
A Identical parallel machine scheduling problem (IPMS) with makespan
minimization objective

A.1 Formulation

IPMS is a problem defined in continuous state/continuous time space. In MRRC, zero processing
time of a task was assumed and only the travel times mattered. While there is no travel time concept
in IPMS, IPMS has ‘processing time’ and ‘setup time’. Once service of a task i begins, it requires
a deterministic duration of time τi for a machine to complete - we call this the processing time.
Machines are all identical, which means processing time of each tasks among machines are all the
same. Processing times of each tasks are all different. Before a machine can start processing a task,
it is required to first setup for the task. In this paper, we discuss IPMS with ‘sequence-dependent
setup times’. In this case, a machine must conduct a setup prior to serving each task. The duration of
this setup depends on the current task i and the task j that was previously served on that machine
- we call this the setup time. The completion time for each task is thus the sum of the setup time
and processing time. Under this setting, we solve the IPMS problem for make-span minimization as
discussed in Kurz et al. (2001). That is, we seek to minimize the total time spent from the start time
to the completion of the last task. IPMS problem’s sequential decision making problem formulation
resembles that of MRRC with continuous-time and continuous-space. That is, every time there is
a finished task, we make assignment decision for a free machine. We call this times as ‘decision
epochs’ and express them as an ordered set (t1, t2, . . . , tk, . . .). Abusing this notation slightly, we
use (·)tk = (·)k. This problem can be cast as a Markov Decision Problem (MDP) whose state, action,
and reward are defined as follows:

A.2 State

The state sk at epoch k is represented as (gk,Dk) where a graph gk = ((M, Tk), (ET T
k , EMT

k)) and
associated feature set Dk = (DM

k ,DT
k ,DT T

k ,DMT
k). The elements of graph gk are defined as: (See

Figure 1):

• M = {1, ...,M} is the index set of all machines. The index i and j will be used to specifically
denote machines in the manuscript.

• Tk = {1, ..., N} is the index set of all remaining unserved tasks at decision epoch k. The index p
and q will be used to specifically denote tasks in the manuscript.

• ET T
k = {ϵT T

pq |p ∈ Tk, q ∈ Tk} is the set of all directed edges from a task in Tk to any other task
in Tk. Abusing notation slightly, we consider each edge as a random variable. The task-to-task
edge ϵT T

pq = 1 indicates the event that a machine that has just completed task p subsequently
completes task q. We call the probability p(ϵT T

pq = 1) ∈ [0, 1] the presence probability of the
edge ϵT T

pq .

• EMT
k = {ϵMT

ip |i ∈M, p ∈ Tk} is the set of all directed edges from a machine inR to any other
tasks in Tk. Abusing notation similarly, we say the machine-to-task edge ϵMT

ip = 1 indicates the
event that robot i is assigned to the task p. This edge is defined deterministically depending on
the joint assignment action. If machine i is assigned to task p, then p(ϵMT

ip) = 1, otherwise 0.

The element of feature set Dk associated with the graph gk is defined as:

• DM
k = {dMi |i ∈M} is the set of node features for the robot nodes inM at epoch k. In IPMS,

dRi is defined as the task processing status of robot i at epoch k (epoch index k is omitted).
• DT

k = {dTp |p ∈ Tk} is the set of node features for the task nodes in Tk at epoch k. In IPMS, dTp
is not used.

• DT T
k = {dT T

pq |p ∈ Tk, q ∈ Tk} is the set of task-task edge features at epoch k. dT T
pq denotes the

duration for a machine that has just completed task p to subsequently compete task q. We call this
duration task completion time. In IPMS, a task completion time is sum of processing time and
setup time.

• DMT
k = {dMT

ip |i ∈ M, p ∈ Tk} is the set of machine-task edge features at epoch k. dMT
ip

denotes the task completion time for robot i to reach task p.

14

Table 4: IPMS test results for makespan minimization with deterministic task completion time (our
algorithm / best Google OR tool result)

Makespan # Machines
minimization 3 5 7 10

Tasks
50 106.7% 117.0% 119.8% 116.7%
75 105.2% 109.6% 113.9% 111.3%

100 100.7% 111.0% 109.1% 109.0%

A.3 Action

An action ak, a joint assignment at epoch k, is defined as a maximal bipartite matching of the complete
bipartite graph (M, Tk, EMT

k) composed of the machine nodesM, the remaining task nodes Tk, and
the fully connected edges between them EMT

k . That is, given the current state sk = (gk,Dk), ak is a
subset of EMT

k satisfying (1) no two machines can be assigned to the same tasks, and (ii) a machine
may only remain without assignment when the number of machines exceeds the number of remaining
tasks. If ϵRT

ip ∈ ak, it means that machine i is assigned with task p at epoch k. For example, Figure 1
shows the case where ak = (ϵRT

1,1 , ϵ
RT
2,3). (Note, we equivalently may say this as ϵRT

1,1 = ϵRT
2,3 = 1

and 0 otherwise.) In IPMS, only free machines are newly assigned.

A.4 State transition

When the joint assignment ak is executed given the current state sk = (gk,Dk) , the next state
sk+1 = (gk+1,Dk+1) will be determined. The details differ depending on the problem.
Graph update when the decision epoch corresponds to the point when task p is completed, the
corresponding task node will be removed in the updated task nodes as Tk+1 = Tk/{p}, and the
task-task edges and machine-task edges, ET T

k+1 and ERT
k+1, will be accordingly updated.

Feature update At decision epoch k + 1, Dk+1 = (DR
k+1,DT

k+1,DT T
k+1,DRT

k+1) is determined. The
machine-task edge features DMT

k+1 will be updated according to DM
k+1 as well. How these features are

updated is determined by the problem specifications (environment).

A.5 Reward and objective

Define an assignment policy ϕ as a function that maps a state sk to action ak. Denote T (sk, ak, sk+1)
as the time difference between epoch k and k + 1 according to (sk, ak, sk+1). Given s0 initial state,
an IPMS problem with makespan minimization objective can be expressed as a problem of finding an
optimal assignment policy ϕ∗ such that

ϕ∗ = argmin
ϕ

Eϕ

[∞∑
k=0

T (sk, ak, sk+1) |s0

]
.

A.6 Experiments

For IPMS, we test it with continuous time, continuous state environment. While there have been many
learning-based methods proposed for (single) robot scheduling problems, to the best our knowledge
our method is the first learning method to claim scalable performance among machine-scheduling
problems. Hence, in this case, we focus on showing comparable performance for large problems,
instead of attempting to show the superiority of our method compared with heuristics specifically
designed for IPMS (actually no heuristic was specifically designed to solve our exact problem
(makespan minimization, sequence-dependent setup with no restriction on setup times))

For each task, processing times is determined using uniform [16, 64]. For every (task i, task j)
ordered pair, a unique setup time is determined using uniform [0, 32]. As illustrated in Appendix
A, we want to minimize make-span. As a benchmark for IPMS, we use Google OR-Tools library
Google (2012). This library provides metaheuristics such as Greedy Descent, Guided Local Search,
Simulated Annealing, Tabu Search. We compare our algorithm’s result with the heuristic with the
best result for each experiment. We consider cases with 3, 5, 7, 10 machines and 50, 75, 100 jobs.

15

The results are provided in Appendix Table 4. Makespan obtained by our method divided by the
makespan obtained in the baseline is provided. Although our method has limitations in problems
with a small number of tasks, it shows comparable performance to a large number of tasks and shows
its value as the first learning-based machine scheduling method that achieves scalable performance.

B minimax multiple traveling salesman problem (minimax mTSP)

B.1 Formulation

Minimax multiple traveling salesman problem (minimax mTSP) is almost the same problem as IPMS
problem defined in Appendix A. As in IPMS, we seek to minimize the total time spent from the start
time to the completion of the last task. (Remark: minimax mTSP problem’s original objective is to
minimize the longest tour of all the salesmen. As the traveling speed of all the salesmen are identical,
this objective is equivalent to makespan minimization objective of IPMS problem.) One difference in
minimax mTSP from IPMS problem is that it’s task completion time is just traveling time from a task
to another task. Another difference is the existence of a ‘depot’ in minimax mTSP problem; every
salesman start from the depot at time 0 and must return to the depot in the end.

IPMS problem’s sequential decision making problem formulation is the same as that of IPMS. That
is, every time there is a finished task, we make assignment decision for a free machine. We call
this times as ‘decision epochs’ and express them as an ordered set (t1, t2, . . . , tk, . . .). Abusing this
notation slightly, we use (·)tk = (·)k. This problem can be cast as a Markov Decision Problem
(MDP) whose state, action, and reward are almost exactly the same as that of IPMS except that we
call a machines of IPMS a salesman.

B.2 Estimating state-action value function

In minimax mTSP, we don’t delete the tasks that were previously served.

As in MRRC, two hierarchical layers of random structure2vec is used to infer the Q-function. Recall
that in MRRC, the only input of the first random structure2vec was each task’s robot assignment
information. In minimax mTSP, we add three more information as input: each task’s distance from
the depot, each task’s coordinate, and whether the task has been served by then.

The second structure2vec is the same as that of MRRC.

Given the output vectors of second structure2vec, we separately sum the vectors for the tasks that
are not yet served and vectors for the tasks that are yet served. Given two separately summed output
vectors, we concatenate the two resulting vectors and estimate the Q-function.

B.3 Experiments

Achieving multiple-TSP performance similar to the single-TSP result of famous Dai et al. (2017)
(90%-92% optimal) qualifies itself a separate conference or journal paper. In this paper, we briefly
introduce the reader the capability of our proposed method to solve minimax mTSP in a similar level
of performance to Dai et al. (2017). In this experiment, we encoded relational information among
nodes using TrXL-I (Parisoto et al., 2020) before computing presence probability. After encoding
relational information among nodes, we used this information as node features for our model and
computed presence probability with the edge features.

Dataset. We used the standard minmax mTSP dataset and state-of-art optimal solution baselines for
them provided in minmaxTSPlib (2021). Each problem in the dataset is named after a city, where
task locations in each city are originated from real world locations. For example, Berlin52 problem
means that the task locations are originated from 52 real locations of the city of Berlin in Germany.
minmaxTSPlib (2021) provides the state-of-art solution (found by integer linear programming model
solved by CPLEX or reported by others) that minimizes the longest length tour.

Table 5 shows proposed algorithm’s performance compared with the result provided in minmaxTSPlib
(2021).

Table 5 compares the outcome of our method and the state-of-art solution provided by minmaxTSPlib
(2021) and Google OR-ToolGoogle (2012). The state-of-art solution. Our proposed method’s

16

Table 5: Test results on minmaxTSPlib (2021)
Problem name # agents CPLEX OR-Tool Ours

eli51

M=2 222.7 243.4 233.4
M=3 159.6 170.1 171.9
M=5 124.0 127.5 131.7
M=7 112.1 112.1 114.8

berlin52

M=2 4110.2 4665.5 4313.9
M=3 3244.4 3311.3 3243.5
M=5 2441.4 2482.6 2638.5
M=7 2440.9 2440.9 2474.1

eli76

M=2 280.9 318.0 298.8
M=3 197.3 212.4 215.6
M=5 150.3 143.4 158.4
M=7 139.62 128.3 140.8

rat99

M=2 733.8 762.2 728.7
M=3 592.6 552.1 587.2
M=5 502.9 473.7 469.3
M=7 473.1 442.5 443.9

Average ratio 1 1.0180 1.0268

solution achieves in average 2.68% sub-optimality, which is the first to achieve a comparable result
to Google OR-Tool (1.80%). We can see that the optimal solution has within 5% less cost than our
proposed method’s solution, which is much better than the sub-optimality of Dai et al. (2017) for
single-traveling salesman problem.

C Proof of Theorem 1.

We first define necessary definitions for our proof. Given a random PGM {GX ,P}, a PGM is chosen
among GX , the set of all possible PGMs on X . The set of semi-cliques is denoted as CX . As
discussed in the main text, if we are given P then we can easily calculate the presence probability pm
of semi-clique Dm as pm =

∑
G∈GX

P(G)1Dm∈G.

For each semi-clique Di in CX , define a binary random variable V i: F 7→ {0, 1} with value 0
for the factorization that does not include semi-clique Di and value 1 for the factorization that
include semi-clique Di. Let V be a random vector V =

(
V 1, V 2, . . . , V |CX |). Then we can express

P (X1, . . . , Xn|V) ∝
∏|CX |
i=1

[
ϕi
(
Di
)]V i

. We denote
[
ϕi
(
Di
)]V i

as ψ(Di).
Now we prove Theorem 1.

In mean-field inference, we want to find a distribution Q (X1, . . . , Xn) =
∏n
i=1Qi(Xi) such that

the cross-entropy between it and a target distribution is minimized. Following the notation in Koller
& Friedman (2009), the mean field inference problem can written as the following optimization
problem.

min
Q

D

(∏
i

Qi |P (X1, . . . , Xn|V))

)
s.t.

∑
xi

Qi (xi) = 1 ∀i

Here D (
∏
iQi | P (X1, . . . , Xn|V)) can be expressed as D (

∏
iQi | P (X1, . . . , Xn|V)) =

EQ [ln (
∏
iQi)]− EQ [ln (P (X1, . . . , Xn|V))].

17

Note that

EQ [ln (P (X1, . . . , Xn|V))] = EQ
[
ln

(
1

z
Π

|CX |
i=1 ψ

i
(
Di, V

))]

= EQ

ln
1

z

|CX |∏
i=1

ψi
(
Di, V

)
= EQ

|CX |∑
i=1

V i ln
(
ϕi
(
Di
))− EQ[ln(Z)]

=

|CX |∑
i=1

EQ
[
V i ln

(
ϕi
(
Di
))]
− EQ[ln(Z)]

=

|CX |∑
i=1

EV i

[
EQ
[
V i ln

(
ϕi
(
Di
))
|V i
]]
− EQ[ln(Z)]

=

|CX |∑
i=1

P
(
V i = 1

) [
EQ
[
ln
(
ϕi
(
Di
))]]
− EQ[ln(Z)]

=

|CX |∑
i=1

pi
[
EQ
[
ln
(
ϕi
(
Di
))]]
− EQ[ln(Z)].

Hence, the above optimization problem can be written as

max
Q

EQ

|CX |∑
i=1

pi ln
(
ϕi
(
Di
))+ EQ

n∑
i=1

(lnQi)

s.t.
∑
xi

Qi (xi) = 1 ∀i
(A.1)

In Koller & Friedman (2009), the fixed point equation is derived by solving an analogous equation
to (A.1) without the presence of the pi. Theorem 1 follows by proceeding as in Koller & Friedman
(2009) with straightforward accounting for pi.

D Hilbert space embedding of distributions.

We start from the motivation of Hilbert space embedding of distributions, with a particular focus
on mean-field inference application. As discussed in section 3, mean-field inference methods try
to search over the space of distributions, looking for the best surrogate distribution. While exact
optimal solution search is a open, difficult optimization problem, at least we know that the optimal
distribution must satisfy a fixed point equation we saw in section 3 Koller & Friedman (2009). While
this is only a necessary condition and does not bring us an optimal solution, in practice distributions
that satisfies such condition works as a nice approximate solution. Nevertheless, finding a distribution
that satisfies the fixed equation of distribution involves an intractable equation of integrals.

A Hilbert space embedding of distributions transforms this kind of optimization problems over
distributions into optimization problems over a vector space. Suppose that a random vector X is
associated with a joint distribution F . Then for a function ϕ on the range of X , we can define
a mapping towards a Hilbert space defined as µX := EX [ϕ(X)] =

∫
ϕ(x)dF (x). This kind of

operation was first introduced in Smola et al. (2007). According to Sriperumbudur et al. (2008), there
exist some ϕ that makes this operation an injective operation. Therefore, when we map the entire
fixed point iteration on the distribution space to the Hilbert space, we don’t lose any mathematical
structure.

18

E Proof of Lemma 1.

Since we assume semi-cliques are only between two random variables, we can denote CX = {Dij}
and presence probabilities as {pij} where i, j are node indexes. Denote the set of nodes as V .

From here, we follow the approach of Dai et al. (2016) and assume that the joint distribution of
random variables can be written as

p ({Hk} , {Xk}) ∝
∏
k∈V

ψi (Hk|Xk)
∏
k,i∈V

ψi (Hk|Hi) .

Expanding the fixed-point equation for the mean field inference from Theorem 1, we obtain:

Qk (hk) =

1

Zk
exp

 ∑
ψi:Hk∈Di

E(Di−{Hk})∼Q
[
lnψi

(
Hk = hk|Di

)]
=

1

Zk
exp{lnϕ (Hk = hk|xk)+∑

i∈V

∫
H
pkiQi (hi) lnϕ (Hk = hk|Hi) dhi}.

This fixed-point equation for Qk (hk) is a function of {Qj (hj)}j ̸=k such that

Qk (hk) = f
(
hk, xk, {pkjQj (hj)}j ̸=k

)
.

As in Dai et al. (2016), this equation can be expressed as a Hilbert space embedding of the form

µ̃k = T̃ ◦
(
xk, {pkj µ̃j}j ̸=i

)
,

where µ̃k indicates a vector that encodes Qk (hk) . In this paper, we use the nonlinear mapping T̃
(based on a neural network form) suggested in Dai et al. (2016):

µ̃k = σ

W1xk +W2

∑
j ̸=k

pkj µ̃j



19

F Presence probability inference method used for MRRC

In this experiment, we encoded relational information among nodes using TrXL-I style Multi-Head
Self-Attention structure Parisotto et al. (2020) to compute presence probability. To compute a better
presence probability (which is closer to the optimal solution), it is essential to consider relational
information among nodes. Node features are stacked and then passed to Multi-Head Self-Attention,
which encodes the relational information between nodes. After encoding relational information
among nodes, we used these relational node features as the original node features for our GNN model
and computed presence probability with these relational node features and the edge features. The rest
of the part for estimating the Q-function is identical to the MRRC problem.

G Complete algorithm of section 5.2 with task completion time as a random
variable

We combine random sampling and inference procedure suggested in section and Figure 2. Denote the
set of task with a robot assigned to it as T A. Denote a task in T A as ti and the robot assigned to ti
as rti . The corresponding edge in ERT for this assignment is ϵrti ti . The key idea is to use samples
of ϵrti ti to generate N number of sampled Q(s, a) value and average them to get the estimate of
E(Q(s, a)). First, for l = 1 . . . N we conduct the following procedure. For each task ti in T A, we
sample one data elrti ti . Using those samples and {pij}, we follow the whole procedure illustrated
in section D to get Q(s, a)l. Second, we get the average of {Q(s, a)l}l=Nl=1 to get the estimate of
E(Q(s, a)), 1

N

∑l=N
l=1 Q(s, a)l.

The complete algorithm of section D with task completion time as a random variable is given as
below.

1 agei = age of node i
2 The set of nodes for assigned tasks ≡ TA
3 Initialize {µ̃(0)

i }, {γ
(0)
i }

4 for l = 1 to N :
5 for ti ∈ T :
5 if ti ∈ T A do:
6 sample elrti ti from ϵrti ti
7 xi = elrti ti
9 else: xi = 0
10 for t = 1 to T1 do
11 for i ∈ V do
12 li =

∑
j∈V pjiµ̃

(t−1)
j

13 µ̃
(t)
i = relu (W3li +W4xi)

14 µ̃l = Concatenate
(
µ̃
(T1)
i , agei

)
15 for t = 1 to T2 do
16 for i ∈ V do
17 li =

∑
j∈V pjiγ

(t−1)
j

18 γ
(t)
j = relu (W5li +W6µ̃i)

19 Ql =W7

∑
i∈V γ

(T)
i

20 Qavg =
1
N

∑N
l=1Ql

20

H Proof of Lemma 2

Statement: Denote result of OTAP using true Q-functions {Q(n)} asM(N) = {m(1) . . .m(N)}. If
Q-function approximation method has order transferability, thenM(N) =M(N)

θ holds.
Proof. Recall that we say Q-function approximation method has order transferability if
argmaxatk

Qn(stk , atk) = argmaxatk
Qnθ (stk , atk). We prove by induction.

Base case: For n = 0,M(0) = ϕ =M(0)
θ .

For n > 0, suppose thatM(n) =M(n)
θ holds, i.e. m(j) = m

(j)
θ for 1 ≤ j ≤ n. Then according to

n+ 1th step OTEP operation,
m(n+1) = argmaxmQ

n+1
(
stk ,M(n) ∪ {m}

)
=argmaxmQ

n+1
θ

(
stk ,M(n) ∪ {m}

)
(∵ Order transferability assumption)

= argmaxmQ
n+1
θ

(
stk ,M

(n)
θ ∪ {m}

)
(∵ induction argument)

= m(n+1)
θ .

Therefore,M(n+1) =M(n) ∪ {m(n+1)} =M(n)
θ ∪ {m(n+1)

θ } =M(n+1)
θ .

I Statement and Proof of Lemma 3.

Denote the space of all possible policies as Π. For π ∈ Π, let the vector dπt denote the distribution
of states at arbitrary time t assuming that we have been following policy π from time 0. We call
a policy µ ∈ Π is exploratory with respect to Π if ∃C < ∞ such that ∀π ∈ Π,

dπt (s)
µ(s) ≤ C holds

∀s ∈ S and ∀t ≥ 0. The assumption that such exploratory policy µ exists is called Concentrability
assumption. Recall that in Auction-fitted Q-iteration (AFQI) we want to find θ that empirically
minimizes E(sk,ak,rk,sk+1)∼D [Qθ (sk, ak)− [r (sk, ak) + γQθ (sk+1, πQθ

(sk+1))]] where D is a
dataset. Denote the set of possible Q-functions as F ⊂ RS×A. In our case, F = {Qθ}. If we denote
an operation T on the F such that T f(s, a) =: E(s,a,r,s′)∼D [[r + γf (s, πf (s

′))]] , our problem
can be restated as finding f∗ = argminf∈RS×A(f − T f). We say that this problem is realizable if
f∗ ∈ F . We say that F is closed under Bellman update if ∀f ∈ F , T f ∈ F . For details of above
assumptions, see Agarwal et al. (2019).

We now formally state Lemma 3.

Lemma 3 Kang & Kumar (2021). Under the assumption that concentrability, realizability and closure
under Bellman update holds, the policy we achieve by AFQI is assured to have performance at least
1− 1/e compared with the optimal policy.

J Decentralized algorithm

In this section, we show that we can modify the auction procedure in OTAP at each timestep as
a special case of Han-Lim Choi et al. (2009)’s sequential greedy algorithm for solving MRTA
problem. This enables us to conclude, without further discussion, that 1) assignment consensus
is guaranteed among robots even under frequent communication packet loss and 2) centralized
algorithm’s performance bound is inherited. The Decentralized algorithm is almost the same as the
centralized version. Bolded sentences indicate what is different in decentralized version of suggested
algorithm.

Initial message choice phase. In the nth bidding phase, initially all robots knowM(n−1)
θ , the ordered

set of n− 1 robot-task edges in ERTtk determined by the previous n− 1 iterations. An unassigned
robot i ignores all others unassigned and calculates Qnθ (stk ,M

(n−1)
θ ∪ {ϵRTip }) for each unassigned

task p as if those k robots (robot i together with all robots assigned tasks in the previous n − 1
iterations) only exist in the future and will serve all remaining tasks. (Here, ϵRTip ∈ ERTtk is the edge
corresponding to assigning robot i to task p at decision epoch tk.) If task ℓ has the highest value, robot
i chooses {ϵRTiℓ , Qnθ (st,M

(n−1)
θ ∪ {ϵRTiℓ })} as the initial message to be sent to others. (Note that,

since the number of ignored robots varies at each iteration, transferability of Q-function inference is
crucial)

21

Consensus phase. In the nth consensus phase, robot i keeps sending message to neighbouring robots
within its one-hop communication range. At first, agent i keeps sending its initial message chosen
in above phase to neighbors. Then every time a robot i receives a message {ϵRTjm , Qnθ (st,M

(n−1)
θ ∪

{ϵRTjm })} of robot j, it compares Qnθ (st,M
(n−1)
θ ∪ {ϵRTjm }) with Qnθ (st,M

(n−1)
θ ∪ {ϵRTiℓ }). If the

former is larger, robot i sets {ϵRTjm , Qnθ (st,M
(n−1)
θ ∪ {ϵRTjm })} as the new message to be sent to

others. Agent i keeps sending its new message to neighbors until it hears all robot’s initial messages.
Denote the message of i right after it hears all robot’s initial message as m(n)

θ (Note that the initial
message of i includes robot i’s assignment information). Then agent i updates the assignment set as
M(n)

θ =M(n−1)
θ ∪m(n)

θ .

K Proof of Theorem 2

Statement: Denote N = max (|R|, |Tt|).
Suppose that Q-function approximation method has order transferability. Denote M(N)

θ as
the result of OTAP using {Qnθ } and M∗ as argmaxatk

Q (stk , atk). If 1) the marginal value

of adding one robot is positive, i.e. Q|M|+1(stk ,M ∪ {m}) − Q|M|(stk ,M) ≥ 0 for all
M⊂ ERTt and 2) the marginal value of adding one robot diminishes as the robot number increases,
i.e., Q|M|+1(stk ,M ∪ {m}) − Q|M|(stk ,M) ≤ Q|N |+1(stk ,N ∪ {m}) − Q|N |(stk ,N) for
N ⊂M ⊂ ERTt , for all m ∈ ERTt , then the result of OTAP is at least better than 1− 1/e of optimal
assignment, i.e., QNθ (stk ,M

(N)
θ) ≥ Q|M∗| (stk ,M∗) (1− 1/e) .

Proof. From the assumption 1) that the marginal value of adding one robot is nonnegative, without
loss of generality, we can considerM∗ with |M∗| = N in the further proof procedure. Denote
M∗={m(1)∗,m(2)∗, . . . ,m(n)∗} and denoteM(N)

θ = {m(1)
θ ,m

(2)
θ , . . . ,m

(N)
θ }.

For notation simplicity, define ∆(m | M) =: Q|M∪{m}|(st,M∪ {m})−Q|M|(st,M).

Then the optimal value OPT = QN (stk ,M∗) ≤ Q|M(n)
θ ∪M∗|(stk ,M

(n)
θ ∪M∗)

= Qn(stk ,M
(n)
θ) +

∑N
j=1 ∆(m(j)∗ | M(n)

θ ∪ {m(1)∗, · · · ,m(j−1)∗})
≤ Qn(stk ,M

(n)
θ) +

∑N
j=1 ∆(m(j)∗ | M(n)

θ)(∵ condition 2 - decreasing marginal value condition)

≤ Qn(stk ,M
(n)
θ) +

∑N
j=1 ∆(m

(n+1)
θ | M(n)

θ)

(∵ OTAP chooses m(n+1)
θ = argmaxmQ

n+1
θ

(
st,M(n)

θ ∪ {m}
)

and

argmaxmQ
n+1
θ

(
st,M(n)

θ ∪ {m}
)
= argmaxmQ

n
(
st,M(n)

θ ∪ {m}
)

from Lemma 2)

= Qn(stk ,M
(n)
θ) +N∆(m

(n+1)
θ | M(n)

θ).
Therefore, ∆(m

(n+1)
θ | M((n))

θ) ≥ 1
N (OPT −Qn(stk ,M

(n)
θ).

Note that OPT − Qn(stk ,M
(n)
θ) denotes current iteration (= nth) outcomeM(n)

θ ’s size of sub-
optimality compared to OPT . Denote OPT −Qn(stk ,M

(n)
θ) =: βn. Then since Q0(stk , ϕ) = 0,

β0 = OPT . Therefore, we have ∆(m
(n+1)
θ | M((n))

θ) ≥ 1
N βn.

Also, note that ∆(m
(n+1)
θ | M(n)

θ) = Qn+1(st,M(n)
θ ∪ {m(n+1)

θ })−Qn(st,M(n)
θ)

= Qn+1(st,M(n+1)
θ)−Qn(st,M(n)

θ) = (OPT −Qn(st,M(n)
θ)− (OPT −Qn+1(st,M(n+1)

θ))
= βn − βn+1.
Therefore, βn − βn+1 ≥ 1

N βn, i.e., βn+1 ≤ βn
(
1− 1

N

)
.

This implies OPT −QN (stk ,M
(N)
θ) = βN ≤ β0(1− 1

N)N = OPT (1− 1
N)N and thus we get

QN (stk ,M
(N)
θ) = OPT (1− (1− 1

N)N) ∼ OPT (1− 1
e) as N →∞.

22

L Scalability analysis

Computational complexity. MRRC can be formulated as a semi-MDP (SMDP) based multi-robot
planning problem (e.g., Omidshafiei et al. (2017)). This problem’s complexity with R robots and
T tasks and maximum H time horizon is O((R!/T !(R − T)!)H). For example, Omidshafiei et al.
(2017) state that a problem with only 13 task completion times (‘TMA nodes’ in their language)
possessed a policy space with cardinality 5.622 ∗ 1017. In our proposed method, this complexity is
addressed by a combination of two complexities: computational complexity and training complexity.
For computational complexity of joint assignment decision at each timestep, it is O(|R||T |3) =
O((1)× (2)× (3)× (4) + (5)) where (1)− (5) are as follows.

(1) # of Q-function computation required in one time-step = O(|R||T |): Shown in section 4.2
(2) # of mean-field inference in one Q-function computation = 2 (constant): Two embed-

ding steps (Distance embedding, Value embedding) each needs one mean-field inference
procedure

(3) # of structure2vec propagation operation in one mean-field inference= O(|T |2): There is
one structure2vec operation from a task to another task and therefore the total number of
operations is |T | × (|T | − 1).

(4) # of neural net computation for each structure2vec propagation operation=C (constant): This
is only dependent on the hyperparameter size of neural network and does not increase as
number of robots or tasks.

(5) # of neural net computation for inference of random PGM=O(|T |2) As an offline stage, we
infer the semi-clique presence probability for every possible directed edge, i.e. from a task
to another task using algorithm introduced in Appendix F . This algorithm complexity is
O(|T | × (|T | − 1)) = O(|T |2).

23

