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Abstract

Controlled feature selection aims to discover the features a response depends on
while limiting the false discovery rate (FDR) to a predefined level. Recently, multi-
ple deep-learning-based methods have been proposed to perform controlled feature
selection through the Model-X knockoff framework. We demonstrate, however,
that these methods often fail to control the FDR for two reasons. First, these meth-
ods often learn inaccurate models of features. Second, the “swap” property, which
is required for knockoffs to be valid, is often not well enforced. We propose a new
procedure called FLOWSELECT to perform controlled feature selection that does
not suffer from either of these two problems. To more accurately model the fea-
tures, FLOWSELECT uses normalizing flows, the state-of-the-art method for density
estimation. Instead of enforcing the “swap” property, FLOWSELECT uses a novel
MCMC-based procedure to calculate p-values for each feature directly. Asymp-
totically, FLOWSELECT computes valid p-values. Empirically, FLOWSELECT
consistently controls the FDR on both synthetic and semi-synthetic benchmarks,
whereas competing knockoff-based approaches do not. FLOWSELECT also demon-
strates greater power on these benchmarks. Additionally, FLOWSELECT correctly
infers the genetic variants associated with specific soybean traits from GWAS data.

1 Introduction

Researchers in machine learning have made much progress in developing regression and classification
models that can predict a response based on features. In many application areas, however, practitioners
need to know which features drive variation in the response, and they need to do so in a way that
limits the number of false discoveries. For example, in genome-wide association studies (GWAS),
scientists must consider hundreds of thousands of genetic markers to identify variants associated with
a particular trait or disease. The cost of false discoveries (i.e., selecting variants that are not associated
with the disease) is high, as a costly follow-up experiment is often conducted for each selected variant.
Another example where controlled feature selection matters is analyzing observational data about
the effectiveness of educational interventions. In this case, researchers may want to select certain
educational programs to implement on a larger scale and require confidence that their selection
does not include unacceptably many ineffective programs. As a result, researchers are interested in
methods that model the dependence structure of the data while providing an upper bound on the false
discovery rate (FDR).

Model-X knockoffs (Candès et al., 2018) is a popular method for controlled variable selection,
offering theoretical guarantees of FDR control and the flexibility to use arbitrary predictive models.
However, even with knowledge of the underlying feature distribution, the Model-X knockoffs method
is not feasible unless the feature distribution is either a finite mixture of Gaussians (Gimenez et al.,
2019) or has a known Markov structure (Bates et al., 2020). Hence, a body of research explores the
use of empirical approaches that use deep generative models to estimate the distribution of X and
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sample knockoff features (Jordon et al., 2019; Liu & Zheng, 2018; Romano et al., 2020; Sudarshan
et al., 2020).

The ability of these methods to control the FDR is contingent on their ability to correctly model
the distribution of the features. By itself, learning a sufficiently expressive feature model can be
challenging. However, the knockoff procedure requires learning a knockoff distribution that satisfies
the swap property, which is a much stronger requirement. Formally, let X ∈ RD be a sample from
the feature distribution and X̃ ∈ RD be a sample from the knockoff distribution conditioned on X .
The swap property stipulates that the joint distribution (X, X̃) ∈ R2D must be invariant to swapping
the positions of any subset of features S ∈ {1, . . . , D}:

(X, X̃)swap(S)
D
= (X, X̃) (1)

Here, swap(S) means exchanging the positions of Xj and X̃j for all j ∈ S. For example, in
the case D = 3 and S = {1, 3}, the joint distribution is (X, X̃) = (X1, X2, X3, X̃1, X̃2, X̃3),
and the swapped joint distribution is (X, X̃)swap(S) = (X̃1, X2, X̃3, X1, X̃2, X3). Note that, for

S = {1, . . . , D}, the swap property implies that X̃ D
= X . See Candès et al. (2018) for a more detailed

description of the swap property.

Even if a distribution were found satisfying the swap property, it may not provide enough power to
make discoveries. For example, both properties are trivially satisfied by constructing exact copies of
the features as knockoffs, but the resulting procedure has no power.

In situations where a valid knockoff distribution is available to sample from, knockoffs are computa-
tionally appealing because they require only one sample from a knockoff distribution to assess the
relevance of all p features. However, in situations where the joint density of the features is unknown,
we show that empirical approaches to knockoff generation (Jordon et al., 2019; Liu & Zheng, 2018;
Romano et al., 2020; Sudarshan et al., 2020) fail to characterize a valid knockoff distribution and
therefore do not control the FDR. We further show that even with a known covariate model, it is not
straightforward to construct a valid knockoff distribution unless a specific model structure is known.

We propose a new feature selection method called FLOWSELECT (Section 3), which does not
suffer from these problems. FLOWSELECT uses normalizing flows to learn the joint density of the
covariates. Normalizing flows is a state-of-the-art method for density estimation; asymptotically,
it can approximate any distribution arbitrarily well (Papamakarios et al., 2021; Kobyzev et al.,
2020; Huang et al., 2018). Additionally, FLOWSELECT circumvents the need to sample a knockoff
distribution by instead applying a fast variant of the conditional randomization test (CRT) introduced
in Candès et al. (2018). Samples from the complete conditionals are drawn using MCMC, ensuring
they are unbiased with respect to the learned data distribution.

Asymptotically, FLOWSELECT computes correct p-values to use for feature selection (Section 4).
Our proof assumes the universal approximation property of normalizing flows and the convergence
of MCMC samples to the Markov chain’s stationary distribution. Under the same assumptions as the
CRT, which includes a multiple-testing correction as in Benjamini & Hochberg (1995), a selection
threshold can be picked which controls the FDR at a pre-defined level. Empirically, on both synthetic
(Gaussian) data and semi-synthetic data (real predictors and a synthetic response), FLOWSELECT
controls the FDR where other deep-learning-based knockoff methods do not. In cases in which
competing methods do control the FDR, FLOWSELECT shows higher power (Section 5). Finally,
in a challenging real-world problem with soybean genome-wide association study (GWAS) data,
FLOWSELECT successfully harnesses normalizing flows for modeling discrete and sequential GWAS
data, and for selecting genetic variants the traits depend on (Section 5.4).

2 Background

FLOWSELECT brings together four existing lines of research, which we briefly introduce below.

Normalizing flows Normalizing flows is a general framework for density estimation of a multi-
dimensional distribution with arbitrary dependencies (Papamakarios et al., 2021). A normalizing
flow starts with a simple probability distribution (e.g., Gaussian or uniform), which is called the
base distribution and denoted Z, and transforms samples from this base distribution through a
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series of invertible and differentiable transformations, denoted G, to define the joint distribution of
X ∈ RD ∼ PX . A normalizing flow with enough transformations can approximate any multivariate
density, subject to regularity conditions detailed by Kobyzev et al. (2020). Compared to other density-
estimation methods, normalizing flows are computationally efficient. Details about the specific
normalizing flow architecture used in FLOWSELECT are provided in Appendix A.

Controlled feature selection Consider a response Y which depends on a vector of features X ∈
RD. Depending on how the features are chosen, it is plausible that only a subset of the features
contains all relevant information about Y . Specifically, conditioned on the relevant features in X ,
Y is independent of the remaining features in X (i.e. the null features). The goal of the controlled
feature selection procedure is to maximize the number of relevant features selected while limiting
the number of null features selected to a predefined level. If we denote the total number of selected
features R, then we can decompose R into V , the number of relevant features selected, and S, the
number of null features selected.

Conditional randomization test Controlled feature selection can be seen as a multiple hypothesis
testing problem where there are p null hypotheses, each of which says that feature Xj is conditionally
independent of the response Y given all the other features X−j . Explicitly, the test of the following
hypothesis is conducted for each feature j = {1, . . . , D}:

H0 : Xj ⊥ Y |X−j versus H1 : Xj 6⊥ Y |X−j . (2)

To test these hypotheses, one can use a conditional randomization test (CRT) (Candès et al., 2018).
For each feature tested in a conditional randomization test, a test statistic Tj (e.g., the LASSO
coefficient or another measure of feature importance) is first computed on the data. Then, the null
distribution of Tj is estimated by computing its value T̃j based on samples X̃j drawn from the
conditional distribution of Xj given X−j . Finally, the p-value is calculated based on the empirical
CDF of the null test statistics, and features whose p-values fall below the threshold set by the
Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995) are selected. Though the CRT is
introduced as a computationally inefficient alternative to knockoffs, the CRT nonetheless has appeal
because it requires only knowledge of the feature distribution, which can be learned empirically by
maximum likelihood.

Holdout randomization test The holdout randomization test (HRT) (Tansey et al., 2021) is a fast
variant of the CRT; it uses a test statistic that requires fitting the model only once. Let θ represent
the parameters of the chosen model, and let T (X,Y, θ) be an importance statistic calculated from
the model with input data. For example, T , could be the predictive likelihood Pθ(Y test|X test) or the
predictive score R2. To use the HRT, first fit model parameters θ̂ based on the training data. Next, for
each covariate j, calculate the test statistic T ∗j ← T (X test, Y test, θ̂). Then, generate k null samples
and compute Tj,k ← T (X test

(j←jk), Y
test, θ̂), where X test

(j←jk) replaces the j-th covariate with the k-th
generated null sample. Finally, calculate the p-value as in the CRT, based on the empirical CDF of
the null test statistics.

3 Methodology

FLOWSELECT implements the CRT for arbitrary feature distributions by using a normalizing flow to
fit the feature distribution and Markov chain Monte Carlo (MCMC) to sample from each complete
conditional distribution. Performing controlled feature selection with FLOWSELECT consists of the
three steps below.

Step 1: Model the predictors with a normalizing flow

Starting with the observed samples of the features X1, . . . , XN ∼ PX , we fit the parameters of a
normalizing flow Gθ to maximize the log likelihood of the data with respect to a base distribution pZ :
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θ̂ = arg max
θ

N∑
i=1

log pθ(Xi)

where pθ(Xi) = pZ(Gθ(X))

∣∣∣∣det

(
∂Gθ(X)

∂X

)∣∣∣∣ .
(3)

The resulting density pθ̂ is a fitted approximation to the true density PX . The specific normalizing
flow architecture we use in our first two experiments consists of a single Gaussianization layer (Meng
et al., 2020) followed by a masked autoregressive flow (MAF) (Papamakarios et al., 2017). The
first layer can learn complex marginal distributions for each covariate, while the MAF learns the
dependencies between them. More detail on normalizing flows and on this particular architecture can
be found in Appendix A.

Step 2: Sample from the complete conditionals with MCMC

For each feature j, we aim to sample corresponding null features X̃i,j,k for all k ∈ {1, . . . ,K} that
are equal in distribution to pθ̂(Xi,j |Xi,−j), but independent of Yi. However, directly sampling from
this conditional distribution is intractable. Instead, we implement an MCMC algorithm that admits
it as a stationary distribution. The samples drawn from MCMC are autocorrelated, but any statistic
calculated over these samples will converge almost surely to the correct value. The choice of the
MCMC proposal distribution qj is flexible. Because each Markov chain is only one-dimensional, a
Metropolis-Hastings Gaussian random walk with the standard deviation set based on the covariance
can be expected to mix rapidly. Alternatively, information from pθ̂, such as higher-order derivatives,
could be used to construct a more efficient proposal. Algorithm 1 details how to implement step 2.

Step 3: Test for significance with the HRT

As in the CRT, feature j has high evidence of being significant if, under the assumption that j is a null
feature, the probability of realizing a test statistic greater than the observed Tj(X) is low. Formally,
letting [X̃j , X−j ] be the observed feature matrix with the observed feature Xj swapped out with the
null feature X̃j , we can write this as a p-value αj :

αj ≡ PX̃j |X−j

(
Tj(X) < Tj([X̃j , X−j ])

)
. (4)

However, the above p-value αj is not tractable. For each sample X̃·,j,k drawn using MCMC, we
calculate the corresponding feature statistic and compare it to the real feature statistic, leading to an

Algorithm 1 Step 2 of the FLOWSELECT procedure for drawing K null features X̃i,j |Xi,−j for
feature j at observation i.

Input: Feature matrix X ∈ RN×D, observation index i, feature index j, number of samples K,
fitted normalizing flow pθ̂, MCMC proposal qj
Output: Null features X̃i,j,k for k = 1, . . . ,K
for k = 1, . . . ,K do

Propose: X?
i,j,k ∼ qj(·|X̃i,j,k−1, Xi,−j)

ri,j,k ←
pθ̂(X

?
i,j,k,Xi,−j)qj(X̃i,j,k−1|X?i,j,k,Xi,−j)

pθ̂(X̃i,j,k−1,Xi,−j)qj(X?i,j,k|X̃i,j,k−1,Xi,−j)

Sample: Ui,j,k ∼ Bernoulli(ri,j,k ∧ 1)
if Ui,j,k = 1 then
X̃i,j,k ← X?

i,j,k

else
X̃i,j,k ← X̃i,j,k−1

end if
end for
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approximated p-value α̂j :

α̂j ≡
1

K + 1
(1 +

K∑
k=1

1[Tj(X) < Tj([X̃j,k, X−j ])). (5)

To control the FDR, we use the Benjamini-Hochberg procedure to establish a threshold for the
observed p-values. Specifically, we set the threshold to s(γ) , maxj{α̂j : α̂j ≤ j

Dγ}, and select all
features j such that αj ≤ s(γ).

The Benjamini-Hochberg correction only guarantees FDR control provided that the p-values have
either positive or zero correlation. Thus, the FDR control of FLOWSELECT depends on these
assumptions being met. A more conservative correction from Benjamini & Yekutieli (2001) allows
for arbitrary dependencies in p-values, but it suffers from low power. The Benjamini-Hochberg
correction is widely used and empirically robust (Tansey et al., 2021), so we report results using it.
Across our synthetic and semi-synthetic benchmarks in Section 5, we also find that FLOWSELECT
maintains empirical FDR control.

Provided that the Benjamini-Hochberg assumptions are met, the FDR will be controlled, but the
power of the test depends on Tj being higher when j is a significant feature. For example, if Y is
expected to vary approximately linearly with respect to X , Tj(X) could be the absolute estimated
regression coefficient |β̂j | for the linear model Y = Xβ + ε. Another choice is the HRT feature
statistic described earlier.

4 Asymptotic results

The ability of FLOWSELECT to control the FDR relies on its ability to produce estimated p-values
that converge to the correct p-values for the hypothesis test in Equation (2).

Theorem 1. Let X ∈ RN×D be a random feature matrix, where each row Xi,· is independent and
identically distributed; x ∈ RN×D be the observed feature matrix; and αj be the p-value as defined
in Equation (4) with test statistic Tj(X). Suppose there exists a sequence of functions (Gn)

∞
n=1 and

a base random variable Z satisfying the following conditions:

1. Each Gn is continuously differentiable and invertible.

2. Gn → G pointwise for some map G that is triangular, increasing, continuously differen-
tiable, and satisfies G(Xi,·)

D
= Z.

For n = 1, 2, . . . , let Xn be the random feature matrix where each row i is independent and has
distribution Xn

i,· = (Gn)−1(Z). Then, the p-value in Equation (5) calculated using K MCMC
samples targeting Xn

·,j | Xn
·,−j = x·,−j converges to the correct p-value αj with probability 1.

Here we sketch the proof. A full proof can be found in Appendix B. First, by construction each Gn

defines a distribution Xn
i,·

D
= (Gn)−1(Z) that in turn implies a conditional distribution Xn

·,j |Xn
·,−j =

x·,−j . We show these conditional distributions converge to the true conditional distribution of X·,j
given X·,−j = x·,−j . Consequently, the probability of observing a higher test statistic under the

approximated null distribution X̃n
·,j

D
= Xn

·,j , written αnj , will converge to the probability under the
true null distribution X̃·,j |X·,−j = x·,−j , i.e. αj . Next, the Cesaro average of K samples from an
MCMC algorithm targeting X̃n

·,j |X·,−j = x·,−j , written α̂j,K,n will converge to αnj with probability
1 as K →∞. Combining these two convergences leads to the stated result.

Assuming the limiting p-values {αj} satisfy the chosen multiple-hypothesis-testing assumptions,
Theorem 1 specifies additional conditions that are sufficient for FDR control. These conditions are
not strictly fewer than those required for empirical model-X knockoff-based methods to control
FDR, but they may be easier to satisfy adequately in practice. For example, the condition that there
exists a sequence (Gn)∞n=1 converging to the true mapping G is satisfied asymptotically by many
flow architectures that are universal distribution approximators, including the Gaussianization Flows
and Masked Autoregressive Flows used in our experiments (Huang et al., 2018; Meng et al., 2020;
Kobyzev et al., 2020). In practice, it is unlikely that an exact mapping G will be learned, as doing so
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Figure 1: A density plot of the feature distribution with coordinate j = 1 on the x-axis and coordinate
j = 2 on the y-axis. The ground truth density is compared to the normalizing flow fitted within
FLOWSELECT and the distribution of each knockoff method (DeepKnockoff, KnockoffGAN, MASS,
and DDLK). To have FDR control, each distribution should match the distribution of the features.

could require infinite training data, infinitely deep transformations, and exact nonconvex optimization.
Nonetheless, normalizing flows work extremely well in practice; Theorem 1 gives intuition for the
good performance of FLOWSELECT that we observe empirically.

5 Experiments

5.1 Synthetic experiment with a mixture of highly correlated Gaussians

We compare FLOWSELECT to the aforementioned knockoff methods with synthetic data drawn from
a mixture of three highly correlated Gaussian distributions with dimension D = 100.1 For each
knockoff method, we use the exact implementation described in their respective papers, and we utilize
the code made publicly available by the authors (c.f. Appendix D.3 for further details). For further
comparison, we also implement the MASS knockoff procedure from Gimenez et al. (2019) and the
RANK knockoff procedure from Fan et al. (2020). These methods estimate the unknown feature
distribution using either a mixture of Gaussians (MASS) or a sparse precision matrix (RANK), and
then sample the knockoffs directly as in Candès et al. (2018).

To generate the data, we drawN = 100, 000 highly correlated samples. For i = 1, . . . , N , we sample

Xi
i.i.d∼
∑3

m=1
πmpN (Xi;µm,Σm), (6)

with mixing weights π = (0.371, 0.258, 0.371), mean vector µ = (0, 20, 40), and covariance
matrices Σm. Each covariance Σm follows an AR(1) pattern such that (Σm)i,j = ρ

|i−j|
m where

ρ = (0.982, 0.976, 0.970). The response Yi is linear in fi(Xi) for some function fi and coefficient
vector β i.e., Yi = fi(Xi)β + εi. Each coefficient βj equals 100√

N
Bj , where Bj = 0 with probability

0.8, Bj = 1 with probability 0.1, and Bj = −1 with probability 0.1. We consider two different
schemes for the fi that connect the features to the response. In our linear setting, fi is equal to the
identity function. In our nonlinear setting, fi(x) is set equal to sin(5x) for odd i and fi(x) = cos(5x)
for even i.

The experimental setting we have described so far is adapted from Sudarshan et al. (2020). However,
we found that the N = 2000 they used was too few observations for any of the methods to do well
in a general non-linear setting. Moreover, in many situations where controlled feature selection is
deployed, neighboring features will be highly correlated. To reflect this, we also increased the base
correlation between features within each mixture to create a more challenging example. We show
results under the original settings of Sudarshan et al. (2020) in Appendix K.

For each model, we use 90% of the data for training to generate null features and the remaining 10%
for calculating the feature statistics. To define the feature statistics, we use the holdout randomization
test (HRT) described at the end of Section 2. For the HRT, we employ different predictive models
for each response type (“linear” and “nonlinear”). Specifically, for the linear response, we use the
predictive log-likelihood from the LASSO (Tibshirani, 1996), and for the nonlinear response, we use
the predictive negative mean-squared error from a random forest regressor (Breiman, 2001).

1Software to reproduce our experiments is available at https://github.com/dereklhansen/flowselect.
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Mixture-of-Gaussians scRNA-seq

Figure 2: Comparison of power and false discovery rate (FDR) control of FLOWSELECT to knockoff
methods on the Mixture-of-Gaussians dataset (left) and the scRNA-seq dataset (right) at targeted
FDRs of 0.05, 0.1, and 0.25 (indicated by the dashed lines). Each point indicates the mean power and
FDR across 20 replications and the error bars span one standard deviation either direction. In the top
row, the response depends linearly on the features, and the feature statistics are calculated using the
HRT with the LASSO. In the bottom row, the response depends non-linearly on the features, and the
feature statistics are calculated using the HRT with random forest regression.

First, we look at how each procedure models the covariate distribution in Figure 1. In order to be
valid knockoffs, the distribution of two knockoff features needs to be equal to that of the covariates.
In this challenging example, each of the empirical knockoff methods fails to match the ground truth.
In particular, DDLK and DeepKnockoffs are over-dispersed, while KnockoffGAN suffers from mode
collapse. These findings for DeepKnockoffs and KnockoffGAN are similar to those reported by
Sudarshan et al. (2020). Other than MASS, which directly fits a mixture of Gaussians, FLOWSELECT
is the only method that matches the basic structure of the ground truth.

Figure 2 shows that the empirical knockoff procedures fail to control the FDR for both linear and
nonlinear responses. One explanation for this lack of FDR control is the inability of the deep-
learning-based methods to accurately model a knockoff distribution (c.f., Figure 1). As a result, the
assumptions for the knockoff procedure will not hold, and FDR control is not guaranteed.

The effects of misspecification are clearly visible in the case of RANK, which approximates the
mixture-of-Gaussians data with a multivariate Gaussian. However, even MASS, when given access
to the correct data distribution, does not achieve across-the-board FDR control. This highlights the
potential sensitivity of knockoffs to parameter misfit even when the underlying distributional family
of the features is known. This is confirmed by the fact that, when provided with the true parameters,
the oracle Model-X maintains FDR control, though with significantly less power than FLOWSELECT.
(c.f. Appendix H).

5.2 Semi-synthetic experiment with scRNA-seq data

In this experiment, we use single-cell RNA sequencing (scRNA-seq) data from 10x Genomics (10x
Genomics, 2017). Each variable Xn,g is the observed gene expression of gene g in cell n. These
data provide an experimental setting that is both realistic and, because gene expressions are often
highly correlated, challenging. More background information about scRNA-seq data can be found in
Agarwal et al. (2020).

We normalize the gene expression measurements to lie in [0, 1], and we add a small amount of
Gaussian noise so that the data is not zero-inflated. As in the semi-synthetic experiment from
Sudarshan et al. (2020), we pick the 100 most correlated genes to provide a challenging, yet realistic
example. We simulate responses that are both linear and nonlinear in the features. Figure 2 shows
that FLOWSELECT maintains FDR control across multiple FDR target levels, feature statistics, and
generated responses. In cases in which the knockoff methods control FDR successfully, FLOWSELECT
has higher power in discovering the features the response depends on.
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An advantage of knockoffs over CRT-based methods like FLOWSELECT is that the predictive model
only needs to be evaluated once. Hence, while FLOWSELECT has a faster runtime than DDLK for
this experiment, it is slower than DeepKnockoff and KnockoffGAN. However, Figure 2 shows that
these two models fail to reliably control FDR and have much less power than FLOWSELECT; it is not
clear how additional computational resources could be leveraged to improve the performance of these
competing methods. A full table of runtimes on the scRNA-seq dataset can be found in Appendix F.

The need to compute a different predictive model for each feature within the CRT is mitigated by
using efficient feature statistics such as the HRT (Tansey et al., 2021) and the distilled CRT (Liu
et al., 2020). These methods fit a larger predictive model once, then evaluate either the residuals or
test mean-squared-error for each feature individually. Moreover, the ability to scale to large feature
dimensions D is more limited by fitting the feature distribution than computational burden, a trait
shared by both knockoff- and CRT-based methods.

FLOWSELECT provides asymptotic guarantees of FDR control assuming sufficient MCMC samples
have been drawn for the p-values to converge. In this experiment, the consequence of terminating
MCMC sampling before convergence is low power, rather than loss of FDR control (see Figure 7 in
Appendix J). Even for small numbers of MCMC samples, the FDR stabilizes below the target rate,
while the power steadily increases with the number of samples. Because the MCMC run is initialized
at the true features, we speculate that the sampled features will be highly correlated with the true
features in the beginning of the run, making it harder to reject the null hypothesis that a feature is
unimportant.

5.3 Ablation Study

FLOWSELECT differs from the competing knockoff-based approaches in two ways: using normalizing
flows with MCMC to model the feature distribution for sampling null features and using the CRT
for feature selection. To illustrate the impact of each of these components separately, we compare to
the procedure used in Tansey et al. (2021), which uses mixture density networks (MDNs) to model
the complete conditional distribution of each feature P(Xj |X−j) separately. They then sample null
features from these learned distributions directly and use the HRT for feature selection. Since both
FLOWSELECT and this procedure utilize the HRT, this allows us to evaluate whether the performance
improvement of FLOWSELECT over empirical knockoffs is solely due to use of the HRT.

We compare the MDN-based approach to FLOWSELECT on the mixture-of-Gaussians (Section 5.1)
and scRNA-seq (Section 5.2) datasets. A plot of this comparison can be found in Appendix G.
While the MDN-based approach was able to match the performance of FLOWSELECT on the scRNA-
seq dataset, it failed to control FDR at any level on the Mixture-of-Gaussians dataset, indicating
that MDNs are less flexible than normalizing flows. In aggregate, these results show that both the
normalizing flows paired with MCMC and the use of the HRT for significance testing are key to the
performance of FLOWSELECT.

5.4 Real data experiment: soybean GWAS

Genome-wide association studies are a way for scientists to identify genetic variants (single-nucleotide
polymorphisms, or SNPs) that are associated with a particular trait (phenotype). We tested FLOWSE-
LECT on a dataset from the SoyNAM project (Song et al., 2017), which is used to conduct GWAS
for soybeans. Each feature Xj takes on one of four discrete values, indicating whether a particular
SNP is homozygous in the non-reference allele, heterozygous, homozygous in the reference allele, or
missing. A number of traits are included in the SoyNAM data; we considered oil content (percentage
in the seed) as the phenotype of interest in our analysis. There are 5,128 samples and 4,236 SNPs in
total.

To estimate the joint density of the genotypes, we used a discrete flow (Tran et al., 2019). Modeling
of genomic data is typically done with a hidden Markov model (Xavier et al., 2016); however, such
a model may fail to account for long range dependence between SNPs, which a normalizing flow
is better suited to handle. Having a more flexible model of the genome enables FLOWSELECT to
provide better FDR control for assessing genotype/phenotype relationships. For the predictive model,
we used a feed-forward neural network with three hidden layers. Additional details of training and
architecture are presented in Appendix E.
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Figure 3: Manhattan plot for oil content in soybean GWAS experiment (Turner, 2018). p is the
estimated p-value from the FLOWSELECT procedure, and the blue line indicates the rejection threshold
for a nominal FDR of 20%.

A graphical representation of our results is shown as a Manhattan plot in Figure 3, which plots the
negative logarithm of the estimated p-values for each SNP. At a nominal FDR of 20%, we identified
seven SNPs that are associated with oil content in soybeans. We cross-referenced our discoveries
with other publications to identify SNPs that have been previously shown to be associated with
oil content in soybeans. For example, FLOWSELECT identifies one SNP on the 18th chromosome,
Gm18_1685024, which is also selected in Liu et al. (2019). FLOWSELECT also selects a SNP on the
5th chromosome, Gm05_37467797, which is near two SNPs (Gm05_38473956 and Gm05_38506373)
identified in Cao et al. (2017) but which are not in the SoyNAM dataset. Sonah et al. (2014) identifies
eight SNPs near the start of the 14th chromosome, and we select multiple SNPs in a nearby region on
the 14th chromosome (seen in the peak of dots on chromosome 14 in Figure 3). However, the dataset
in Sonah et al. (2014) is much larger (≈ 47, 000 SNPs), which prevents an exact comparison. A list
of all SNPs selected by our method is provided in Appendix E. For this experiment, FLOWSELECT
tests over 4000 features in 10 hours using a single GPU. None of the empirical knockoff procedures
(Sudarshan et al., 2020; Jordon et al., 2019; Romano et al., 2020) tested more than 387 features. This
shows the potential for FLOWSELECT for high-dimensional feature selection with FDR control in a
reasonable amount of time. Additional details about this experiment are available in Appendix E.

6 Discussion

FLOWSELECT enables scientists and other practitioners to discover features a response depends on
while controlling false discovery rate, using an arbitrary predictive model; even large-scale nonlinear
machine learning models can be utilized. By making fewer false discoveries for a fixed sensitivity
level, FLOWSELECT can reduce the cost of follow-up experiments by limiting the number of irrelevant
features considered. In contrast to the original model-X knockoffs method, FLOWSELECT does not
require the feature distribution to be known a priori, nor does it require the feature distribution to
have a particular form (e.g., Gaussian). Neither of these conditions are often satisfied in practice.

One limitation shared by both the conditional randomization test (CRT) and knockoffs is low power
in cases in which important features are highly correlated with other important features. To mitigate
this limitation, the CRT can be applied to test the significance of groups of correlated features rather
than individual features. Within the FLOWSELECT framework, this entails modifying the MCMC
step to draw null samples of groups of features conditioned on the others. The group’s p-value can
then be calculated with the same holdout randomization test (HRT) statistic used for testing individual
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features. Group feature selection has also been explored for knockoffs (Dai & Barber, 2016; Liu
et al., 2020).

Another limitation of FLOWSELECT stems from its reliance on normalizing flows. The flexibility of
normalizing flows, though often beneficial, comes at a cost: sufficient training examples are needed to
learn the feature distribution, limiting applicability in data-starved regimes. Fortunately, as we show
in Appendix K, FLOWSELECT fares no worse than competing methods in low-data settings. In these
regimes, FLOWSELECT could also use other density estimation techniques such as autoregressive
models.

Furthermore, learning the feature distribution (potentially from limited data) is not the sole difficulty
that the deep-learning-based knockoff methods face. To demonstrate that there are additional sources
of difficult for knockoff-based methods, we gave DDLK, which typically fits the data distribution as
part of its training procedure, access to the the exact joint density; neither the empirical FDR nor the
power improved significantly (c.f. Appendix I). This result points to a failure of DDLK to enforce
the swap property, which is a challenging task as the number of swaps grows exponentially with the
number of features. FLOWSELECT, on the other hand, achieves FDR control under a different set of
conditions that often are simpler to satisfy adequately in practice.
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