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A Proofs for Sec. 3

A.1 Proof of Thm. 1

Proof of Thm. 1. It is easiest to prove this as a consequence of Thm. 2, since we already prove
the latter below. By Thm. 2, the statement that FNAπ0→π1 is identifiable is equivalent to the
statement that FNA+

π0→π1
− FNA−

π0→π1
= 0, as defined in Eqs. (3) and (4). Note, moreover, that

FNA+
π0→π1

− FNA−
π0→π1

= E[ν(X)], where

ν(X) = π1(X)(1− π0(X))(min{µ(X, 0), 1− µ(X, 1)}+min{τ−(X), 0})
+ π0(X)(1− π1(X))(min{µ(X, 1), 1− µ(X, 0)}+min{−τ−(X), 0})

= (π0(X) + π1(X)− 2π0(X)π1(X))min{µ(X, 1), 1− µ(X, 1), µ(X, 0), 1− µ(X, 0)}.
and that ν(X) ≥ 0 is a nonnegative variable. Therefore, the statement that FNAπ0→π1

is identifiable
is equivalent to the statement that P(ν(X) = 0) = 1. From the above simplification of ν(X) and since
µ(X,A) ∈ [0, 1], it is immediate that the event ν(X) = 0 is equivalent to the X-measurable event
(π1(X) = π0(X)) ∨ (µ(X, 0) ∈ {0, 1}) ∨ (µ(X, 1) ∈ {0, 1}). Noting that Var(Y | X,A = a) = 0
is equivalent to µ(X, a) ∈ {0, 1} completes the proof.

A.2 Proof of Thm. 2

Proof. By iterated expectations we can write

FNAπ0→π1
= E[κ(X)],

where κ(X) = P∗(Y ∗(π0(X)) = 1, Y ∗(π1(X)) = 0 | X)

= π1(X)(1− π0(X))P∗(Y (0) = 1, Y (1) = 0 | X)

+ π0(X)(1− π1(X))P∗(Y (0) = 0, Y (1) = 1 | X).

Let use first show that FNA−
π0→π1

≤ inf(S(FNAπ0→π1
;P)). Consider any feasible P∗. By union

bound, and since probabilities are in [0, 1], we have

P∗(Y (0) = 1, Y (1) = 0 | X) = 1− P∗(Y (0) = 0 ∨ Y (1) = 1 | X)

≥ 1−max{1,P∗(Y (0) = 0 | X) + P∗(Y (1) = 1 | X)}
= min{0, µ(X, 0)− µ(X, 1)}.

Similarly,
P∗(Y (0) = 0, Y (1) = 1 | X) ≥ min{0, µ(X, 1)− µ(X, 0)}.

Therefore,

κ(X) ≥ min{0, π1(X)(1− π0(X))(µ(X, 0)− µ(X, 1)) + π0(X)(1− π1(X))(µ(X, 1)− µ(X, 0))}
= (π0(X)− π1(X))τ−(X),

whence E[κ(X)] ≥ E[(π0(X)− π1(X))τ−(X)] = FNA−
π0→π1

, as desired.

We next show that FNA−
π0→π1

∈ S(FNAπ0→π1
;P) by exhibiting a P∗ that recovers it and is

compatible with P. First, we let P∗ have the same X-distribution as P. Next, for each X , if
π1(X) = 1, we set

P∗(Y (0) = 1, Y (1) = 0 | X) = min{0, µ(X, 0)− µ(X, 1)},
P∗(Y (0) = 1, Y (1) = 1 | X) = max{µ(X, 0), µ(X, 1)},
P∗(Y (0) = 0, Y (1) = 1 | X) = min{0, µ(X, 1)− µ(X, 0)},
P∗(Y (0) = 0, Y (1) = 0 | X) = 1−min{µ(X, 1), µ(X, 0)},
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and if π1(X) = 0, we set

P∗(Y (0) = 0, Y (1) = 1 | X) = min{0, µ(X, 1)− µ(X, 0)},
P∗(Y (0) = 0, Y (1) = 0 | X) = max{µ(X, 0), µ(X, 1)},
P∗(Y (0) = 1, Y (1) = 0 | X) = min{0, µ(X, 0)− µ(X, 1)},
P∗(Y (0) = 1, Y (1) = 1 | X) = 1−min{µ(X, 1), µ(X, 0)}.

Note that in each case, the 4 numbers are nonnegative and always sum to 1, and are therefore form
a valid distribution on {0, 1}2. Moreover, in each case, we have that P∗(Y (1) = 1 | X) = µ(X, 1)
and P∗(Y (0) | X) = µ(X, 0). Finally, we set P∗(A = 1 | X,Y (0), Y (1)) = P(A = 1 | X), which
ensures that we satisfy unconfoundedness and that µ(X,A) = E[Y | X,A]. Therefore, since the
(X,A)-distribution as well as all (Y | X,A)-distributions match, we must have that P∗ is compatible
with P. Finally, we note that, under this distribution, we exactly have

κ(X) = π1(X)(1− π0(X))min{0, µ(X, 0)− µ(X, 1)}+ π0(X)min{0, µ(X, 1)− µ(X, 0)}.

Therefore, FNA−
π0→π1

= E[κ(X)] ∈ S(FNAπ0→π1
;P).

Next, we show that FNA+
π0→π1

≥ sup(S(FNAπ0→π1
;P)). Consider any feasible P∗. Note that

P∗(Y (0) = 1, Y (1) = 0 | X) ≤ min{P∗(Y (0) = 1 | X), P∗(Y (1) = 0 | X)}
= min{µ(X, 0), 1− µ(X, 1)}.

Similarly,
P∗(Y (0) = 0, Y (1) = 1 | X) ≤ min{µ(X, 1), 1− µ(X, 0)}.

Therefore,

κ(X) ≤ min{π1(X)(1− π0(X))µ(X, 0) + π0(X)(1− π1(X))(1− µ(X, 0)),
π1(X)(1− π0(X))(1− µ(X, 1)) + π0(X)(1− π1(X))µ(X, 1)},

the expectation of which is defined to be FNA+
π0→π1

. Therefore, E[κ(X)] ≤ FNA+
π0→π1

, as desired.

We next show that FNA+
π0→π1

∈ S(FNAπ0→π1
;P) by exhibiting a P∗ that recovers it and is

compatible with P. First, we let P∗ have the same (X,A)-distribution as P. Next, for each X , if
π1(X) = 1, we set

P∗(Y (0) = 1, Y (1) = 0 | X) = min{µ(X, 0), 1− µ(X, 1)},
P∗(Y (0) = 1, Y (1) = 1 | X) = max{0, µ(X, 0) + µ(X, 1)− 1},
P∗(Y (0) = 0, Y (1) = 1 | X) = min{µ(X, 1), 1− µ(X, 0)},
P∗(Y (0) = 0, Y (1) = 0 | X) = max{0, 1− µ(X, 0)− µ(X, 1)},

and if π1(X) = 0, we set

P∗(Y (0) = 0, Y (1) = 0 | X) = min{µ(X, 1), 1− µ(X, 0)},
P∗(Y (0) = 0, Y (1) = 0 | X) = max{0, µ(X, 0) + µ(X, 1)− 1},
P∗(Y (0) = 1, Y (1) = 0 | X) = min{µ(X, 0), 1− µ(X, 1)},
P∗(Y (0) = 1, Y (1) = 1 | X) = max{0, 1− µ(X, 0)− µ(X, 1)},

Note that in each case, the 4 numbers are nonnegative and always sum to 1, and are therefore form
a valid distribution on {0, 1}2. Moreover, in each case, we have that P∗(Y (1) = 1 | X) = µ(X, 1)
and P∗(Y (0) | X) = µ(X, 0). Finally, we set P∗(A = 1 | X,Y (0), Y (1)) = P(A = 1 | X), which
ensures that we satisfy unconfoundedness and that µ(X,A) = E[Y | X,A]. Therefore, since the
(X,A)-distribution as well as all (Y | X,A)-distributions match, we must have that P∗ is compatible
with P. Finally, we note that, under this distribution, we exactly have

κ(X) = min{π1(X)(1− π0(X))µ(X, 0) + π0(X)(1− π1(X))(1− µ(X, 0)),
π1(X)(1− π0(X))(1− µ(X, 1)) + π0(X)(1− π1(X))µ(X, 1)}.

Therefore, FNA+
π0→π1

= E[κ(X)] ∈ S(FNAπ0→π1
;P).

To complete the proof, note that FNAπ0→π1
is linear in P∗ and that {P∗ : P∗ ◦ C−1 = P} is a convex

set, so that S(FNAπ0→π1
;P) is a convex set.
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A.3 Proof of Thm. 3

We first present the following restatement of theorems 1 and 2 of [39].
Lemma 4. Let P(U),P(V ) denote two given distributions on scalar variables. Then,

sup
P∗(U,V ):P∗(U)=P(U), P∗(V )=P(V )

P∗(U − V < δ) = 1 + inf
y
(P(U < y + δ)− P(V ≤ y)),

inf
P∗(U,V ):P∗(U)=P(U), P∗(V )=P(V )

P∗(U − V < δ) = sup
y
(P(U < y + δ)− P(V ≤ y)).

Proof. We start with the restatement of theorems 1 and 2 of [39] given by the right- and left-hand
sides of theorem 3.1 of [20], respectively:

inf
P∗(U,V ):P∗(U)=P(U), P∗(V )=P(V )

P∗(U − V < δ) = sup
y
(P(U < y + δ)− P(−V < −y)− 1) ∧ 0,

sup
P∗(U,V ):P∗(U)=P(U), P∗(V )=P(V )

P∗(U − V < δ) = inf
y
(P(U < y + δ)− P(−V < −y)) ∧ 1.

Then, substituting P(−V < −y) = 1 − P(V ≤ y) and using the fact that
limy→−∞(P(U < y + δ)− P(V ≤ y)) = 0, we obtain the statements above.

We now turn to proving Thm. 3.

Proof. Set

M(P) = {P∗(X,A, Y ∗(0), Y ∗(1)) : P∗ ◦ C−1 = P, P∗(A = 1 | X) = P∗(A = 1 | X,Y ∗(a)), a ∈ {0, 1}},
MY ∗(1),Y ∗(0)|X(P) = {P∗(Y ∗(1), Y ∗(0)) : P∗(Y ∗(a) ≤ y) = P(Y ≤ y,A = a), y ∈ R, a ∈ {0, 1}}.
Note that

M(P) = {P(X)×P(A)×P∗(Y ∗(0), Y ∗(1) | X) : P∗(Y ∗(0), Y ∗(1) | X) ∈MY ∗(1),Y ∗(0)|X(P)}.
First, write

sup(S(ψζ,δ;P)) = sup
P∗∈M(P)

EP∗(ζ(X)ITE < δ | X)

= E sup
P∗∈MY ∗(1),Y ∗(0)|X(P)

P∗(ζ(X)Y ∗(1)− ζ(X)Y ∗(0) < δ | X),

and similarly for inf . We now consider the inside of the expectation for every X as the sum of two
variables U +V , where U = ζ(X)Y ∗(1) and V = −ζ(X)Y ∗(0), conditioned on X . Then the result
follows by Lemma 4.

A.4 Proof of Lemma 1

Proof. Because ITE ∈ {−1, 0, 1}, we have

CVaRα(ITE) = supβ
(
β + α−1P∗(ITE = −1)min{−1− β, 0}
+ α−1P∗(ITE = 0)min{−β, 0}
+ α−1P∗(ITE = 1)min{1− β, 0}

)
.

Since α ∈ (0, 1), the objective approaches −∞ as β →∞ or β → −∞. Thus, there are only three
possible solutions that realize the supremum: β ∈ {−1, 0, 1}. Plugging these in above, we obtain

CVaRα(ITE) = max{−1, −α−1P∗(ITE = −1), 1− 2α−1P∗(ITE = −1)− α−1P∗(ITE = 0)}.
First, we note that P∗(ITE = −1) = FNA0→1. Second, we note that

P∗(ITE = 0) = P∗(Y ∗(0) = Y ∗(1) = 0) + P∗(Y ∗(0) = Y ∗(1) = 1)

= (P∗(Y ∗(1) = 0)− P∗(Y ∗(0) = 1, Y ∗(1) = 0))

+ (P∗(Y ∗(0) = 1)− P∗(Y ∗(0) = 1, Y ∗(1) = 0))

= (1− E∗[Y ∗(1)]− FNA0→1) + (E∗[Y ∗(0)]− FNA0→1)

= 1−ATE− 2FNA0→1.

Substituting yields the result.
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B Proofs for Sec. 5

B.1 Preliminaries

Lemma 5. Let f, g : X → R be given. Suppose f satisfies a margin with sharpness α. Fix p ≥ 1.
Then, for some c > 0,

E[(I[g(X) ≤ 0]− I[f(X) ≤ 0])f(X)] ≤ c∥f − g∥
p(1+α)
p+α

p , (10)

E[(I[g(X) ≤ 0]− I[f(X) ≤ 0])f(X)] ≤ c∥f − g∥1+α
∞ , (11)

P(I[g(X) ≤ 0] ̸= I[f(X) ≤ 0], f(X) ̸= 0) ≤ c∥f − g∥
pα

p+α
p , (12)

P(I[g(X) ≤ 0] ̸= I[f(X) ≤ 0], f(X) ̸= 0) ≤ c∥f − g∥α∞. (13)

Proof. Eqs. (11) and (13) are essentially a restatement of lemma 5.1 of [4]. Their statement focuses
on conditional probabilities minus 0.5, but the proof remains identical for real-valued functions.
Eq. (10) is essentially a similar restatement of lemma 5.2 of [4].

We conclude by proving Eq. (12): for any t > 0,

P(I[g(X) ≤ 0] ̸= I[f(X) ≤ 0], f(X) ̸= 0)

≤ P(0 < |f(X)| ≤ t) + P(I[g(X) ≤ 0] ̸= I[f(X) ≤ 0], |f(X)| > t)

≤ (t/t0)
α + P(|f(X)− g(X)| > t)

≤ (t/t0)
α + ∥f − g∥ppt

−p.

Setting t = ∥f − g∥
p

p+α
p yields the result.

Lemma 6. Fix any µ̃, ẽ, η̃1, . . . , η̃m with either µ̃ = µ or ẽ = e. Set κℓ = 1 if η̃ℓ = ηℓ and otherwise
set κℓ = 0. Then,

E[ϕρg0,...,gm(X,A, Y ; ẽ, µ̃, η̃1, . . . , η̃m)] = AHEρ
g0,...,gm if κ1 = · · · = κm = 1,

E[ϕρg0,...,gm(X,A, Y ; ẽ, µ̃, η̃1, . . . , η̃m)] ≥ AHEρ
g0,...,gm if ρℓ = + whenever κℓ = 0,

E[ϕρg0,...,gm(X,A, Y ; ẽ, µ̃, η̃1, . . . , η̃m)] ≤ AHEρ
g0,...,gm if ρℓ = − whenever κℓ = 0.

Proof. Because either µ̃ = µ or ẽ = e, we have that

E[ϕρg0,...,gm(X,A, Y ; ẽ, µ̃, η̃1, . . . , η̃m)] = E
[
g
(0)
0 (X)µ(X, 0) + g

(1)
0 (X)µ(X, 1) + g

(2)
0 (X)

+

m∑
ℓ=1

ρℓI[η̃ℓ(X) ≤ 0]ηℓ(X)

]
.

If κ1 = · · · = κm = 1, then the first equation in the statement is immediate.

If κℓ = 0, note that

(I[η̃ℓ(X) ≤ 0]− I[ηℓ(X) ≤ 0])ηℓ(X) = I[(η̃ℓ(X) ≤ 0) XOR (ηℓ(X) ≤ 0)]|ηℓ(X)| ≥ 0.

Therefore, if, among all ℓ with κℓ = 0, the sign ρℓ is the same, then the biases in ρℓE[I[η̃ℓ(X) ≤
0]ηℓ(X)] all go the same way, establishing the latter two inequalities in the statement.

B.2 Proof of Lemmas 2 and 3

Proof of Lemma 2. If t > t0 then clearly P(0 < |f(X)| ≤ t) ≤ 1. If t ≤ t0 then
P(0 < |f(X)| ≤ t) = P(f(X) ̸= 0) − P(|f(X)| > t) ≤ 0. Finally note that, I[t > t0] ≤
(t/t0)

∞.

Proof of Lemma 3. Let M be the bound on the derivative of the CDF on (−ϵ, 0) ∪ (0, ϵ). If
t ≥ ϵ then clearly P(0 < |f(X)| ≤ t) ≤ 1. If t < ϵ then P(0 < |f(X)| ≤ t) ≤ 2Mt. Thus,
P(0 < |f(X)| ≤ t) ≤ t/min{(2M)−1, ϵ}.
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B.3 Proof of Thm. 4

Proof. We first tackle the first inequality to be proven. We will proceed by bounding each of∣∣E[ϕρg0,...,gm(X,A, Y ; ě, µ̌, η̌1, . . . , η̌m)]− E[ϕρg0,...,gm(X,A, Y ; ẽ, µ̃, η̌1, . . . , η̌m)]
∣∣, (14)∣∣E[ϕρg0,...,gm(X,A, Y ; ẽ, µ̃, η̌1, . . . , η̌m)]− E[ϕρg0,...,gm(X,A, Y ; ẽ, µ̃, η̌1, . . . , η̌m)]
∣∣. (15)

We begin by bounding Eq. (14) considering separately the case that ẽ = e and that µ̃ = µ. For brevity
let us set

ζ̌(a)(X) = g
(a)
0 (X) +

m∑
ℓ=1

ρℓI[η̌ℓ(X) ≤ 0]g
(a)
ℓ (X) ∈ [−m− 1, m+ 1], a = 0, 1.

In the case that ẽ = e, we bound Eq. (14) by bounding each of∣∣E[ϕρg0,...,gm(X,A, Y ; ě, µ̌, η̌1, . . . , η̌m)]− E[ϕρg0,...,gm(X,A, Y ; e, µ̌, η̌1, . . . , η̌m)]
∣∣, (16)∣∣E[ϕρg0,...,gm(X,A, Y ; e, µ̌, η̌1, . . . , η̌m)]− E[ϕρg0,...,gm(X,A, Y ; e, µ̃, η̌1, . . . , η̌m)]
∣∣. (17)

Using iterated expectations to first take expectations with respect to Y and then with respect to A, we
find that Eq. (16) is equal to∣∣∣∣E[ζ̌(0)(X)

ě(X)− e(X)

1− ě(X)
(µ(X, 0)− µ̌(X, 0)) + ζ̌(1)(X)

e(X)− ě(X)

ě(X)
(µ(X, 1)− µ̌(X, 1))

]∣∣∣∣
(18)

≤ m+ 1

ē
∥e− ě∥2(∥µ(·, 0)− µ̌(·, 0)∥2 + ∥µ(·, 0)− µ̌(·, 0)∥2)

≤ 2(m+ 1)

ē3/2
∥e− ě∥2∥µ− µ̌∥2.

Iterating expectations the same way, we find that Eq. (17) is equal to 0.

In the case that µ̃ = µ, we bound Eq. (14) by bounding each of∣∣E[ϕρg0,...,gm(X,A, Y ; ě, µ̌, η̌1, . . . , η̌m)]− E[ϕρg0,...,gm(X,A, Y ; ě, µ, η̌1, . . . , η̌m)]
∣∣, (19)∣∣E[ϕρg0,...,gm(X,A, Y ; e, µ̌, η̌1, . . . , η̌m)]− E[ϕρg0,...,gm(X,A, Y ; ẽ, µ, η̌1, . . . , η̌m)]
∣∣. (20)

Using iterated expectations to first take expectations with respect to Y and then with respect to A,
we find that Eq. (19) is again exactly equal to Eq. (18) and the same bound applies. Again, iterating
expectations the same way, we find that Eq. (20) is equal to 0.

We now turn to Eq. (15). Using iterated expectations to first take expectations with respect to Y and
then with respect to A, we find that Eq. (15) is equal to∣∣∣∣∣E

[
m∑
ℓ=1

ρℓ(I[η̌ℓ(X) ≤ 0]− I[η̃ℓ(X) ≤ 0])ηℓ(X)

]∣∣∣∣∣
≤

m∑
ℓ=1

E[|(I[η̌ℓ(X) ≤ 0]− I[η̃ℓ(X) ≤ 0])ηℓ(X)|].

We proceed to bound each summand by applying one of Eqs. (10) to (13) of Lemma 5. Consider the
ℓth term. Suppose κℓ = 1 (i.e., η̃ℓ = ηℓ). Then applying Eq. (10) if p < ∞ and Eq. (11) if p = ∞
yields the desired bound. Suppose κℓ = 0. Since ηℓ(X) ∈ [−3, 3], we can bound the ℓth term by
3P(I[η̌ℓ(X) ≤ 0] ̸= I[η̃ℓ(X) ≤ 0]) = 3P(I[η̌ℓ(X) ≤ 0] ̸= I[η̃ℓ(X) ≤ 0], η̃ℓ(X) ̸= 0), where in the
last equality we used P(η̃ℓ(X) = 0, η̌ℓ(X) ̸= 0) = 0. Applying Eq. (12) if p <∞ and Eq. (13) if
p =∞ yields the desired bound.

We now turn to proving Eq. (15). We proceed by bounding each of the following:∥∥ϕρg0,...,gm(X,A, Y ; ě, µ̌, η̌1, . . . , η̌m)− ϕρg0,...,gm(X,A, Y ; ẽ, µ̌, η̌1, . . . , η̌m)
∥∥
2
, (21)∥∥ϕρg0,...,gm(X,A, Y ; ě, µ̌, η̌1, . . . , η̌m)− ϕρg0,...,gm(X,A, Y ; ẽ, µ̃, η̌1, . . . , η̌m)

∥∥
2
, (22)∥∥ϕρg0,...,gm(X,A, Y ; ě, µ̌, η̌1, . . . , η̌m)− ϕρg0,...,gm(X,A, Y ; ẽ, µ̃, η̃1, . . . , η̃m)

∥∥
2
. (23)
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Firstly, Eq. (21) is equal to∥∥∥∥ζ̌(0)(X)(1−A)
(

1

1− ě
− 1

1− ẽ

)
(Y − µ̌(X, 0)) + ζ̌(1)(X)A

(
1

ě
− 1

ẽ

)
(Y − µ̌(X, 1))

∥∥∥∥
2

≤ 2(m+ 1)

ē2
∥ě− ẽ∥2.

Secondly, Eq. (22) is equal to∥∥∥∥ζ̌(0)(X)
A− ẽ(X)

1− ẽ(X)
(µ̌(X, 0)− µ̃(X, 0)) + ζ̌(1)(X)

ẽ(X)−A
ẽ(X)

(µ̌(X, 1)− µ̃(X, 1))
∥∥∥∥
2

≤ m+ 1

ē
(∥µ̌(·, 0)− µ̃(·, 0)∥2 + ∥µ̌(·, 0)− µ̃(·, 0)∥2) ≤

2(m+ 1)

ē3/2
∥µ̌− µ̃∥2.

Lastly, Eq. (23) is equal to∥∥∥∥∥
m∑
ℓ=1

ρℓ(I[η̌ℓ(X) ≤ 0]− I[η̃ℓ(X) ≤ 0])

(
g
(0)
ℓ (X)

(A− ě(X))µ̌(X, 0) + (1−A)Y
1− ě(X)

+ g
(1)
ℓ (X)

(ě(X)−A)µ̌(X, 1) +AY

ě(X)
+ g

(2)
ℓ (X)

)∥∥∥∥∥
2

≤ (4ē−1 + 1)

m∑
ℓ=1

P(I[η̌ℓ(X) ≤ 0] ̸= I[η̃ℓ(X) ≤ 0])
1/2

= (4ē−1 + 1)

m∑
ℓ=1

P(I[η̌ℓ(X) ≤ 0] ̸= I[η̃ℓ(X) ≤ 0], η̃ℓ(X) ̸= 0)
1/2
.

where in the last equality we used P(η̃ℓ(X) = 0, η̌ℓ(X) ̸= 0) = 0. Applying Lemma 5, using
Eq. (12) if p <∞ and Eq. (13) if p =∞, yields the desired bound.

B.4 Proof of Thm. 5

Proof. For brevity, let ϕ = ϕρg0,...,gm . Define Ik = {i ≡ k − 1 (mod K)}, I−k =

{i ̸≡ k − 1 (mod K)}, Êkf(X,A, Y ) = 1
|Ik|

∑
i∈Ik

f(Xi, Ai, Yi), and E|−kf(X,A, Y ) =

E[f(X,A, Y ) | {(Xi, Ai, Yi) : i ∈ I−k}]. We then have

Êkϕ(X,A, Y ; ê(k), µ̂(k), η̂
(k)
1 , . . . , η̂(k)m )− Êkϕ(X,A, Y ; e, µ, η

(k)
1 , . . . , η(k)m )

= E|−kϕ(X,A, Y ; ê(k), µ̂(k), η̂
(k)
1 , . . . , η̂(k)m )− E|−kϕ(X,A, Y ; e, µ, η

(k)
1 , . . . , η(k)m ) (24)

+ (Êk − E|−k)(ϕ(X,A, Y ; ê(k), µ̂(k), η̂
(k)
1 , . . . , η̂(k)m )− ϕ(X,A, Y ; e, µ, η

(k)
1 , . . . , η(k)m )). (25)

We proceed to show that each of Eqs. (24) and (25) are op(1/
√
n).

By Thm. 4, we have that Eq. (24) is

Op

(∥∥∥e− ê(k)∥∥∥
2

∥∥∥µ− µ̂(k)
∥∥∥
2
+

m∑
ℓ=1

∥∥∥ηℓ − η̂(k)ℓ

∥∥∥ pαℓ
2p+2αℓ

pℓ

)
.

So, by our nuisance-estimation assumptions, Eq. (24) is op(1/
√
n).

By Chebyshev’s inequality conditioned on I−k, we obtain that Eq. (25) is

Op

(
|Ik|−1/2

∥∥∥ϕ(X,A, Y ; ê(k), µ̂(k), η̂
(k)
1 , . . . , η̂(k)m )− ϕ(X,A, Y ; e, µ, η

(k)
1 , . . . , η(k)m )

∥∥∥
2

)
.

By our nuisance-estimation assumptions and Thm. 4, we have that∥∥∥ϕ(X,A, Y ; ê(k), µ̂(k), η̂
(k)
1 , . . . , η̂

(k)
m )− ϕ(X,A, Y ; e, µ, η

(k)
1 , . . . , η

(k)
m )
∥∥∥
2

= op(1). Thus,

Eq. (25) is op(1/
√
n).
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The first equation is concluded by noting 1
n

∑n
i=1 ϕ(Xi, Ai, Yi; e, µ, η

(k)
1 , . . . , η

(k)
m )) =

1
K

∑K
k=1

|Ik|
n/K Êkϕ(X,A, Y ; e, µ, η

(k)
1 , . . . , η

(k)
m )).

For the second equation, first note that the first equation together with the central limit theorem imply
√
n
(
ÂHE

ρ

g0,...,gm −AHEρ
g0,...,gm

)
⇝ N (0, σ2), σ2 = Var(ϕ(X,A, Y ; e, µ, η1, . . . , ηm)).

Therefore, the result is concluded if we can show that
√
nŝe →p σ. Note that (n − 1)ŝe2 =

1
n

∑n
i=1 ϕ

2
i − (ÂHE

ρ

g0,...,gm)2 and that σ2 = E[ϕ2(X,A, Y ; e, µ, η1, . . . , ηm)] − (AHEρ
g0,...,gm)2.

We have already shown that ÂHE
ρ

g0,...,gm →p AHEρ
g0,...,gm and continuous mapping implies the

same holds for their squares. Next we study the convergence of 1
n

∑n
i=1 ϕ

2
i . Using x2 − y2 =

(x+ y)(x− y), we bound∣∣∣Êkϕ
2(X,A, Y ; ê(k), µ̂(k), η̂

(k)
1 , . . . , η̂(k)m )− Êkϕ

2(X,A, Y ; e, µ, η
(k)
1 , . . . , η(k)m )

∣∣∣
≤ 5(m+ 1)

ē

∣∣∣Êkϕ(X,A, Y ; ê(k), µ̂(k), η̂
(k)
1 , . . . , η̂(k)m )− Êkϕ(X,A, Y ; e, µ, η

(k)
1 , . . . , η(k)m )

∣∣∣.
Then, following the very same arguments used to prove the first equation we can show that
1
n

∑n
i=1 ϕ

2
i →p E[ϕ2(X,A, Y ; e, µ, η1, . . . , ηm)].

B.5 Proof of Thm. 6

Proof. Define

Ψ0 = E
[
g
(0)
0 (X)µ(X, 0) + g

(1)
0 (X)µ(X, 1) + g

(2)
0 (X)

]
Ψℓ = E

[
min{0, g(0)ℓ (X)µ(X, 0) + g

(1)
ℓ (X)µ(X, 1) + g

(2)
ℓ (X)}

]
, ℓ = 1, . . . ,m.

Since AHEρ
g0,...,gm = Ψ0 +

∑m
ℓ=1 ρℓΨℓ, if the efficient influence functions of each of Ψ0, . . . ,Ψm

exist and are given by ψ0, . . . , ψm, respectively, then the efficient influence function of AHEρ
g0,...,gm

is given by ψ0 +
∑m

ℓ=1 ρℓψℓ.

Fix ℓ = 1, . . . ,m and let us derive the efficient influence function of Ψℓ. Let λx(S) be a measure
on X dominating P(X ∈ S). Let λa be the counting measure on {0, 1}. Let λy be the counting
measure on {0, 1}. Let λ be the product measure. Consider the nonparametric model P consisting of
all distributions on (X,A, Y ) that are absolutely continuous with respect to λ. By theorem 4.5 of
Tsiatis [57], the tangent space with respect to this model is given by

Tx + Ta + Ty,
where Tx = {f(X) : Ef(X) = 0, Ef2(X) <∞},

Ta = {f(X,A) : E[f(X,A) | X] = 0, Ef2(X,A) <∞},
Ty = {f(X,A, Y ) : E[f(X,A, Y ) | X,A] = 0, Ef2(X,A, Y ) <∞}.

Consider any submodel Pt ∈ P passing through P0 = P with density ft(x, a, y) = ft(x)ft(a |
x)ft(y | a, x) and score st(x, a, y) = ∂

∂t log ft(x, a, y) = st(x) + st(a | x) + sy(y | a, x) =
∂
∂t log ft(x) +

∂
∂t log ft(a | x) +

∂
∂t log ft(y | x, a) belonging to the tangent space T . The efficient

influence function is the unique function ψℓ(x, a, y) ∈ T , should it exist, such that

∂

∂t
Ψℓ(Pt)

∣∣∣
t=0

= E[ψℓ(x, a, y)s0(x, a, y)]

for any such submodel.

Define µ̇t(x, a) =
∂
∂t

∫
y
yft(y | x, a)dλy(y). Then, by product rule, we have

∂

∂t
Ψℓ(Pt)

∣∣∣
t=0

=

∫
x

I[ηℓ(x) ≤ 0]
(
g
(0)
ℓ (x)µ̇0(x, 0) + g

(1)
ℓ (x)µ̇0(x, 1)

)
f0(x)dλx(x)

+

∫
x

min{0, ηℓ(x)}s0(x)f0(x)dλx(x),
(26)
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where we used the fact that ηℓ(x) = 0 implies g(0)ℓ (x) = g
(1)
ℓ (x) = 0 for almost every x.

Note that

µ̇0(x, 1) =

∫
a

∫
y

a

e(x)
ys0(y | x, a)f0(y | x, a)f0(a | x)dλy(y)dλa(a),

µ̇0(x, 0) =

∫
a

∫
y

1− a
1− e(x)

ys0(y | x, a)f0(y | x, a)f0(a | x)dλy(y)dλa(a).

Note further that since densities integrate to 1 at all t’s, we have that,∫
y

s0(y | x, a)f(y | x, a)dλy(y) = 0, (27)∫
a

s0(a | x)f(a | x)dλa(a) = 0, (28)∫
x

s0(x)f(x)dλx(x) = 0. (29)

Subtracting 0 from the right hand-side of Eq. (26) in the form of the left-hand side of Eq. (27) times
I[ηℓ(x) ≤ 0]

(
g
(0)
ℓ (x) 1−a

1−e(x)µ(x, 0) + g
(1)
ℓ (x) a

e(x)µ(x, 1)
)

plus the left-hand side of Eq. (29) times
Ψℓ, we find that

∂

∂t
Ψℓ(Pt)

∣∣∣
t=0

=

∫ (
I[ηℓ(x) ≤ 0]

(
g
(0)
ℓ (x)

1− a
1− e(x)

(y − µ(x, 0)) + g
(1)
ℓ (x)

a

e(x)
(y − µ(x, 1))

)
+ I[ηℓ(x) ≤ 0]

(
g
(0)
ℓ (x)µ(x, 0) + g

(1)
ℓ (x)µ(x, 1) + g

(2)
ℓ (x)

)
−Ψℓ

)
s0(x, a, y)f0(x, a, y)dλ(x, a, y).

Since

I[ηℓ(x) ≤ 0]

(
g
(0)
ℓ (x)

1− a
1− e(x)

(y − µ(x, 0)) + g
(1)
ℓ (x)

a

e(x)
(y − µ(x, 1))

)
∈ Ty,

I[ηℓ(x) ≤ 0]
(
g
(0)
ℓ (x)µ(x, 0) + g

(1)
ℓ (x)µ(x, 1) + g

(2)
ℓ (x)

)
−Ψℓ ∈ Tx,

we conclude that their sum

ψℓ(x, a, y) = I[ηℓ(x) ≤ 0]

(
g
(0)
ℓ (x)

(
µ(x, 0) +

1− a
1− e(x)

(y − µ(x, 0))
)

+ g
(1)
ℓ (x)

(
µ(x, 1) +

a

e(x)
(y − µ(x, 1))

)
+ g

(2)
ℓ (x)

)
−Ψℓ

is the efficient influence function for Ψℓ.

Since Ψ0 is just a weighted average of potential outcomes like the ATE, following the same arguments
as in theorem 1 of Hahn [23] shows that

ψ0(x, a, y) = g
(0)
0 (x)

(
µ(x, 0) +

1− a
1− e(x)

(y − µ(x, 0))
)

+ g
(1)
0 (x)

(
µ(x, 1) +

a

e(x)
(y − µ(x, 1))

)
+ g

(2)
0 (x)−Ψ0

is the influence function for Ψ0.

The sum of ψ0, ψ1, . . . , ψm is exactly ϕρg0,...,gm(X,A, Y ; e, µ, η1, . . . , ηm) − AHEρ
g0,...,gm , which

completes the proof for the case where e(X) is unknown.

For the model with e(X) fixed and known, the tangent space is given by just Tx + Ty, that is, the
tangent space component corresponding to the (A | X)-model is the subspace {0}. Since each ψℓ

only had components in Tx and Ty, it still remains within this more restricted tangent space and
therefore is still the efficient influence function of Ψℓ.
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B.6 Proof of Corollary 1

Proof. The only statement left to prove is the regularity of the estimator. This follows from Lemma
25.23 of Van der Vaart [58] because Thm. 5 shows the estimator is asymptotically linear with influence
function ϕρg0,...,gm(X,A, Y ; e, µ, η1, . . . , ηm), and Thm. 6 shows that this is the efficient influence
function.

B.7 Proof of Thm. 7

Proof. The proof is the same as that of Thm. 5 but using Lemma 6 to translate the bias in the limit of
the estimator, E[ϕρg0,...,gm(X,A, Y ; ẽ, µ̃, η̃1, . . . , η̃m)], relative to the target AHEρ

g0,...,gm .

23


	Introduction
	Problem Set Up and the Fraction Negatively Affected
	Parameters of Interest

	Sharp Bounds
	Inference Methodology
	Average Hinge Effects
	Re-formulating the AHE
	Inference Algorithm
	Nuisance Fitting

	Robustness Guarantees for Inference
	Local Robustness, Confidence Intervals, and Efficiency
	Double Robustness and Double Validity

	Empirical Investigation
	Connections, Limitations, Extensions, and Conclusions
	Proofs for sec:sharp
	Proof of thm:id
	Proof of thm:bounds
	Proof of thm:general
	Proof of lemma:cvar

	Proofs for sec:robustness
	Preliminaries
	Proof of lemma:inftymargin,lemma:1margin
	Proof of lemma:orthogonal
	Proof of thm:ral
	Proof of thm:eif
	Proof of thm:efficient
	Proof of thm:drdv




