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Abstract

For many inference problems in statistics and econometrics, the unknown param-
eter is identified by a set of moment conditions. A generic method of solving
moment conditions is the Generalized Method of Moments (GMM). However, clas-
sical GMM estimation is potentially very sensitive to outliers. Robustified GMM
estimators have been developed in the past, but suffer from several drawbacks:
computational intractability, poor dimension-dependence, and no quantitative re-
covery guarantees in the presence of a constant fraction of outliers. In this work, we
develop the first computationally efficient GMM estimator (under intuitive assump-
tions) that can tolerate a constant ε fraction of adversarially corrupted samples, and
that has an `2 recovery guarantee of O(

√
ε). To achieve this, we draw upon and

extend a recent line of work on algorithmic robust statistics for related but simpler
problems such as mean estimation, linear regression and stochastic optimization.
As a special case, we apply our algorithm to instrumental variables linear regression
with heterogeneous treatment effects, and experimentally demonstrate that it can
tolerate as much as 10 – 15% corruption, significantly improving upon baseline
methods.

1 Introduction

Econometric and causal inference methodologies are increasingly being incorporated in automated
large scale decision systems. Inevitably these systems need to deal with the plethora of practical
issues that arise from automation. One important aspect is being able to deal with corrupted or
irregular data, either due to poor data collection, the presence of outliers, or adversarial attacks by
malicious agents. Even traditional applications of econometric methods, in social science studies,
can greatly benefit from robust inference so as not to draw conclusions solely driven by a handful of
samples, as was recently highlighted in [4].

One broad statistical framework, that encompasses the most widely used estimation techniques
in econometrics and causal inference, is the framework of estimating models defined via moment
conditions. In this paper we offer a robust estimation algorithm that extends prior recent work in
robust statistics to this more general estimation setting.

For a family of distributions {Dθ : θ ∈ Θ}, identifying the parameter θ is often equivalent to solving

EX∼Dθ [g(X, θ)] = 0, (1)

for an appropriate problem-specific vector-valued function g. This formalism encompasses such
problems as linear regression (with covariates X , response Y , and moment g((X,Y ), θ) = X(Y −
∗drohatgi@mit.edu. This work was partially done while the first author was an intern at Microsoft

Research New England.
†vsyrgk@stanford.edu. This work was partially done while the second author was a Principal Researcher

at Microsoft Research New England.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



XT θ)) and instrumental variables (IV) linear regression (with covariates X , response Y , instruments
Z, and moment g((X,Y, Z), θ) = Z(Y −XT θ)).

Under simple identifiability assumptions, moment conditions are statistically tractable, and can
be solved by the Generalized Method of Moments (GMM) [16]. Given independent observations
X1, . . . , Xn ∼ Dθ, the (unweighted) GMM estimator is

θ̂ = argmin
θ∈Θ

∥∥∥∥∥ 1

n

n∑
i=1

g(Xi, θ)

∥∥∥∥∥
2

2

.

Of course, for general functions g, finding θ̂ (the global minimizer of a potentially non-convex
function) may be computationally intractable. Stronger assumptions imply that all approximate
local minima of the above function are near the true parameter, in which case the GMM estimator is
efficiently approximable. For instrumental variables (IV) linear regression, these assumptions follow
from standard non-degeneracy assumptions.

Due to its flexibility, the GMM estimator is widely used in practice (along with heuristic variants,
in models where it is computationally intractable) [29]. Unfortunately, like most other classical
estimators in statistics, the GMM estimator suffers from a lack of robustness: a single outlier in the
observations can arbitrarily corrupt the estimate.

Robust statistics Initiated by Tukey and Huber in the 1960s, robust statistics is a broad field
studying estimators which have provable guarantees even in the presence of outliers [18]. Outliers
can be modelled as samples from a heavy-tailed distribution, or even as adversarially and arbitrarily
corrupted data. Classically, robustness of an estimator against arbitrary outliers is measured by
breakdown point (the fraction of outliers which can be tolerated without causing the estimator to
become unbounded [14]) and influence (the maximum change in the estimator under an infinitesimal
fraction of outliers [15]). These metrics have spurred development and study of numerous statistical
estimators which are often used in practice to mitigate the effect of outliers (e.g. Huber loss for mean
estimation, linear regression, and other problems [17]). Problems such as robust univariate mean
estimation are by now thoroughly understood [24, 22], and have statistically and computationally
efficient estimators.

Unfortunately, in higher dimensions, there has long appeared to be a tradeoff between robustness and
computational tractability; as a result, much of the literature on high-dimensional robust statistics has
focused on statistical efficiency at the expense of computational feasibility [5, 23, 13]. While there
is a rich literature on IV regression and GMM in the context of robust statistics, those works either
present computationally intractable estimators [21, 12] or are robust in the sense of bounded influence
[1, 27, 20] but not robust against arbitrary outliers. Until the last few years, most high-dimensional
statistical problems lacked robust estimators satisfying the following basic properties [7]:

1. Computational tractability (i.e. evading the curse of dimensionality)
2. Robustness to a constant fraction of arbitrary outliers
3. Quantitative error guarantees without dimension dependence.

Recently, a line of work on algorithmic robust statistics has blossomed within the theoretical computer
science community, with the aim of filling this gap in the high-dimensional statistics literature.
Estimators with the above properties have been developed for various fundamental high-dimensional
problems, including mean and covariance estimation [7, 9], linear regression [10, 3], and stochastic
optimization [26, 8]. However, practitioners in econometrics and applied statistics often employ
more sophisticated inference methods such as GMM and IV regression [29, 2]. Such methods are
not traditionally under the purview of theoretical computer science and learning theory; perhaps as a
result, computationally and statistically efficient robust estimators are still lacking.

Our contribution We address this lack. Methodologically speaking, our main contribution is
to introduce GMM to the algorithmic robust statistics literature and vice versa (even aside from
robustness, basic algorithmic questions about GMM remain open and surprisingly unstudied). Theo-
retically speaking, we prove that a simple modification to the SEVER algorithm for robust stochastic
optimization [8] (based on using higher-derivative information) yields a computationally efficient
and provably robust GMM estimator under intuitive deterministic assumptions about the uncorrupted
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data. We instantiate this estimator for two important special cases of GMM—instrumental variables
linear regression and instrumental variables logistic regression—under distributional assumptions
about the covariates, instruments, and responses (and in fact our algorithm also applies to the IV
generalized linear model under certain conditions on the link function).

Experimentally, we apply our algorithm to robustly solve IV linear regression. We find that it performs
well for a wide range of instrument strengths. In the important setting of heterogeneous treatment
effects, our algorithm tolerates as much as 10% corruption. Applied to a seminal dataset previously
used to estimate the effect of education on wages [6], we provide evidence for the robustness of the
inference, and demonstrate that our algorithm can recover the original inference from corruptions of
the dataset, significantly better than baseline approaches.

Technical Overview Our robust GMM algorithm builds upon the SEVER algorithm and framework
introduced in [8] for robust stochastic optimization, which itself builds on seminal work on robust
multivariate mean estimation via spectral filtering [7, 9]. In this section, we outline the increasing
levels of complexity.

First, given samples v1, . . . , vn ∈ Rd among which εn are corrupted, robust mean estimation asks
for an estimate of the mean of the uncorrupted samples. The spectral filtering approach due to [9]
iteratively does the following, until the sample covariance matrix is bounded: remove outliers in the
direction of the largest variance. So long as the uncorrupted samples have bounded covariance, the
filtering ensures that at termination, the empirical mean will approximate the uncorrupted mean.

Second, given functions f1, . . . , fn : Rd → R among which εn are corrupted, robust stochastic
optimization asks for an approximate critical point of the mean of the uncorrupted functions. The
SEVER algorithm [8] achieves this by alternating between (a) finding a critical point ŵ of the current
sample set S, and (b) applying one iteration of spectral filtering to the vectors {∇fi(ŵ) : i ∈ S},
terminating when no samples are removed from S.3 The termination guarantee of spectral filtering
immediately implies that at termination, the average gradient of the uncorrupted samples at ŵ is near
the average gradient of the final sample set S at ŵ, which is 0 by part (a). So ŵ at termination is an
approximate critical point of the mean of the uncorrupted functions.

In our problem, we are given functions g1, . . . , gn : Rd → Rp among which εn are corrupted,

and wish to find an approximate minimizer of
∥∥∥ 1
|U |
∑
i∈U gi(w)

∥∥∥2

2
, where U ⊆ [n] is the set of

uncorrupted functions. The obvious approach is to alternate between (a) finding a minimizer ŵ

of
∥∥∥ 1
|S|
∑
i∈S gi(w)

∥∥∥2

2
, where S is the current sample set, and (b) applying spectral filtering to the

vectors {gi(ŵ) : i ∈ S}, terminating when no samples are removed from S. The termination
guarantee of spectral filtering implies that the final sample average 1

|S|
∑
i∈S gi(ŵ) is near the

uncorrupted average 1
|U |
∑
i∈U gi(ŵ). Unfortunately, there is no guarantee that 1

|S|
∑
i∈S gi(ŵ) has

small norm: part (a) only implies that ŵ is a local minimizer (and hence critical point) of the norm, so

1

|S|
∑
i∈S

(∇gi(ŵ))T · 1

|S|
∑
i∈S

gi(ŵ) = 0.

In the above equality, the sample gradient matrix at ŵ could be arbitrarily corrupted, so the sam-
ple average at ŵ could have arbitrarily large norm. In principle, even the global minimizer could
have large norm. However, this issue can be fixed by using higher-derivative information: specif-
ically, we also apply spectral filtering to (projections of) the matrices ∇gi(ŵ). Under appropriate
boundedness and smoothness assumptions, it can then be shown that at termination (when neither
filtering step removes samples), ŵ is an approximate critical point of the norm of the uncorrupted

average
∥∥∥ 1
|U |
∑
i∈U gi(w)

∥∥∥2

2
. By a “strong identifiability” assumption, this implies that ŵ is near the

minimizer of
∥∥∥ 1
|U |
∑
i∈U gi(x)

∥∥∥2

2
, as desired.

3A related approach simply applies robust mean estimation to estimate the gradients at each step of gradient
descent [26].
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2 Preliminaries

For real scalars or vectors {ξi}i∈S indexed by a set S, we use the notation ES [ξi] for the sam-
ple expectation 1

|S|
∑
i∈S ξi. Similarly, if ξi are scalars, then we define the sample variance

VarS(ξi) = ES(ξi − ESξi)2. If ξi are vectors then we define the sample covariance matrix
CovS(ξi) = ES(ξi − ESξi)(ξi − ESξi)T . A random vector X is (4, 2, τ)-hypercontractive if
E(〈X,u〉)4 ≤ τ(E(〈X,u〉)2)2 for all vectors u.
Definition 2.1. For a closed setH, a function f : H → R, and γ > 0, a γ-approximate critical point
of f (inH) is some x ∈ H such that for any vector v with x+ δv ∈ H for arbitrarily small δ > 0, it
holds that v · ∇f(x) ≥ −γ ‖v‖2.
Definition 2.2. For a closed setH, a γ-approximate critical point oracle Lγ,H is an algorithm which,
given a differentiable function f : H → R returns a γ-approximate critical point of f .
Definition 2.3. The (unscaled) logistic function G : R→ R is defined by G(x) = 1/(1 + e−x).

Outline In Section 3, we describe the robust GMM problem, and we describe deterministic assump-
tions on a set of corrupted sample moments, under which we’ll be able to efficiently estimate the
parameter which makes the uncorrupted moments small. In Section 4, we describe a key subroutine
of our robust GMM algorithm, which is commonly known in the literature as filtering. In Section 5,
we describe the robust GMM algorithm and prove a recovery guarantee under the assumptions from
Section 3. In Section 6, we apply this algorithm to instrumental variable linear and logistic regression,
proving that under reasonable stochastic assumptions on the uncorrupted data, arbitrarily ε-corrupted
moments from these models satisfy the desired deterministic assumptions with high probability.
Finally, in Section 7, we evaluate the performance of our algorithm on two corrupted datasets.

3 Robust GMM Model

In this section, we formalize the model in which we will provide a robust GMM algorithm. Classically,
the goal of GMM estimation is to identify θ ∈ Θ given data X1, . . . , Xn ∼ Dθ, using the moment
condition EX∼Dθ [g(X, θ)] = 0. We consider the added challenge of the ε-strong contamination
model, in which an adversary is allowed to inspect the data X1, . . . , Xn and replace εn samples with
arbitrary data, before the algorithm is allowed to see the data. This corruption model encompasses
most reasonable sources of outliers.

For our main theorem, we do not make stochastic assumptions about {Dθ : θ ∈ Θ}. Instead, we
make deterministic assumptions about the empirical moments gi(θ) := g(Xi, θ) of the given data,
which are robust to ε-strong contamination. Concretely, we make the following assumption.
Assumption 3.1. Given differentiable moments g1, . . . , gn : Rd → Rp, a corruption parameter
ε > 0, well-conditionedness parameters λ and L, a Lipschitzness parameter Lg, and a noise level
parameter σ2, there is a set Igood ⊆ [n] with |Igood| ≥ (1− ε)n (the “uncorrupted samples”), a vector
w∗ ∈ Rd (the “true parameter”), and a radius R0 ≥ ‖w∗‖2 with the following properties:

• Strong identifiability. σmin(EIgood∇g(w∗)) ≥ λ

• Bounded-variance gradient. EIgood(u
T∇g(w∗)v)2 ≤ L2 for all unit-vectors u ∈ Rp, v ∈ Rd

• Bounded-variance noise. EIgood(v · g(w∗))2 ≤ σ2L for all unit vectors v

• Well-specification.
∥∥EIgoodg(w∗)

∥∥
2
≤ σ
√
Lε

• Lipschitz gradient.
∥∥EIgood∇g(w)− EIgood∇g(w∗)

∥∥
op ≤ Lg ‖w − w

∗‖2 for all w ∈ B2R0
(0)

• Stability of gradient. R0 < λ/(9Lg).

Intuitively, Assumption 3.1 can be thought of as a condition on the uncorrupted samples, because
if they satisfy the assumption with parameter ε0, then after ε-strong contamination, the corrupted
samples will still satisfy the assumption with parameter ε0 + ε. Strong identifiability is needed for
parameter recovery (even without corruption). Bounded-variance gradient is a technical condition
which e.g. reduces to a 4th moment bound for IV regression. The third and fourth conditions ensure
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that the data is approximately well-specified by the moment conditions. The fifth and sixth conditions
hold trivially for IV linear regression; for non-linear moment problems, such as our logistic IV
regression problem, this condition requires that the `2-norm of the parameters be sufficiently small,
such that the logits do not approach the flat region of the logistic function, a condition that is natural
to avoid loss of gradient information and extreme propensities.

4 The FILTER Algorithm

In many robust statistics algorithms, an important subroutine is a filtering algorithm for robust mean
estimation. In this section we describe a filtering algorithm used in numerous prior works, including
e.g. [8, 9]. Given a set of vectors {ξi : i ∈ S} and a threshold M , the algorithm returns a subset of S,
by thresholding outliers in the direction of largest variance. Formally, see Algorithm 1.

Algorithm 1 FILTER

1: procedure FILTER({ξi : i ∈ S},M )
2: ξ̂ ← ES [ξi], CovS(ξi) = ES [(ξi − ξ̂)(ξi − ξ̂)T ]
3: v ← largest eigenvector of CovS(ξi)

4: τi ← (v · (ξi − ξ̂))2 for i ∈ S
5: if 1

|S|
∑
i∈S τi ≤ 24M then

6: return S
7: else
8: Sample T ← Unif([0,max τi])
9: return S \ {i ∈ S : τi > T}

This algorithm has two important properties. First, if it does not filter any samples, then the sample
mean is provably stable, i.e. it cannot have been affected much by the corruptions, so long as the
uncorrupted samples had bounded variance (proof in Appendix B.1).

Lemma 4.1 (see e.g. [8, 9]). Suppose that FILTER does not filter out any samples. Then

‖ESξ − EIξ‖2 ≤ 3
√

48
√

(M + ‖CovI(ξ)‖op)ε

for any I ⊆ [n] and ε > 0 such that |S|, |I| ≥ (1− ε)n.

Second, if the threshold is chosen appropriately (based on the variance of the uncorrupted samples),
then the filtering step always in expectation removes at least as many corrupted samples as uncorrupted
samples. Equivalently, the size of the symmetric difference between the current sample set and the
uncorrupted samples (i.e. the number of corrupted samples in the current set plus the number of
uncorrupted samples which have been filtered out of the current set) always decreases in expectation
(proof in Appendix B.1.1).

Lemma 4.2 (see e.g. [8, 9]). Consider an execution of FILTER with sample set S of size |S| ≥ 2n/3,
and vectors {ξi : i ∈ S}, and bound M . Let S′ be the sample set after this iteration’s filtering. Let
Igood ⊆ [n] satisfy |Igood| ≥ (5/6)n. Suppose that CovIgood(ξi) �MI , then

E|S′4Igood| ≤ E|S4Igood|,

where the expectation is over the random threshold, and ∆ denotes symmetric difference.

5 The ITERATED-GMM-SEVER Algorithm

In this section, we describe and analyze an algorithm ITERATED-GMM-SEVER for robustly solving
moment conditions under Assumption 3.1. The key subroutine is the algorithm GMM-SEVER,
which given an initial estimate w0 and a radius R such that the true parameter is contained in
BR(w0), returns a refined estimate w such that (with large probability) the radius bound can be
decreased by a constant factor. We assume access to an approximate constrained critical point oracle
L (Definition 2.2), which can be efficiently implemented (for arbitrary smooth bounded functions) by
gradient descent.
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Algorithm 2 GMM-SEVER

1: procedure GMM-SEVER(L, {g1, . . . , gn}, w0, R, γ, L, σ)
2: S ← [n]
3: repeat
4: Compute a γ-approximate critical point w ← Lγ,BR(w0)(‖ES(gi(·))‖22)
5: u← ESgi(w)

6: S′ ← FILTER({∇gi(w) · u : i ∈ S}, L2 ‖u‖22)
7: if S′ 6= S then
8: Set S ← S′ and return to line 4
9: S′′ ← FILTER({gi(w) : i ∈ S}, σ2L+ 4L2R2)

10: if S′′ 6= S then
11: Set S ← S′′ and return to line 4
12: until S′′ = S
13: return (w, S)

Algorithm 3 AMPLIFIED-GMM-SEVER

1: procedure AMPLIFIED-GMM-SEVER(L, {g1, . . . , gn}, w0, R, γ, ε, L, σ, δ)
2: t← 0
3: repeat
4: w, S ← GMM-SEVER(L, {g1, . . . , gn}, w0, R, γ, L, σ)
5: t← t+ 1
6: until |S| ≥ (1− 11ε)n or (1/10)t ≤ δ
7: return w

Like the algorithm SEVER [8], our algorithm GMM-SEVER alternates (a) finding a critical point of a
function associated to the current samples, and (b) filtering out “outlier” samples. Unlike SEVER, the
function we optimize is not simply an empirical mean over the samples, but rather the squared-norm
of the sample moments. Moreover, we need two filtering steps: the moments as well as directional
derivatives of the moments, in a carefully chosen direction. See Algorithm 2 for the complete
description.

We will only prove a constant failure probability for GMM-SEVER. However, we will show that
it can be amplified to an arbitrarily small failure probability δ. We call the resulting algorithm
AMPLIFIED-GMM-SEVER; see Algorithm 3. The algorithm ITERATED-GMM-SEVER then consists
of iteratively calling AMPLIFIED-GMM-SEVER to refine the parameter estimate and bound the true
parameter within successively smaller balls; see Algorithm 4.

We start by analyzing GMM-SEVER. In the next two lemmas, we show that if the algorithm does not
filter out too many samples, then we can bound the distance from the output to w∗. First, we show a
first-order criticality condition (in the direction ŵ − w∗) for the norm of the moments of the “good"
samples. If there was no corruption, then we would have an inequality of the form

(ŵ − w∗)T

‖ŵ − w∗‖2
EIgood∇g(ŵ)TEIgoodg(ŵ) ≤ γ.

With ε-corruption, the algorithm is designed so that we can still show the following inequality,
matching the above guarantee up to O(

√
ε) (proof in Appendix C.1):

Lemma 5.1. Suppose that the input parameters R and w0 satisfy BR(w0) ⊆ B2R0
(0). Under

Assumption 3.1, at algorithm termination, if |S| ≥ (1− 10ε)n, then the output ŵ of GMM-SEVER
satisfies

(ŵ − w∗)T

‖ŵ − w∗‖2
EIgood∇g(ŵ)TEIgoodg(ŵ) ≤ γ + 275σL3/2

√
ε+ 603L2R

√
ε

Moreover, we can show that any point satisfying the first-order criticality condition must be close to
w∗, using the least singular value bound on the gradient (proof in Appendix C.2).
Lemma 5.2. Suppose that the input parameters R and w0 satisfy BR(w0) ⊆ B2R0

(0). Under
Assumption 3.1, suppose that w ∈ BR(w0) satisfies

(w − w∗)TEIgood∇g(w)TEIgoodg(w) ≤ κ ‖w − w∗‖2 .
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Algorithm 4 ITERATED-GMM-SEVER

1: procedure ITERATED-GMM-SEVER({g1, . . . , gn}, R0, γ, ε, λ, L, σ, δ)
2: t← 1, w1 ← 0, R1 ← R0, δ′ ← cδ/ log(R

√
L/(σ

√
ε), γ = σL3/2

√
ε

3: repeat
4: ŵt := AMPLIFIED-GMM-SEVER({g1, . . . , gn}, wt, Rt, ε, L, σ, γ, δ′)
5: Rt+1 ← 2γ/λ2 + C((L2/λ2)Rt

√
ε+ σ(L3/2/λ2)

√
ε)

6: t← t+ 1
7: until Rt > Rt−1/2
8: return ŵt−1

Then ‖w − w∗‖2 ≤ 4(κ+ σL3/2
√
ε)/λ2.

Putting the above lemmas together, we immediately get the following bound on ‖ŵ − w∗‖2.

Lemma 5.3. Suppose that the input parameters R and w0 satisfy BR(w0) ⊆ B2R0
(0). Under

Assumption 3.1, at algorithm termination, if |S| ≥ (1− 10ε)n, then the output ŵ of GMM-SEVER
satisfies

‖ŵ − w∗‖2 ≤
4γ

λ2
+ 2412(L2/λ2)R

√
ε+ 1102σ(L3/2/λ2)

√
ε.

It remains to bound the size of S at termination. We follow the super-martingale argument from [8],
which uses Lemma 4.2 (proof in Appendix C.3).

Theorem 5.4. Suppose that the input parameters R and w0 satisfy BR(w0) ⊆ B2R0(0). Let ŵ be
the output of GMM-SEVER. Then with probability at least 9/10, it holds that

‖ŵ − w∗‖2 ≤
4γ

λ2
+ 2412(L2/λ2)R

√
ε+ 1102σ(L3/2/λ2)

√
ε.

The time complexity of GMM-SEVER is O(poly(n, d, p, Tγ)) where Tγ is the time complexity of the
γ-approximate learner L. Moreover, for any δ > 0 the success probability can be amplified to 1− δ
by repeating GMM-SEVER O(log 1/δ) times, or until |S| ≥ (1− 10ε)n at termination. We call this
AMPLIFIED-GMM-SEVER, and it has time complexity O(poly(n, d, p, Tγ) · log(1/δ)).

With the above guarantee for GMM-SEVER and AMPLIFIED-GMM-SEVER, we can now analyze
ITERATED-GMM-SEVER (proof in Appendix C.4).

Theorem 5.5. Suppose that the input to ITERATED-GMM-SEVER consists of functions g1, . . . , gn :
Rd → Rp, a corruption parameter ε > 0, well-conditionedness parameters λ and L, a Lipschitzness
parameter Lg , a noise level parameter σ2, a radius bound R0, and an optimization error parameter
γ, such that Assumption 3.1 is satisfied for some unknown parameter w∗ ∈ Rd, and (L2/λ2)

√
ε ≤

1/9648. 4 Suppose that the algorithm is also given a failure probability parameter δ > 0.

Then the output ŵ of ITERATED-GMM-SEVER satisfies

‖ŵ − w∗‖2 ≤ O(σ(L3/2/λ2)
√
ε)

with probability at least 1− δ. Moreover, the algorithm has time complexity O(poly(n, d, p, Tγ) ·
log(1/δ) · log(R

√
L/(σ

√
ε))), where Tγ is the time complexity of a γ-approximate learner and

γ = σL3/2
√
ε.

6 Applications

In this section, we apply ITERATED-GMM-SEVER to solve linear and logistic instrumental variables
regression in the strong contamination model.

4This constant may be improved; we focus in this paper on dependence on the parameters of the problem and
do not optimize constants.
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Robust IV Linear Regression Let Z be the vector of p real-valued instruments, and let X be the
vector of d real-valued covariates. Suppose that Z and X are mean-zero. Suppose that the response
can be described as Y = XTw∗ + ξ for some fixed w∗ ∈ Rd. The distributional assumptions we
will make about X , Y , and Z are described below.

Assumption 6.1. Given a corruption parameter ε > 0, well-conditionedness parameters λ and
L, hypercontractivity parameter τ , noise level parameter σ2, and norm bound R0, we assume
the following: (i) Valid instruments: E[ξ|Z] = 0, (ii) Bounded-variance noise: E[ξ2|Z] ≤
σ2, (iii) Strong instruments: σmin(EZXT ) ≥ λ, (iv) Boundedness: ‖Cov([Z;X]‖op ≤ L, (v)
Hypercontractivity: [Z;X] is (4, 2, τ)-hypercontractive, (vi) Bounded 8th moments: maxiX

8
i ≤

O(τ2L4) and maxi Z
8
i ≤ O(τ2L4) (vii) Bounded norm parameter: ‖w∗‖2 ≤ R0.

For intuition, conditions (i – iii) are standard for IV regression even in the absence of corruption; (iv –
vi) are conditions on the moments of the distribution, and hold for a variety of reasonable distributions
including but not limited to any multivariate Gaussian distribution with bounded-spectral-norm
covariance. Condition (vii) essentially states that we need an initial estimate of w∗ (but the time
complexity of our algorithm will depend only logarithmically on the initial estimate error R0).

Define the random variable
g(w) = Z(Y −XTw)

for w ∈ Rd, and let (Xi, Yi, Zi) be n independent samples drawn according to (X,Y, Z). Let ε > 0.
We prove that under the above assumption, if n is sufficiently large, then with high probability, for
any ε-contamination (X ′i, Y

′
i , Z

′
i)
n
i=1 of (Xi, Yi, Zi)

n
i=1, the functions gi(w) = Z ′i(Y

′
i − (X ′i)

Tw)
satisfy Assumption 3.1. Formally, we prove the following theorem (see Appendix D):

Theorem 6.2. Let ε > 0. Suppose that ε < cmin(λ2/(τL2), λ4/L4) for a sufficiently small constant
c > 0, and suppose that n ≥ C(d + p)5τ log((p + d)/τε)/ε2 for a sufficiently large constant C.
Then with probability at least 0.95 over the samples (Xi, Yi, Zi)

n
i=1, the following holds: for any

ε-corruption of the samples and any upper bound R0 ≥ ‖w∗‖2, Assumption 3.1 is satisfied. In
that event, if L, λ, σ, and ε are known, then there is a poly(n, d, p, log(1/δ), log(R0/(σ

√
ε)))-

time algorithm which produces an estimate ŵ satisfying ‖ŵ − w∗‖2 ≤ O(σ(L3/2/λ2)
√
ε) with

probability at least 1− δ.

Robust IV Logistic Regression Let Z be a vector of p real-valued instruments, and let X be a
vector of d real-valued covariates. Suppose that Z and X are mean-zero. Suppose that the response
can be described as Y = G(XTw∗) + ξ for some fixed w∗ ∈ Rd, where G is the (unscaled) logistic
function. The proofs only use 1-Lipschitzness of G and G′, and that G′(0) is bounded away from 0.

As far as distributional assumptions, we assume in this section that Assumption 6.1 holds, and
additionally assume that the norm bound satisfies R0 ≤ cmin(λ2/L, λ/

√
τL3) for an appropriate

constant c, where λ, L, and τ are as required for the Assumption. We obtain the following algorithmic
result (proof in Appendix E):

Theorem 6.3. Let ε > 0. Suppose that ε < cmin(λ2/(τL2), λ4/L4) for a sufficiently small
constant c > 0, and suppose that n ≥ C(d + p)5τ log((p + d)/τε)/ε2 for a sufficiently large
constant C. Suppose that ‖w∗‖2 ≤ R0 ≤ cmin(λ2/L, λ/

√
τL3). Then with probability at

least 0.95 over the samples (Xi, Yi, Zi)
n
i=1, the following holds: for any ε-corruption of the sam-

ples, Assumption 3.1 is satisfied. In that event, if R0, L, λ, σ, and ε are known, then there is a
poly(n, d, p, log(1/δ), log(R0/(σ

√
ε)))-time algorithm which produces an estimate ŵ satisfying

‖ŵ − w∗‖2 ≤ O(σ(L3/2/λ2)
√
ε) with probability at least 1− δ.

7 Experiments

In this section we corroborate our theory by applying our algorithm ITERATED-GMM-SEVER to
several datasets for IV linear regression. See Appendix G for omitted figures and experimental details
(e.g. hyperparameter choices and descriptions of the baselines). Error bars are at 25th and 75th
percentiles across independent trials.

Varied Instrument Strength. We construct a synthetic dataset with endogenous noise and 1%
corruptions, and evaluate our estimator as the instrument strength is varied. Concretely, for dimension
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(a) Varied Instrument Strength (b) Synthetic HE dataset with added
corruptions

(c) NLSYM dataset with added cor-
ruptions

Figure 1

d and strength α, we draw independent samples (Xi, Yi, Zi)
n
i=1 where for unobserved noise ηi ∼

N(0, Id), we define instruments Zi ∼ N(0, Id) and covariates Xi = αZi + ηi, and response
yi = 〈Xi, θ

∗〉 + 〈ηi,1〉. For k = 0.01n of the samples, we introduce corruption by setting Zi =

−A/(k
√
d) and yi =

√
d where A =

∑
Zjyj , which zeroes out the IV estimate. We take n = 104,

d = 20 and θ∗ = (1, 0, . . . , 0), and vary α from 0.1 to 10. For each α, we do 10 independent
trials, comparing median `2 error of ITERATED-GMM-SEVER with classical IV and two-stage Huber
regression. We also compare to the “clean IV” error, i.e. the error of IV on the uncorrupted samples.
When α is small, essentially no inference is possible (the clean error is large), but as α increases, our
estimator starts to outperform the baselines, and roughly tracks the clean error (Figure 1a). Similar
results can be seen for d = 100 (Figure 2 in Appendix G.5).

Our next two examples consider IV linear regression with heterogeneous treatment effects, a natural
setting in which the instruments and covariates are high-dimensional, necessitating dimension-
independent robust estimators. Consider a study in which each sample has a vector X of charac-
teristics, a scalar instrument Z, a scalar treatment T , and a response Y . Assuming that the control
response and treatment effect are linear in the characteristics, with unknown coefficients β∗ and θ∗
respectively, and that the response noise is mean-zero conditioned on Z and X (but may correlate
with the treatment), we can write the moment conditions

E[XZ(Y − T 〈X, θ∗〉 − 〈X,β∗〉)] = E[X(Y − T 〈X, θ∗〉 − 〈X,β∗〉)] = 0.

This can be interpreted as an IV linear regression with covariates (TX,X) and instruments (ZX,X).

Synthetic HE dataset. For parameters n, d, we generate a unknown d-dimensional parameter
vector θ∗ ∼ N(0, Id). We then generate independent samples (Xi, Yi, Zi)

n
i=1 as follows. Draw

Xi ∼ N(0, Id) and Zi ∼ Ber(1/2). The binary treatment is drawn Ti ∼ Ber(pi) with

pi =
1

1 + exp(−Zi − UiX̄i)
,

where Ui ∼ N(0, 1) and X̄i = d−1/2〈Xi,1〉. Finally, the response is Yi = 〈Xi, θ
∗〉Ti + 〈Xi, β

∗〉+
Ui with β∗ := 0.

Ordinary least squares would produce a biased estimate of (θ∗, β∗), since TX̄ is correlated with the
response noise U . However, U is by construction independent of X and Z. Thus, in the absence
of corruption, IV linear regression with covariates (TX,X), response Y , and instrument (ZX,X)
should approximately recover the true parameters (θ, β).

For n = 103 and d = 20, the IV estimate still has significant variance, and in this regime, even with
no added corruptions, we find that ITERATED-GMM-SEVER has lower recovery error than baselines
(Table 1 in Appendix G.5). For n = 104 and d = 20, the IV estimate is more accurate. Hence, we
corrupt the first εn samples, by setting Xi := 1 and Yi := 3

√
d. Varying ε from 0.01 to 0.1, we

compute the median `2 recovery error of ITERATED-GMM-SEVER, classical IV, and two-stage Huber
regression, across 50 independent trials (for each ε). The results (Figure 1b) demonstrate that our
algorithm is resilient to up to 10% corruptions, whereas both baselines rapidly degrade as ε increases.

NLSYM dataset. In this experiment, we use the data of [6] from the National Longitudinal Survey
of Young Men for estimating the average treatment effect (ATE) of education on wages. The data
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consists of 3010 samples with years of education as the treatment, log wages as the response, and
proximity to a 4-year college as the instrument, along with 22 covariates (e.g. geographic indicator
variables). For simplicity, we restrict the model to only two covariates (years and squared years of
labor force experience) and bias term. We find that the ATE estimated by ITERATED-GMM-SEVER is
close to the positive ATE (≈ 0.277) estimated by classical IV, suggesting that Card’s inference may
be robust (Figure 3 in Appendix G.5). Next, we corrupt a random ε-fraction of the responses, in a
way that negates the ATE inferred by classical IV regression (see Appendix G.2 for method).

Varying ε from 0.01 to 0.2, we perform 10 independent trials (i.e. resampling the subset of corrupted
samples each time). For each trial, we compute the ATE estimate of IV regression, the ATE estimate
of two-stage Huber regression, and the median ATE estimate of 50 runs of ITERATED-GMM-SEVER.
For each ε, we then plot the median absolute error of each algorithm across the 10 trials. We find that
our algorithm outperforms both baselines, and has lower variance than two-stage Huber regression,
up to ε ≈ 0.15 (Figure 1c; note that error is on log-scale, so the Huber regression is extremely noisy).
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A Supplementary lemma for Section 3

We state several consequences of Assumption 3.1 which will be used later.
Lemma A.1. Under Assumption 3.1, the following bounds hold for all w ∈ B2R0(0):

• EIgood(u
T∇g(w)v)2 ≤ 2L2 for all unit vectors u ∈ Rp and v ∈ Rd

• CovIgood(g(w)) � 2σ2L+ 4L2 ‖w − w∗‖22 I
• σmin(EIgood∇g(w)) ≥ λ/2

•
∥∥EIgoodg(w)

∥∥
2
≤ σ
√
Lε+ 2L ‖w − w∗‖2

•
∥∥EIgood∇g(w)

∥∥
op ≤ L

√
2

Proof.

First claim. Note that

|EIgood(u
T∇g(w)v)2 − EIgood(u

T∇g(w∗)v)2|
= |EIgood(u

T (∇g(w)−∇g(w∗))v)(uT (∇g(w) +∇g(w∗))v)|

≤ EIgood(u
T (∇g(w)−∇g(w∗))v)2 + 2

√
EIgood(u

T (∇g(w)−∇g(w∗))v)2EIgood(u
T∇g(w∗)v)2

≤ L2
g ‖w − w∗‖

2
2 + 2LgL ‖w − w∗‖2

≤ λ2/9 + 2λL/3

≤ L2

where the first inequality expands∇g(w) +∇g(w∗) as (∇g(w)−∇g(w∗)) + 2∇g(w∗) and applies
Cauchy-Schwarz to the resulting second term; the second inequality applies the Lipschitz gradient
assumption and bounded-variance gradient assumption at w∗; the third inequality applies the stability
of gradient assumption together with the bound ‖w − w∗‖2 ≤ 3R0; and the fourth inequality uses
that λ ≤ L. It follows that

EIgood(u
T∇g(w)v)2 ≤ L2 + EIgood(u

T∇g(w∗)v)2 ≤ 2L2

as claimed.

Second claim. Observe that for any unit vector v,

EIgood(v · g(w))2 ≤ 2EIgood(v · g(w∗))2 + 2EIgood(v · (g(w)− g(w∗)))2.

The first term is at most 2σ2L by the bounded-variance noise assumption. The second term can be
written and bounded as

EIgood(v · (g(w)− g(w∗)))2 = EIgood

(∫ 1

0

vT∇g(tw + (1− t)w∗)(w − w∗) dt
)2

≤
∫ 1

0

EIgood(v
T∇g(tw + (1− t)w∗)(w − w∗))2

≤ 2L2 ‖w − w∗‖22
by the first claim. This proves the second claim.

Third claim. We have for any w ∈ B2R0
(0) that ‖w − w∗‖2 ≤ 4R0, so

σmin(EIgood∇g(w)) ≥ σmin(EIgood∇g(w∗))−
∥∥EIgood∇g(w)− EIgood∇g(w∗)

∥∥
op

≥ λ− Lg · 4R0

≥ λ/2

as claimed, where the second inequality uses the strong identifiability assumption and Lipschitz
gradient assumption, and the third inequality uses the stability of gradient assumption.
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Fourth claim. We note that

EIgoodg(w)− EIgoodg(w∗) =

∫ 1

0

EIgood∇g(tw + (1− t)w∗)(w − w∗) dt.

The expectation of the gradient has operator norm at most L+ Lg ‖w − w∗‖2 by bounded-variance
and Lipschitzness of the gradient, and this is at most 2L by stability of the gradient and the inequality
λ ≤ L. As a result, ∥∥EIgoodg(w)− EIgoodg(w∗)

∥∥
2
≤ 2L ‖w − w∗‖2 ,

so together with well-specification it follows that
∥∥EIgoodg(w)

∥∥
2
≤ σ
√
Lε + 2L ‖w − w∗‖2 as

claimed.

Fifth claim. This follows immediately from the first claim. Indeed, for any w ∈ B2R0
(0) and unit

vectors u ∈ Rp and v ∈ Rd,
(uTEIgood∇g(w)v)2 = (EIgoodu

T∇g(w)v)2 ≤ EIgood(u
T∇g(w)v)2 ≤ 2L2.

Taking the supremum over all u, v we get that
∥∥EIgood∇g(w)

∥∥
op ≤ L

√
2 as claimed.

B Omitted proofs from Section 4

B.1 Proof of Lemma 4.1

Proof. If the algorithm does not remove any samples, then it holds that

‖CovS(ξ)‖op = VarS(v · ξ) =
1

|S|
∑
i∈S

τi ≤ 24M.

The claim then follows from application of Lemma F.1 to sets S and I , since the total variation
distance between the uniform distribution on S and the uniform distribution on I is at most 2ε.

B.1.1 Proof of Lemma 4.2

Proof. If no elements are filtered out, then the inequality trivially holds. Suppose otherwise. The
difference |S′4Igood| − |S4Igood| is precisely the number of good elements (i.e. i ∈ Igood) filtered
out in this iteration minus the number of bad elements filtered out in this iteration. Due to the random
thresholding, the expectation of the former is 1

max τi

∑
i∈S∩Igood

τi, and the expectation of the latter is
1

max τi

∑
i∈S\Igood

τi. Thus, we need to show that
∑
i∈S∩Igood

τi ≤
∑
i∈S\Igood

τi.

Define Sgood = S ∩ Igood and Sbad = S \ Igood. Let v be the largest eigenvector of CovS(ξi). We
have that

VarSgood(v · ξi) = ESgood(v · ξi − ESgoodv · ξi)2

≤ ESgood(v · ξi − EIgoodv · ξi)2

≤ 2EIgood(v · ξi − EIgoodv · ξi)2

= 2 VarIgood(v · ξi)
≤ 2M

where the first inequality uses the fact that variance is the smallest second moment obtainable by
shifting; the second inequality uses that |Sgood| ≥ (2/3− 1/6)n ≥ |Igood|/2 and Sgood ⊆ Igood; and
the third inequality is by the lemma’s assumption.

On the other hand, since the algorithm doesn’t terminate, it holds that

VarS(v · ξi) =
1

|S|
∑
i∈S

τi ≥ 24M.

Defining µgood = ESgoodv · ξi, µbad = ESbadv · ξi, and µ = ESv · ξi, it follows that
1

|Sgood|
∑
i∈Sgood

τi = ESgood(v · ξi − µ)2 ≤ 2M + (µ− µgood)2.

There are two cases to consider:
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1. If (µ− µgood)2 ≤ 8M . Then

1

|Sgood|
∑
i∈Sgood

τi ≤ 12M ≤ 1

2
VarS(v · ξi) =

1

2|S|
∑
i∈S

τi.

Thus, ∑
i∈Sgood

τi ≤
1

2

∑
i∈S

τi ≤
∑
i∈Sbad

τi.

2. If (µ− µgood)2 ≥ 8M . By the above calculation,

1

|Sgood|
∑
i∈Sgood

τi ≤ 1.5(µ− µgood)2.

On the other hand,
1

|Sbad|
∑
i∈Sbad

τi = ESbad(v · ξi − µ)2 ≥ (µ− µbad)2.

But |µ− µgood| · |Sgood| = |µ− µbad| · |Sbad|. As a result,∑
i∈Sgood

τi ≤ 1.5|Sgood| · (µ− µgood)2 = 1.5
|Sbad|2

|Sgood|
(µ− µbad)2 ≤ 1.5

|Sbad|
|Sgood|

∑
i∈Sbad

τi.

But 1.5|Sbad|/|Sgood| ≤ 1.5(n/6)/(2n/3− n/6) ≤ 1.

In either case, the desired claim holds.

C Omitted proofs from Section 5

C.1 Proof of Lemma 5.1

Proof. By the termination conditions of GMM-SEVER, no samples are filtered out in the last iteration.
Thus, by Lemma 4.1 and the bounds |S|, |I| ≥ (1− 10εn), since no samples are filtered out on Step
6, it holds that (for the vector u = ESg(ŵ) as defined in Step 5)∥∥ES∇g(ŵ)Tu− EIgood∇g(ŵ)Tu

∥∥
2
≤ 3
√

48
√

(L2 ‖u‖22 +
∥∥CovIgood(∇g(ŵ)Tu)

∥∥
op) · 10ε

≤ 36
√

10L ‖u‖2
√
ε

where the last inequality uses the guarantee of Lemma A.1 that EIgood(u
T∇g(ŵ)v)2 ≤ 2L2 for unit

vectors u, v.

In the second filter operation, since no samples are filtered out, Lemma 4.1 implies that∥∥ESg(ŵ)− EIgoodg(ŵ)
∥∥

2
≤ 3
√

48
√

(σ2L+ 4L2R2 +
∥∥CovIgood(g(ŵ))

∥∥
op) · 10ε

≤ 36
√

10σ
√
Lε+ 120

√
6LR
√
ε

where the last inequality uses that CovIgood(gi(ŵ)) � 2σ2L+ 16L2R2 by Lemma A.1. Next, since∥∥EIgood∇g(ŵ)
∥∥

op ≤
√

2L by Lemma A.1, it follows that∥∥EIgood∇g(ŵ)T (ESg(ŵ)− EIgoodg(ŵ))
∥∥

2
≤ 72

√
5σL3/2

√
ε+ 240

√
3L2R

√
ε.

Together with the first inequality, we get that∥∥ES∇g(ŵ)TESg(ŵ)− EIgood∇g(ŵ)EIgoodg(ŵ)
∥∥

2
≤ 72

√
5σL3/2

√
ε+240

√
3L2R

√
ε+36

√
10L ‖u‖2

√
ε.

By assumption,
∥∥EIgoodg(ŵ)

∥∥
2
≤ σ
√
Lε + L ‖ŵ − w∗‖2 ≤ σ

√
Lε + 2LR. Therefore ‖u‖2 =

‖ESg(ŵ)‖2 ≤ σ
√
L + 3LR assuming that max(36

√
10, 120

√
6)
√
ε ≤ 1. Substituting this bound,

we get∥∥ES∇g(ŵ)TESg(ŵ)− EIgood∇g(ŵ)EIgoodg(ŵ)
∥∥

2
≤ (72

√
5+36

√
10)σL3/2

√
ε+(240

√
3+108

√
3)L2R

√
ε.
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Now recall that ŵ is a γ-critical point of ‖ESg(w)‖22 in the region BR(w0). Since w∗ ∈ BR(w0),
the line segment between ŵ and w∗ is also contained in BR(w0), so by definition of a γ-critical point,
it holds that

(w∗ − ŵ) · ES∇g(ŵ)TESg(ŵ) ≥ −γ ‖ŵ − w∗‖2 .
So by the triangle inequality, and rounding up the above constants to integers,

(ŵ − w∗)TEIgood∇g(ŵ)TEIgoodg(ŵ) ≤ γ ‖ŵ − w∗‖2 + (275σL3/2
√
ε+ 603L2R

√
ε) ‖ŵ − w∗‖2

as claimed.

C.2 Proof of Lemma 5.2

Proof. Expanding EIgoodg(w)− g(w∗) as an integral, we have that

(w − w∗)TEIgood∇g(w)TEIgood(g(w)− g(w∗))

= (w − w∗)TEIgood∇g(w)T
∫ 1

0

EIgood∇g(tw + (1− t)w∗)(w − w∗) dt

= (w − w∗)TEIgood∇g(w)T
∫ 1

0

EIgood∇g(w)(w − w∗) dt

+ (w − w∗)TEIgood∇g(w)T
∫ 1

0

(EIgood∇g(tw + (1− t)w∗)− EIgood∇g(w))(w − w∗) dt.

Now, the first term is precisely
∥∥EIgood∇g(w)(w − w∗)

∥∥2

2
. We bound the absolute value of the second

term by Cauchy-Schwarz and the Lipschitzness of the gradient; it is at most∥∥EIgood∇g(w)(w − w∗)
∥∥

2
· Lg ‖w − w∗‖22 .

As a result,

(w − w∗)TEIgood∇g(w)TEIgood(g(w)− g(w∗)) ≥
∥∥EIgood∇g(w)(w − w∗)

∥∥2

2

− Lg ‖w − w∗‖22
∥∥EIgood∇g(w)(w − w∗)

∥∥
2
.

Suppose that
∥∥EIgood∇g(w)(w − w∗)

∥∥
2
≤ 2Lg ‖w − w∗‖22. Then by assumption that

σmin(EIgood∇g(w)) ≥ λ, it follows that ‖w − w∗‖2 ≤ (2Lg/λ) ‖w − w∗‖22. Thus ‖w − w∗‖2 ≥
λ/(2Lg), which contradicts the assumptions that R0 < λ/(4Lg) and w ∈ BR(w0) ⊆ B2R0

(0). We
conclude that in fact

∥∥EIgood∇g(w)(w − w∗)
∥∥

2
> 2Lg ‖w − w∗‖22, so that

(w − w∗)TEIgood∇g(w)TEIgood(g(w)− g(w∗)) ≥ 1

2

∥∥EIgood∇g(w)(w − w∗)
∥∥2

2
.

However, by Assumption 3.1 and Lemma A.1,

|(w − w∗)TEIgood∇g(w)TEIgoodg(w∗)| ≤
√

2σL3/2 ‖w − w∗‖2
√
ε.

So together with the lemma’s assumption,

(w − w∗)TEIgood∇g(w)TEIgood(g(w)− g(w∗)) ≤ (κ+
√

2σL3/2
√
ε) ‖w − w∗‖2 .

As a result, ∥∥EIgood∇g(w)(w − w∗)
∥∥2

2
≤ 2(κ+

√
2σL3/2

√
ε) ‖w − w∗‖2 ,

so that by the least singular value bound in Lemma A.1, ‖w − w∗‖2 ≤ 4(κ+
√

2σL3/2
√
ε)/λ2 as

claimed.

C.3 Proof of Theorem 5.4

Proof. For t ≥ 1 let St be the algorithm’s sample set at the beginning of the t-th iteration, so that
S1 = [n]. Define a “sticky" stochastic process based on |St4Igood|:

Xt =

{
|St4Igood| if t = 1 or |St−1| ≥ 2n/3

Xt−1 otherwise
.
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By soundness of the filtering algorithm (Lemma 4.2), we know that (Xt)t≥1 is a super-martingale.
By Ville’s maximal inequality [11] and since EX1 = εn, it holds with probability at least 8/9 that
suptXt ≤ 9εn. In this event, we claim that |St| ≥ 2n/3 for all t. Indeed, this can be proved by
induction: suppose that there is some t such that |St| < 2n/3 and let t∗ be the minimal such t. Then
|St∗−1| ≥ 2n/3, so |St∗4Igood| = Xt∗ ≤ 9εn. Therefore |St∗ | ≥ |Igood|− 9εn ≥ (1− ε)n− 9εn ≥
2n/3 since 10εn < n/3. Contradiction, so |St| ≥ 2n/3 for all t.

By definition of the process (Xt)t and by the preceding bound on suptXt, it follows that
supt |St4Igood| ≤ 9εn, and therefore inft |St| ≥ (1 − 10ε)n. In particular, |S| ≥ (1 − 10ε)n,
where S is the terminal sample set. Then by Lemma 5.3, it follows that

‖ŵ − w∗‖2 ≤
4γ

λ2
+ 2412(L2/λ2)R

√
ε+ 1102σ(L3/2/λ2)

√
ε.

where ŵ is the output of GMM-Sever. Since this bound holds deterministically whenever |S| ≥
(1 − 10ε)n, the failure probability can be decreased to δ by repeating GMM-Sever until either
|S| ≥ (1− 10ε)n, or O(log 1/δ) repetitions have occurred.

The time complexity bound follows from observing that the FILTER algorithm runs in polynomial
time, and in each repetition at least one sample is removed from S, so the algorithm terminates after
at most n repetitions.

C.4 Proof of Theorem 5.5

Proof. Formally, ITERATED-GMM-SEVER does the following procedure:

1. Initialize t = 1, w1 = 0, R1 = R0, δ′ = cδ/ log(R
√
L/(σ

√
ε)), and γ = σL3/2

√
ε

2. Compute ŵt := AMPLIFIED-GMM-SEVER({g1, . . . , gn}, wt, Rt, ε, λ, L, σ, γ, δ′)

3. Set R′t := 4γ/λ2 + 2412((L2/λ2)Rt
√
ε+ σ(L3/2/λ2)

√
ε)

4. If R′t > Rt/2, then terminate and return ŵt. Otherwise, set wt+1 := ŵt, Rt+1 := R′t, and
return to step (2).

First, note that by induction and the termination condition, R is halved in every iteration, so it holds
for all t ≥ 1 that Rt ≤ R0/2

t−1.

Runtime. The termination condition is deterministic. In particular, the algorithm will terminate
once

4γ

λ2
+ 2412((L2/λ2)Rt

√
ε+ σ(L3/2/λ2)

√
ε) > Rt/2.

This holds if Rt < 4824σ(L3/2/λ2)
√
ε. Since Rt halves in every iteration and λ ≤ L, the al-

gorithm will therefore terminate after at most O(log(R
√
L/(σ

√
ε))) iterations. By the runtime

bound on AMPLIFIED-GMM-SEVER, it follows that ITERATED-GMM-SEVER has time complexity
O(poly(n, d, p, Tγ) · log(1/δ) · log(R

√
L/(σ

√
ε)).

Correctness. Next, we claim by induction that after the t-th call to AMPLIFIED-GMM-SEVER,
it holds with probability at least 1 − δ′t that ‖ŵt − w∗‖2 ≤ R′t. For t = 1, this follows from
Theorem 5.4 and the assumption that w∗ ∈ BR0(0) (which implies that w∗ ∈ BR1(w1) ⊆ B2R0(0)).

Now fix any t > 1 for which the algorithm has not yet terminated, and condition on ‖ŵt−1 − w∗‖2 ≤
R′t−1. Then by the triangle inequality,

‖wt‖2 = ‖ŵt−1‖2 ≤ ‖w
∗‖2 +R′t−1 ≤ R0 +R0/2

t−1.

As a result, BRt(wt) ⊆ BR0+2R0/2t−1(0) ⊆ B2R0
(0). In this event, by Theorem 5.4, it holds

with probability at least 1 − δ′ that ‖ŵt − w∗‖2 ≤ R′t. By the induction hypothesis, the event we
conditioned on occurs with probability at least 1 − δ′(t − 1), so by a union bound, it holds that
‖ŵt − w∗‖2 ≤ R′t with probability at least 1− δ′t, completing the induction.

Now consider the final iteration t. Restating the termination condition, we have
4γ

λ2
+ 2412((L2/λ2)Rt

√
ε+ σ(L3/2/λ2)

√
ε) > Rt/2.
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By assumption that (L2/λ2)
√
ε ≤ 1/9648, it follows that

Rt ≤
16γ

λ2
+ 9648σ(L3/2/λ2)

√
ε.

Thus, with probability at least 1− δ′t, the output ŵt of ITERATED-GMM-SEVER satisfies
‖ŵt − w∗‖2 ≤ R

′
t

≤ 4γ

λ2
+
Rt
4

+ 2412σ(L3/2/λ2)
√
ε

≤ 4γ

λ2
+ 4824σ(L3/2/λ2)

√
ε.

By the choice of γ, this bound is O(σ(L3/2/λ2)
√
ε). By the iteration bound and choice of δ′, the

overall failure probability is at most δ.

D Proof of Theorem 6.2

We need to prove that the contaminated samples (X ′i, Y
′
i , Z

′
i)
n
i=1 satisfy Assumption 3.1 with some

set Igood of size (1 − O(ε))n. To this end, it suffices to prove that with high probability over the
original samples (Xi, Yi, Zi)

n
i=1, there is a subset I of these original samples, with |I| ≥ (1− ε)n,

such that for any subset S ⊆ I of size at least (1 − 2ε)n, the conditions of Assumption 3.1 are
satisfied. In this event, the intersection of I with the uncontaminated samples certifies the assumption.

In the subsequent lemmas, we verify one by one that each condition of Assumption 3.1 is satisfied
with high probability for all subsets S of size at least (1− ε)n of a set I of size at least (1− ε/100)n);
we then take the intersection of the sets I to yield a set Igood witnessing Assumption 3.1.
Lemma D.1. Let ε > 0 be sufficiently small. If n ≥ C(d+p)3

√
τ log(1/τε)/ε2 then with probability

at least 0.99, there is a subset I ⊆ [n] of size |I| ≥ (1− ε/100)n such that for every subset S ⊆ I
with |S| ≥ (1− ε)n, it holds that∥∥∥∥∥ 1

|S|
∑
i∈S

[
Z
X

] [
ZT XT

]
− E

[
Z
X

] [
ZT XT

]∥∥∥∥∥
op

≤ O(
√
τεL).

As a consequence, if (L/λ)
√
τε is less than a sufficiently small constant, then

σmin

(
1

|S|
∑
i∈S

ZiX
T
i

)
≥ λ/2.

Proof. The first statement follows from Corollary F.4, τ -hypercontractivity of [Z;X], and the
covariance upper bound on [Z;X]. Let M̂ = 1

|S|
∑
i∈S ZiX

T
i . It follows from the first statement,

that for any u, ∥∥∥M̂u− EZXTu
∥∥∥

2
≤ O(L

√
τε) ‖u‖2 ≤

λ

2
‖u‖2 .

By assumption that σmin(EZXT ) ≥ λ, it follows that
∥∥∥M̂u

∥∥∥
2
≥ (λ/2) ‖u‖2. The second statement

follows.

Lemma D.2. Let ε > 0 and suppose that n ≥ C(p + d)5 log((p + d)/ε)/ε2 for an appropriate
constant C. Then with probability 0.98, there is a set I ⊆ [n] with |I| ≤ (1 − ε)n such that
EI(uTZ)2(vTX)2 � CτL2I for all unit vectors u ∈ Rp and v ∈ Rd.

Proof. By hypercontractivity, we have

E〈X,u〉4 ≤ τ
(
E〈X,u〉2

)2 ≤ τL2 ‖u‖42
for any vector u ∈ Rd, and similarly for Z. Moreover, we have assumed that the coordinates of X
and Z have 8th moments bounded by O(τ2L4). Thus, we can apply Lemma F.6 to X/ 4

√
τL2 and

Z/
4
√
τL2 to get sets I1, I2 ⊆ [n] each of size at least (1− ε/2)n, that with probability 0.98 satisfy

1

|I1|
∑
i∈I1

〈Xi, u〉4 ≤ CτL2
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and
1

|I2|
∑
i∈I2

〈Zi, v〉4 ≤ CτL2

for all unit vectors u ∈ Rd and v ∈ Rp. Let I = |I1 ∩ I2|. Then |I| ≥ (1 − ε)n, and the above
bounds hold over I as well up to a constant factor loss. Thus,

EI(uTZ)2(XT v)2 ≤
√
EI〈Z, u〉4EI〈X, v〉4 ≤ CτL2.

The lemma follows.

Lemma D.3. Let ε > 0 and suppose that n ≥ C(p+ d)3/ε2. Then with probability 0.99, there is a
set I ⊆ [n] with |I| ≥ (1− ε)n such that EI(vTZξ)2 ≤ Cσ2L for every unit vector v ∈ Rp.

Proof. Since E[ξ2|Z] ≤ σ2, observe that E(vTZξ)2 ≤ σ2E(vTZ)2 ≤ σ2L for every unit vector
v ∈ Rp. The claim follows from Corollary F.4.

Lemma D.4. Let ε > 0, and suppose that n ≥ C(p3/2/ε) log(p). With probability 0.99, there is a
subset I ⊆ [n] with |I| ≥ (1− ε/100)n such that for every S ⊆ I with |S| ≥ (1− ε)n, it holds that

‖ESZξ‖2 ≤ O(σ
√
Lε).

Proof. Observe that EZξ = 0 and EZZT ξ2 � σ2LI by assumption. The claim follows from
Lemma F.5.

Corollary D.5. Let ε > 0. Suppose that ε < cmin(λ2/(τL2), λ4/L4) for a sufficiently small
constant c > 0, and suppose that n ≥ C(d + p)5τ log((p + d)/τε)/ε2 for a sufficiently large
constant C. Then with probability at least 0.95, there is a set I ⊆ [n] with |I| ≥ (1 − ε/2)n such
that for every subset S ⊆ I with |S| ≥ (1− ε)n, the following hold:

• σmin(ES∇g(w∗)) ≥ Ω(λ)

• ES(uT∇g(w)v)2 ≤ O(τL2) for all unit vectors u, v and all w

• ES(vT g(w∗))2 ≤ O(σ2L) for all unit vectors v

• ‖ESg(w∗)‖2 ≤ O(σ
√
Lε)

• ∇g(w) is constant in w.

Proof. Let I1, I2, I3, I4 ⊆ [n] be the sets guaranteed by Lemma D.1 (with parameter ε), Lemma D.2
(with parameter ε/100), Lemma D.3 (with parameter ε/100), and D.4 (with parameter ε), which
satisfy the claims of the respective lemmas with probability at least 0.95. Let I = I1 ∩ I2 ∩ I3 ∩ I4.
We have that |I1|, |I2|, |I3|, |I4| ≥ (1 − ε/100)n, so I is a subset of each of I1, I2, I3, I4 of size at
least (1 − ε/2)n. Let S ⊆ I have |S| ≥ (1 − ε)n. By Lemma D.1 and since S ⊆ I1, it holds that
σmin(ES∇g(w∗)) ≥ λ/2. By Lemma D.2 and since S ⊆ I2, it holds that ES(uT∇g(w)v)2 ≤
2EI2(uT∇g(w)v)2 ≤ O(τL2). By Lemma D.3 we have ES(vT g(w∗))2 ≤ O(σ2L), and by
Lemma D.4 we have ‖ESg(w∗)‖2 ≤ o(σ

√
Lε). Finally, ∇g(w) = ZXT is clearly constant in

w.

The above corollary validates Assumption 3.1 for linear instrumental variables. Since ∇g(w) is
constant in w, the Assumption holds for any bound R0 on the norm of the true solution w∗. Formally,
we can instantiate Theorem 5.5 to get a provably robust estimator for instrumental variables linear
regression, as stated in Theorem 6.2.
Remark 1. Although Theorem 6.2 is stated with a constant probability of failure, this is only for
simplicity of presentation; in fact, the probabilities of failure all decay exponentially with n, once n
exceeds the sample complexity stated in the theorem.
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E Proof of Theorem 6.3

Let (Xi, Yi, Zi) be n independent samples drawn according to (X,Y, Z). Let ε > 0. We prove
that under the above assumptions, if n is sufficiently large, then with high probability, for any
ε-contamination (X ′i, Y

′
i , Z

′
i)
n
i=1 of (Xi, Yi, Zi)

n
i=1, the functions gi(w) = Z ′i(Y

′
i − G((X ′i)

Tw))
satisfy Assumption 3.1. The proof is similar to the previous section, with slight complications
introduced by the non-linearity of the non-linear function G.
Lemma E.1. Let ε > 0. Suppose that n ≥ C(p+ d)5 log((p+ d)/ε)/ε4 for an appropriate constant
C. Then with probability at least 0.97, there is a set I ⊆ [n] with |I| ≥ (1− ε/100)n such that for
every S ⊆ I with |S| ≥ (1− ε)n, it holds that∥∥ESZXTG′(XTw)− ESZXTG′(XTw∗)

∥∥
op ≤ O(

√
τL3 ‖w − w∗‖2).

Proof. Let I1 be the set guaranteed by Lemma D.2 with parameter ε/200, and let I2 be the set
guaranteed by applying Corollary F.4 to X1, . . . , Xn with parameter ε/200. Take I = I1 ∩ I2, so
that |I| ≥ (1− ε/100)n. Let S ⊆ I with |S| ≥ (1− ε)n. By Cauchy-Schwarz, we have that∥∥ESZXT (G′(XTw)−G′(XTw∗))

∥∥
op = sup

‖u‖=‖v‖=1

ESuTZXT v(G′(XTw)−G′(XTw∗))

≤ sup
‖u‖=‖v‖=1

√
ES(uTZXT v)2ES(G′(XTw)−G′(XTw∗))2.

First, by the guarantee of Lemma D.2, we have

ES(uTZXT v)2 ≤ O(τL2).

Second, by the guarantee of Corollary F.4 and Lipschitzness of G′, we have

ES(G′(XTw)−G′(XTw∗))2 ≤ ES(XT (w − w∗))2 ≤ O(L ‖w − w∗‖22).

Together, ∥∥ESZXT (G′(XTw)−G′(XTw∗))
∥∥

op ≤ O(
√
τL3 ‖w − w∗‖22)

as claimed.

Lemma E.2. Let ε > 0 and suppose that n ≥ C(p + d)5 log((p + d)/ε)/ε2 for an appropriate
constant C. Then with probability 0.98, there is a set I ⊆ [n] with |I| ≥ (1− ε)n such that

EI(uTZXTG′(XTw)v)2 ≤ O(τL2)

for all w ∈ Rd and unit vectors u, v.

Proof. Let I be the set guaranteed by Lemma D.2. Simply note that since G is 1-Lipschitz,

EI(uTZXTG′(XTw)v)2 ≤ E(uTZ)2(XT v)2 ≤ O(τL2)

for all unit vectors u, v.

Lemma E.3. Let ε > 0. Suppose that n ≥ C(p + d)5τ log((p + d)/τε)/ε2 for an appropriate
constant C. There is a set I ⊆ [n] with |I| ≥ (1 − ε/50)n such that for every S ⊆ I with
|S| ≥ (1− ε)n, it holds that

σmin(ESZXTG′(XTw∗)) ≥ λ/16.

Proof. Let I1 be the set guaranteed by Lemma D.1 with parameter ε, and let I2 be the set guaranteed
by Lemma E.1 with parameter ε. Let I = I1 ∩ I2, so that |I| ≥ (1− ε/50)n. Pick any S ⊆ I with
|S| ≥ (1− ε)n. Then σmin(ESZXTG′(XT 0)) ≥ λ/8 by Lemma D.1 (and since G′(0) = 1/4), and∥∥ESZXT (G′(0)−G′(XTw∗))

∥∥
op ≤ O(τL2 ‖w∗‖2) by Lemma E.1. It follows that

σmin(ESZXTG′(XTw∗)) ≥ λ/8−O(
√
τL3 ‖w∗‖2) ≥ λ/16,

where the last inequality is by assumption that ‖w∗‖2 ≤ R0 ≤ O(λ/
√
τL3)).
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Lemma E.4. Let ε > 0 and suppose that n ≥ C(p+ d)3/ε2. Then with probability 0.99, there is a
set I ⊆ [n] with |I| ≥ (1− ε)n such that

EI(vTZξ)2 ≤ O(σ2L)

for all unit vectors v.

Proof. By assumption, E(vTZξ)2 = E(vTZ)2(Y −G(XTw∗))2 ≤ σ2L. So we can apply Corol-
lary F.4 to conclude.

Lemma E.5. Let ε > 0, and suppose that n ≥ C(p3/2/ε) log(p). With probability 0.99, there is a
subset I ⊆ [n] with |I| ≥ (1− ε/100)n such that for every S ⊆ I with |S| ≥ (1− ε)n, it holds that

‖ESZξ‖2 ≤ O(σ
√
Lε).

Proof. Observe that EZξ = 0 and EZZT ξ2 � σ2LI by assumption. The claim follows from
Lemma F.5.

As a result of the above lemmas, we get the following corollary, just as in the previous section.

Corollary E.6. Let ε > 0. Suppose that ε < cmin(λ2/(τL2), λ4/L4) for a sufficiently small
constant c > 0, and suppose that n ≥ C(d + p)5τ log((p + d)/τε)/ε2 for a sufficiently large
constant C. Suppose that R0 ≤ cmin(λ2/L, λ/(τL2)). Then with probability at least 0.95, there
is a set I ⊆ [n] with |I| ≥ (1 − ε/2)n such that for every subset S ⊆ I with |S| ≥ (1 − ε)n, the
following hold:

• σmin(ES∇g(w∗)) ≥ Ω(λ)

• ES(uT∇g(w)v)2 ≤ O(τL2) for all unit vectors u, v and all w ∈ BR0(0)

• ES(vT g(w∗))2 ≤ O(σ2L) for all unit vectors v

• ‖ESg(w∗)‖2 ≤ O(σ
√
Lε)

• ‖ES∇g(w)− ES∇g(w∗)‖2 ≤ O(
√
τL3 ‖w − w∗‖2) for all w ∈ BR0

(0)

This corollary validates Assumption 3.1 for logistic instrumental variables, and proves Theorem 6.3.

F Technical lemmas

In this section we collect technical lemmas that are needed for our proof. Most of these results are
standard in the robust statistics literature (see, e.g., [19]).

The following fact is key to the filtering algorithm and various other bounds.

Lemma F.1. Let P,Q be distributions on Rd. Let ε ∈ [0, 1/2) and suppose that TV(P,Q) = ε and
‖CovP ‖op , ‖CovQ‖op ≤ σ

2. Then if X ∼ P and Y ∼ Q, it holds that

‖EX − EY ‖2 ≤ Cεσ
√
ε

where Cε =
√

6/(1− 4ε2).

Proof. Since TV(P,Q) = ε there is some coupling under which Pr(X 6= Y ) = ε. As a result,

E[X]− E[Y ] = ε(E[X|X 6= Y ]− E[Y |X 6= Y ]).

Thus we have that:

‖EX − EY ‖22 = ε2 ‖E[X|X 6= Y ]− E[Y |X 6= Y ]‖22
≤ ε2 sup

v∈Rd:‖v‖2=1

(v · (E[X|X 6= Y ]− E[Y |X 6= Y ]))
2
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Let v ∈ Rd be a unit vector. Bounding the means of X|X 6= Y and Y |X 6= Y by second moments
around EX , we have that

(E[v ·X|X 6= Y ]− E[v · Y |X 6= Y ])2 = (E[v · (X − EX)|X 6= Y ]− E[v · (Y − EX)|X 6= Y ])2

≤ 2E[v · (X − EX)|X 6= Y ]2 + 2E[v · (Y − EX)|X 6= Y ]2

≤ 2E[(v · (X − EX))2|X 6= Y ] + 2E[(v · (Y − EX))2|X 6= Y ]

By law of total probability,

E[(v · (X − EX))2|X 6= Y ] ≤ ε−1E[(v · (X − EX))2] = ε−1vT Cov(X)v ≤ σ2/ε.

Similarly,

E[(v · (Y − EX))2|X 6= Y ] ≤ 2E[(v · (Y − EY ))2|X 6= Y ] + 2(v · (EY − EX))2

≤ 2ε−1E[(v · (Y − EY ))2] + 2 ‖EY − EX‖22
≤ 2σ2/ε+ 2 ‖EY − EX‖22 .

As a result, we get that:

(E[v ·X|X 6= Y ]− E[v · Y |X 6= Y ])2 ≤ 6σ2/ε+ 4 ‖EY − EX‖22 .

We conclude that

‖EX − EY ‖22 ≤ 6σ2ε+ 4ε2 ‖EX − EY ‖22

Re-arranging we get the desired inequality.

The above lemma implies that if an adversary is allowed to corrupt an ε-fraction of data, and the
original distribution has variance no more than σ2 in any direction, then the corrupted mean must
be within O(σ

√
ε) of the original mean, unless the corrupted distribution has significantly larger

variance.
Lemma F.2. Let ε, δ > 0. Suppose that X1, . . . , Xn, X are independent and identically distributed
with EXXT = Id. Suppose that n ≥ Cd3 log(3/δ)/ε2. Then with probability 0.99 there is a subset
I ⊆ [n] with |I| ≥ (1− ε)n such that

1

n

∑
i∈I

XiX
T
i � (1 + δ)Id

and as a consequence
1

|I|
∑
i∈I

XiX
T
i �

1 + δ

1− ε
Id.

Proof. Since E ‖X‖22 = Tr(Id) = d, we have that Pr[‖X‖22 ≥ 2d/ε] ≤ ε/2. Define I = {i ∈ [n] :

‖Xi‖22 ≤ 2d/ε}. By a Chernoff bound, we have |I| ≥ (1− ε)n with probability 1− exp(−Ω(εn)).
Fix a unit vector u ∈ Rd and define

Ai = 〈Xi, u〉21[‖Xi‖22 ≤ 2d/ε]

for i ∈ [n]. We have that E[Ai] ≤ E〈Xi, u〉2 = 1, and also A1, . . . , An are independent and
uniformly bounded by 2d/ε. Thus, Hoeffding’s inequality implies that

Pr

[
1

n

n∑
i=1

Ai ≥ 1 + δ

]
≤ exp(−2nδ2/(2d/ε)2).

Define

f(u) =
1

n

∑
i∈I
〈Xi, u〉2 =

1

n

n∑
i=1

Ai.

For any fixed unit vector u we’ve shown that f(u) ≤ 1 + δ with probability 1− exp(−Ω(nδ2ε2/d2)).
Let N be a net of the unit ball in Rd with resolution α and cardinality at most (3/α)d. By a union
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bound, it holds that f(u) ≤ 1+δ for all u ∈ N with probability 1−exp(d log(3/α)−Ω(nδ2ε2/d2)).
But now

|f(u)− f(v)| ≤ 1

n

∑
i∈I
|〈Xi, u− v〉| · |〈Xi, u+ v〉| ≤

√
f(u− v)f(u+ v)|

for any vectors u, v. Define

M =

∥∥∥∥∥ 1

n

∑
i∈I

XiX
T
i

∥∥∥∥∥
op

= max
‖u‖=1

f(u).

Then
M ≤ 1 + δ +

√
αM · 2M.

Taking α = δ2/2, we get that M ≤ (1 + δ)/(1− δ) ≤ 1 + 4δ. So long as n ≥ Cd3 log(3/δ)/ε2 for
a large enough constant C, it holds with probablity at least 0.99 that

1

n

∑
i∈I

XiX
T
i � (1 + 4δ)Id

and moreover |I| ≥ (1− ε)n. By the latter inequality it also follows that

1

|I|
∑
i∈I

XiX
T
i �

1 + 4δ

1− ε
Id

as claimed.

Lemma F.3. Let ε, τ > 0. Suppose that X1, . . . , Xn, X are independent and identically distributed
with EXXT = Id. Suppose that E〈u,X〉4 ≤ τ(E〈u,X〉2)2 for all u ∈ Rd. Suppose that n ≥
Cd
√
τ log(1/(τε))/ε3/2 for an appropriate absolute constant C. Then with probability 0.99, there is

a subset I ⊆ [n] with |I| ≥ (1− ε/100)n such that for any S ⊆ I with |S| ≥ (1− ε)n it holds that

1

|S|
∑
i∈S

XiX
T
i � (1− 7

√
τε)Id.

Proof. Let I ⊆ [n] be the subset guaranteed by Lemma F.2, with the properties that |I| ≥ (1 −
ε/100)n and 1

|I|
∑
i∈I XiX

T
i � (1 + ε)Id.

Fix a unit vector u ∈ Rd. Let q be such that Pr(〈Xi, u〉2 ≥ q) = 4ε. Define Bi = 1[〈Xi, u〉2 ≥ q].
By a Chernoff bound, it holds with probability 1 − exp(−Ω(εn)) that

∑n
i=1Bi ≥ εn. Thus

the size of the set Q = {i ∈ [n] : 1[〈Xi, u〉2 < q]} is at most (1 − ε)n. As a result, any
S ⊆ [n] with |S| ≥ (1 − ε)n, must either contain all elements from the set Q or elements from
its complement, whose values 〈Xi, u〉2 dominate the value of any element in Q. More formally:
note that |S ∩ Q| + |Q − S| = |Q| ≤ |S| = |S ∩ Q| + |S ∩ Qc| =⇒ |Q − S| ≤ |S ∩ Qc|.
Since every element in S ∩Qc has value 〈Xi, u〉2 larger than any element in Q− S, we thus have:∑
i∈S∩Qc〈Xi, u〉2 ≥

∑
i∈Q−S〈Xi, u〉2. Thus, it holds that∑

i∈S
〈Xi, u〉2 ≥

∑
i∈Q
〈Xi, u〉2 =

n∑
i=1

〈Xi, u〉21[〈Xi, u〉2 < q].

Next, note that 〈Xi, u〉21[〈Xi, u〉2 < q] is bounded by q2. Since

4ε = Pr(〈X,u〉2 ≥ q) ≤ q−2E〈X,u〉4 ≤ q−2τ
(
E〈X,u〉2

)2 ≤ τ/q2,

we have that q2 ≤ τ/(4ε). Therefore by Bernstein’s inequality, with probability

1−exp

(
−Ω(n

τε

E[〈Xi, u〉4] + q2
√
τε

)

)
= 1−exp

(
−Ω(n

τε

τ + τ
4ε

√
τε

)

)
= 1−exp

(
−Ω(n

ε3/2√
τ

)

)
we have that

1

n

n∑
i=1

〈Xi, u〉21[〈Xi, u〉2 < q] ≥ E〈X,u〉21[〈X,u〉2 < q]−
√
τε.
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But now

E〈X,u〉21[〈X,u〉2 < q] = E〈X,u〉2 − E〈X,u〉21[〈X,u〉2 ≥ q]

≥ 1−
√
E〈X,u〉4 Pr(〈X,u〉2 ≥ q)

≥ 1−
√

4τε.

Thus, with probability 1−exp(−Ω(εn))−exp(−Ω(nε3/2/
√
τ)), for all S ⊆ [n] with |S| ≥ (1−ε)n,

we have that ∑
i∈S
〈Xi, u〉2 ≥ (1− 3

√
τε)n.

Assume moreover that S ⊆ I . Define f(u) =
∑
i∈S〈Xi, u〉2. Then for any vectors u, v, we have by

Cauchy-Schwarz that

|f(u)− f(v)| =
∑
i∈S
〈Xi, u〉2 − 〈Xi, v〉2 ≤

√
f(u− v)f(u+ v).

Since S ⊆ I we have that
∑
i∈S XiX

T
i � 2nId. So

|f(u)− f(v)| ≤ 2n ‖u− v‖2 ‖u+ v‖2 .

Fix a net on the unit sphere in Rd, with resolution
√
τε and cardinality (O(1)/

√
τε)d. Then with

probability 1− exp(O(d log(1/(τε)))− Ω(nε3/2/
√
τ)) the lower bound holds for all u in the net

and all S ⊆ I of size |S| ≥ (1− ε)n. As a result, for any unit vector v ∈ Rd and any such S, it holds
that ∑

i∈S
〈Xi, u〉2 ≥ (1− 3

√
τε)n− 4n

√
τε.

We conclude that
1

|S|
∑
i∈S

XiX
T
i � (1− 7

√
τε)Id.

So long as n ≥ Cd
√
τ log(1/(τε))/ε3/2 for a sufficiently large constantC, this holds with probability

at least 0.99 as claimed.

Corollary F.4. Let ε, τ > 0 be sufficiently small. Suppose that X1, . . . , Xn are independent and
identically distributed d-dimensional random vectors, with positive-definite covariance EXXT = Σ.
Suppose that E〈u,X〉4 ≤ τ(E〈u,X〉2)2 for all u. Suppose that n ≥ Cd3

√
τ log(1/τε)/ε2 for a

large constant C. Then with probability 0.99 there is a subset I ⊆ [n] with |I| ≥ (1− ε/100)n such
that for every subset S ⊆ I with |S| ≥ (1− ε)n, it holds that

(1−O(
√
τε))Σ � 1

|S|
∑
i∈S

XiX
T
i � (1 +O(ε))Σ.

Proof. We apply Lemmas F.2 and F.3 to Σ−1/2X1, . . . ,Σ
−1/2Xn. For the upper bound, we observe

that if it holds for I then it holds for every large subset S with only an additional factor of 1 +O(ε).
For the lower bound, we note that hypercontractivity is preserved under this linear transformation.

Lemma F.5. Let ε, σ > 0. Let X1, . . . , Xn, X be i.i.d. d-dimensional random vectors with EX = 0
and EXXT � σ2I . If n ≥ C(d3/2/ε) log(d) for a sufficiently large constantC, then with probability
at least 0.99, there is a subset I ⊆ [n] with |I| ≥ (1 − ε/100)n such that for every S ⊆ I with
|S| ≥ (1− ε)n, it holds that ‖ESX‖2 ≤ O(σ

√
ε).

Proof. Since E ‖X‖22 ≤ σ2d, we have that Pr[‖X‖22 ≥ 200σ2d/ε] ≤ ε/200. Define I = {i ∈
[n] : ‖Xi‖22 ≤ 200σ2d/ε}. By a Chernoff bound, we have |I| ≥ (1 − ε/100)n with probability
1− exp(−Ω(εn)). Now

EXXT
1[‖X‖22 ≥ 200σ2d/ε] � EXXT � σ2I,
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and the random variables XiX
T
i 1[‖Xi‖22 ≥ 200σ2d/ε] are independent and bounded in operator

norm by 200σ2d/ε. Thus, we can apply the Matrix Chernoff bound [28] to get

Pr

[
1

n

∑
i∈I

XiX
T
i � 2eσ2I

]
≥ 1− d exp(−2eσ2n(ε/200σ2d) log(2)) ≥ 0.999 (2)

so long as n ≥ C(d/ε) log(d) for a sufficiently large constant C. Moreover, for any unit vector v,

EvTX1[‖X‖22 ≤ 200σ2d/ε] = −EvTX1[‖X‖22 > 200σ2d/ε]

≤
√
E(vTX)2 Pr(‖X‖22 > 200σ2d/ε)

≤ σ
√
ε.

Since X1[‖X‖22 ≤ 200σ2d/ε] is bounded in norm by σ
√

200d/ε, a Bernstein bound implies that
for any unit vector v,

Pr

(∣∣∣∣∣v · 1

n

n∑
i=1

Xi1[‖Xi‖22 ≤ 200σ2d/ε]

∣∣∣∣∣ > 1.5σ
√
ε

)
≤ exp

(
−Ω

(
nσ2ε

E[(vTX)2] + (σ
√
d/ε)(σ

√
ε)

))
.

≤ exp

(
−Ω

(
nσ2ε

σ2 + σ2
√
d

))
.

Take a net over unit vectors in Rd of granularity 1/100 and cardinality exp(O(d)). Then the above
inequality holds for all v in the net, with probability exp(O(d)−Ω(nε/(

√
d)), which is at least 0.999

if n ≥ Cd3/2/ε for an appropriate constant C.

Let N denote the aforementioned net of the unit ball in Rd. We have that in the aforementioned
event:∥∥∥∥∥ 1

n

n∑
i=1

Xi1[‖Xi‖22 ≤ 200σ2d/ε]

∥∥∥∥∥
2

= sup
w∈Rd:‖w‖2=1

∣∣∣∣∣w · 1

n

n∑
i=1

Xi1[‖Xi‖22 ≤ 200σ2d/ε]

∣∣∣∣∣
≤ sup

v∈N

∣∣∣∣∣w · 1

n

n∑
i=1

Xi1[‖Xi‖22 ≤ 200σ2d/ε]

∣∣∣∣∣
+

1

100

∥∥∥∥∥ 1

n

n∑
i=1

Xi1[‖Xi‖22 ≤ 200σ2d/ε]

∥∥∥∥∥
2

Re-arranging yields:∥∥∥∥∥ 1

n

n∑
i=1

Xi1[‖Xi‖22 ≤ 200σ2d/ε]

∥∥∥∥∥
2

≤ 100

99
1.5σ
√
ε ≤ 2σ

√
ε

Therefore

Pr

(∥∥∥∥∥ 1

n

n∑
i=1

Xi1[‖Xi‖22 ≤ 200σ2d/ε]

∥∥∥∥∥
2

≤ 2σ
√
ε

)
≥ 0.999 (3)

In the intersection of the above events described by Equations 2 and 3, and the event that |I| ≥
(1 − ε/100)n, which together occur with probability at least 0.99, we get that CovI(X) � 4eσ2I
and ‖EIX‖2 ≤ 4σ

√
ε. By Lemma F.1, for any S ⊆ I with |S| ≥ (1 − ε)n, it holds that

‖EIX − ESX‖2 ≤ O(σ
√
ε) so in fact ‖ESX‖2 ≤ O(σ

√
ε).

Lemma F.6. Let ε > 0. LetX1, . . . , Xn, X be independent and identically distributed d-dimensional
random vectors with E〈X,u〉4 ≤ ‖u‖42 for all u ∈ Rd and coordinate-wise bounded 8-th moments,
i.e. maxdi=1 EX8

i ≤ C8. Suppose that n ≥ Cd5 log(d/ε)/ε2 for a sufficiently large constant C. With
probability at least 0.99, there is a set I ⊆ [n] with |I| ≥ (1− ε)n such that

1

|I|
∑
i∈I
〈Xi, u〉4 ≤ c ‖u‖42

for all u ∈ Rp and an absolute constant c.
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Proof. Since E ‖X‖22 = Tr(EXXT ) ≤ d (since (E〈u,X〉2)2 ≤ E〈X,u〉4 ≤ 1 for any unit vector
u), we have that

Pr[‖X‖22 ≥ 2d/ε] ≤ ε/2.

By a Chernoff bound, we have that |{i ∈ [n] : ‖Xi‖22 ≥ 2d/ε}| ≤ εn with probability at least
1− exp(−Ω(εn)). Now fix a unit vector u ∈ Rd and define

Ai = 〈Xi, u〉41[‖Xi‖22 ≤ 2d/ε]

for i ∈ [n]. We have that
E[Ai] ≤ E〈Xi, u〉4 ≤ 1

and also A1, . . . , An are independent and uniformly bounded by (2d/ε)2. Thus, the Bernstein bound
implies that

Pr

[
1

n

n∑
i=1

Ai > 2

]
≤ exp

(
−c1

n

E〈X,u〉8 + (2d/ε)2

)
.

for some universal constant c1. Note that:

E〈X,u〉8 ≤ E ‖X‖82 = E

(
d∑
i=1

X2
i

)4

= d4E

(
1

d

∑
i

X2
i

)4

≤ d4E
1

d

∑
i

X8
i ≤ d4 d

max
i=1

EX8
i ≤ d4C

Thus:

Pr

[
1

n

n∑
i=1

Ai > 2

]
≤ exp

(
−c1

n

Cd4 + (2d/ε)2

)
.

Take I = {i : ‖Xi‖22 ≤ 2d/ε}. For any fixed unit vector u ∈ Rd, it holds that 1
n

∑
i∈I〈Xi, u〉4 ≤ 2

with probability exp(−Ω(n/(d4/ε2))). Take δ = ε2/d2. We can union bound over a δ-net of the unit
ball in Rd, which has cardinality at most (3/δ)d, and note that∣∣∣∣∣ 1n∑

i∈I
〈Xi, u〉4 −

1

n

∑
i∈I
〈Xi, v〉4

∣∣∣∣∣ ≤ C(2d/ε)2 ‖u− v‖2 ,

so in fact it holds that
1

n

∑
i∈I
〈Xi, u〉4 ≤ 2 + C(2d/ε)2δ ≤ C ′

for all unit vectors u ∈ Rd, with probability

1− exp

(
O(d log(d/ε))− Ω

(
n

Cd4 + (d/ε)2

))
≥ 0.999

since n ≥ C ′d5 log(d/ε)/ε2 for a sufficiently large constant C ′. Finally, it also holds that |I| ≥
(1− ε)n with probability 1− exp(−Ω(εn)). It therefore holds with probability at least 0.99 that for
all unit vectors u ∈ Rd,

1

|I|
∑
i∈I
〈Xi, u〉4 ≤ C ′′

as claimed.

G Supplementary experimental details

G.1 Implementation details

Iterated-GMM-Sever. For practical simplicity (e.g. decreasing the number of hyperparameters),
we make several modifications in the implementation. First, instead of updating the constraint ball
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radius Rt based on ε, σ, L, λ, and ε, we simply halve it in each iteration (i.e. Rt+1 ← Rt/2), and
quit after a fixed number of iterations T . Throughout our experiments, we take T = 10. Second, for
computational reasons, we omit the amplification step. Third, we took hyperparameters σ and L to
be equal; both are only used to set the filtering thresholds, and while tuning them separately could
potentially improve performance, we did not attempt to do so. Fourth, since all of our experiments
are for IV linear regression where the number of instruments equals the number of covariates, the
γ-approximate critical point oracle L (line 4 of GMM-SEVER) can be implemented exactly: the IV
moment condition ESgi(w) = ESZXT (y − 〈X,w〉) = 0 has a closed-form solution, which is a
global zero (and therefore minimizer) of ‖ESgi(w)‖22 (this solution ŵ may not lie in the constraint
set ‖w‖2 ≤ R, but in practice this is not an issue).

As a result of these simplifications, our implementation only depends on two hyperparameters: the
initial estimate error R0, and a threshold parameter L. We pick these hyperparameters ad-hoc without
serious tuning attempts. For synthetic experiments we pick R0 equal to the dimension, since the
ground truth parameters have coordinates O(1); for the NYSLM data we take R0 = 20. For the
Varied Instrument Strength experiment, we take L = 0.1; for the synthetic Heterogeneous Effects
experiment we take L = 0.25; and for the NYSLM dataset we take L = 0.01. Note that in particular
we do not need to vary the hyperparameters as the corruption level or instrument strength change.

Two-stage Huber Regression. As a baseline robust IV estimator, we implement two-stage Huber
regression [20]. Concretely, the classical IV estimator can be implemented as two-stage least squares:
first, regress each covariate against the instruments via Ordinary Least Squares. Second, regress
the response against the predicted covariates via Ordinary Least Squares. This can be robustified
by replacing Ordinary Least Squares with Huber regression. We implement Huber regression via
the function sklearn.linear_model.HuberRegressor (with default robustness parameter) in
scikit-learn [25].

Classical IV regression. This baseline is simply the estimator which solves the empirical moment
condition ESZXT (y − 〈X,w〉) = 0 over the whole sample set S = [n].

G.2 Corruption method for NLSYM dataset

We randomly pick εn of the datapoints and corrupt the responses of these datapoints so that if the
original IV estimate was w∗, then the new IV estimate is roughly−w∗. Formally, if S ⊆ [n] is the set
of corrupted samples, we set yS = q−XSw

∗ where q solves the linear system ZTS q = −2ZTScXScw
∗.

Here, Z and X are matrices of the instruments and samples respectively, and y is the vector of
responses. Since w∗ approximately solves the moment conditions on the uncorrupted samples, it
follows that

ZT y = ZTScySc + ZTS q ≈ ZTScXScw
∗ − 2ZTScXScw

∗ = −ZTScXScw
∗,

so the corrupted IV estimate is approximately −w∗.

G.3 Hyperparameter stability

The primary hyperparameter which governs the performance of our algorithm ITERATED-GMM-
SEVER is L, which roughly corresponds to the threshold for filtering outliers. Obviously, if L is
chosen too large, then the algorithm will fail to remove outliers. Thus, it’s important to understand
how to choose L in practice. We chose L ad-hoc without significant tuning. We also experimentally
verify that our algorithm is not unduely sensitive to the choice of L, by repeating some of our main
experimental results for varied L. We find that there is a sort of “phase transition” in L, beyond which
the algorithm fails to identify outliers, but below the transition point, the algorithm is fairly robust
to choice of L. See Figure 3, where we estimate the ATE on the uncorrupted NLSYM data as L
varies, and get consistent results; Figure 4, where we measure our algorithm’s error on the synthetic
Heterogeneous Effects dataset with 0.1n corruptions as L varies; and Figure 5, where we measure
the error in ATE of our algorithm on the corrupted NLSYM data as L varies.

G.4 Computational details

All experiments were done in Python on a Microsoft Surface Laptop, and each plot took at most 12
hours to generate.
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G.5 Omitted Figures

Algorithm Median `2 recovery error (25th percentile, 75th percentile)
ITERATED-GMM-SEVER 2.14 (1.71, 2.91)

IV estimator 6.63 (4.29, 13.95)
Two-stage Huber estimator 2.74 (2.11, 4.38)

Zero estimator 4.32 (3.90, 2.79)
Table 1: Median `2 recovery error of ITERATED-GMM-SEVER and three baselines on uncorrupted
synthetic dataset for IV regression with Heterogeneous Effects (n = 103 and d = 20, with 100
independent trials)

Figure 2: Varied Instrument Strength experiment with d = 100. Since the response noise has
variance d, to maintain the same signal-to-noise ratio as the d = 20 experiment, we set θ∗ =√
d/20(1, 0, . . . , 0) ∈ Rd. Otherwise, the generative model and corruptions are the same as in the

d = 20 experiment. When the instruments are weak, all estimators have large error (the corrupted IV
error is exactly

√
100/20 by construction: the corruptions were chosen so that the IV estimate is the

trivial estimate 0). However, as the instrument strength increases, the clean IV error improves, and
our estimator’s error improves as well, roughly tracking the clean error up to a constant factor.
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Figure 3: Median estimated ATE of ITERATED-GMM-SEVER on the NLSYM data (with no added cor-
ruption) as we vary the hyperparameter L (which controls the algorithm’s outlier-removal threshold)
from 0.01 to 100. For each choice of L, we took the median over 50 repetitions of our (randomized)
algorithm. When L is very large, the algorithm removes no outliers. This plot shows that even when
the algorithm aggressively removes outliers (i.e. L is very small), the estimated ATE is quite stable,
providing evidence for the robustness of the inference of [6] (that education has a positive effect on
wages).

Figure 4: Median `2 recovery error of ITERATED-GMM-SEVER on synthetic Heterogeneous Effects
dataset with 0.1n added corruptions, as we vary the hyperparameter L from 0.01 to 100. For each
choice of L, we took the median over 10 independent trials (i.e. each trial resamples which subset of
0.1n samples to corrupt).

Figure 5: Median ATE error of ITERATED-GMM-SEVER and IV on NLSYM data with 0.1n corrupted
samples, as we vary the hyperparameter L. For each choice of L, we took the median error (in ATE)
over 50 runs of ITERATED-GMM-SEVER. Note that both axes are on log-scale.
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