models EPE [px] Bad 1.0 [%] Bad 3.0 [%] EPE [px] Bad 1.0 [%] Bad 3.0 [%]
PSMNet 91.08 92.75 89.91 58.75 84.11 70.49
GANet 23.75 89.48 79.11 19.49 68.01 51.58
LEAStereo 14.71 82.42 64.31 12.03 74.21 54.00
Ours w/o ctx. 2.36 41.34 16.30 2.27 34.98 14.74
Ours 1.81 36.42 11.29 1.53 29.25 10.09

Table 12: Vanilla 20-step PGD Attack Results in the KITTI2015 training dataset [6]. The PGD
attacks are learned using either the GT disparity map or the predicted disparity map from clean
images in the loss function used to compute PGD. The performance are still measured in terms of the
GT disparity map.

of Census Transform, our method shows much better robustness, thanks to the non-differentiable cost
volume computation.

We also compare the results using the entire image, instead of only non-occlusion regions in evaluating
attack performance. Table 16 shows the comparisons. Our method obtains competitive performance
against state-of-the-art methods. Recent work suggests there exists an inherent conflict between
accuracy and robustness [37, 38]. From this perspective, the comparable performance on clean
images and the significantly better robustness of our method show that the proposed design for stereo
matching is effective.

D Environment

All the experiments were done on a Nvidia DGX server running Ubuntu 18.04.5, which equips 4
Tesla V-100 GPUs, each has 32 gigabytes of memory. For Pytorch, we use version 1.8.0 with CUDA
11.1.

22

Clean PGD Attack (✏ = 0.03) PGD Attack (✏ = 0.06)
Models EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0
PSMNet 0.28 2.00 0.16 1.29 45.79 5.12 5.19 70.73 30.08
GANet 0.25 1.42 0.10 1.25 39.76 5.92 2.93 63.88 25.84
LEAStereo 0.37 4.54 0.42 1.44 46.57 7.61 3.20 66.26 27.45
Ours w/o ctx. 0.38 4.14 0.32 0.60 12.95 1.16 0.64 14.39 1.42
Ours 0.36 3.61 0.27 0.53 9.90 0.75 0.59 11.97 0.93

Table 13: Stereo-Constrained 20-step PGD Attack Results in the KITTI2015 training dataset [6].
Attacks on occluded regions of both the left and the right image are disallowed.

Clean (Non-occlusion regions) After PGD Attack (✏ = 0.03) After PGD Attack (✏ = 0.06)
Models EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0
PSMNet 1.56 20.62 5.36 12.37 68.12 30.75 25.51 75.66 51.13
GANet 1.04 10.82 3.37 11.52 51.47 36.10 28.54 72.75 64.03
LEAStereo 1.03 8.87 2.69 12.12 55.69 33.82 22.30 68.04 53.63
Ours 1.02 8.85 3.28 9.87 31.94 25.67 20.74 45.84 41.37
Ours w/o ctx. 1.16 9.49 3.55 9.23 30.61 25.15 10.85 32.88 27.84
Ours† 1.02 8.85 3.28 2.25 12.64 6.71 5.79 18.09 13.04

Table 14: Stereo-Constrained 20-step PGD Attack Results in SceneFlow [5]. † shows results by
our method without using the modified census transform in learning attacks, which are much more
resistant to attacks. See text for detail.

Clean After PGD Attack (✏ = 0.03) After PGD Attack (✏ = 0.06)
Models EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0
PSMNet 1.56 20.62 5.36 12.32 68.15 30.76 20.15 74.50 46.74
GANet 1.04 10.82 3.37 14.37 57.90 42.03 23.59 69.28 57.90
LEAStereo 1.03 8.87 2.69 9.32 54.86 31.16 16.51 64.26 45.77
Ours w/o ctx. 1.16 9.49 3.55 11.63 34.18 29.26 13.09 36.55 32.21
Ours 1.02 8.85 3.28 11.70 35.36 29.56 16.08 42.14 37.21

Table 15: Stereo-Constrained 20-step PGD Attack Results in SceneFlow [5]. Attacks on occluded
regions of both the left and the right image are disallowed.

Models Params [M] EPE [px] Bad 1.0 [%] Bad 3.0 [%]
PSMNet 3.5M 1.49 20.6 5.9
GANet 6.6M 0.82 9.0 3.5
LEAStereo 1.8M 0.83 8.0 3.3
Ours w/o ctx. 1.9M 1.10 9.7 4.4
Ours 2.7M 0.84 8.8 3.7

Table 16: Result comparisons using clean images in the SceneFlow dataset [5].

23

